Abstract

We demonstrate femtosecond plasmonic interferometry with a novel geometry. The plasmonic microinterferometer consists of a tilted slit-groove pair. This arrangement allows for (i) interferometric measurements at a single wavelength with a single microinterferometer and (ii) unambiguous discrimination between changes in real and imaginary parts of the metal dielectric function. The performance is demonstrated by monitoring the sub-picosecond dynamics of hot electrons in gold.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
    [CrossRef] [PubMed]
  2. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 208, 1607–1609 (2005).
    [CrossRef]
  3. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett. 94, 017 402 (2005).
    [CrossRef]
  4. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Brats-chitsch, “Nanomechanical control of an optical antenna,” Nature Photonics 2, 230–233 (2008).
    [CrossRef]
  5. L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98, 266 802 (2007).
    [CrossRef]
  6. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Natur-forsch. A 23, 2135–2136 (1968).
  7. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
    [CrossRef]
  8. W. H. Weber and G. W. Ford, “Optical electric-field enhancement at a metal surface arising from surface-plasmon excitation,” Opt. Lett. 6, 122–124 (1981).
    [CrossRef] [PubMed]
  9. M. van Exter and A. Lagendijk, “Ultrashort surface-plasmon and phonon dynamics,” Phys. Rev. Lett. 60, 49–52 (1988).
    [CrossRef] [PubMed]
  10. R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Ultrafast relaxation of electrons probed by surface plasmons at a thin silver film,” Phys. Rev. Lett. 64, 784–787 (1990).
    [CrossRef] [PubMed]
  11. J. Wang, J. Wu, and C. Guo, “Resolving dynamics of acoustic phonons by surface plasmons,” Opt. Lett. 32, 719–721 (2007).
    [CrossRef] [PubMed]
  12. S. Ogawa, H. Nagano, H. Petek, and A. P. Heberle, “Optical dephasing in Cu(111) measured by interferometric two-photon time-resolved photoemission,” Phys. Rev. Lett. 78, 1339–1342 (1997).
    [CrossRef]
  13. H. Petek, H. Nagano, and S. Ogawa, “Hole decoherence of d-bands in copper,” Phys. Rev. Lett. 83, 832–835 (1999).
    [CrossRef]
  14. A. Kubo, N. Pontius, and H. Petek, “Femtosecond Microscopy of Surface Plasmon Polariton Wave Packet Evolution at the Silver/Vacuum Interface,” Nano. Lett. 7, 470–475 (2007).
    [CrossRef] [PubMed]
  15. M. Tong, A. S. Kirakosyan, T. V. Shahbazyan, and Z. V. Vardeny, “Ultrafast Response of Surface Electromagnetic Waves in an Aluminum Film Perforated with Subwavelength Hole Arrays,” Phys. Rev. Lett. 100, 056 808 (2008).
    [CrossRef]
  16. V. Halte, A. Benabbas, and J. Y. Bigot, “Surface plasmon dynamics in arrays of subwavelength holes: the role of optical interband transitions,” Opt. Express 16, 11 611–11 617 (2008).
  17. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nature Photon. 3, 55–58 (2008).
    [CrossRef]
  18. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Ultrafast imaging interferometry at femtosecond laser-excited surfaces,” J. Opt. Soc. Am. B 23, 1954–1964 (2006).
    [CrossRef]
  19. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization,” Phys. Rev. Lett. 97, 237 403 (2006).
    [CrossRef]
  20. G. Gay, O. Alloschery, B. V. de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The response of nanostructured surfaces in the near field,” Nature Phys. 2, 262–267 (2006).
    [CrossRef]
  21. V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon interferometry: measuring group velocity of surface plasmons,” Opt. Lett. 32, 1235–1237 (2007).
    [CrossRef] [PubMed]
  22. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nature Phot. 1, 402–406 (2007).
    [CrossRef]
  23. Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-Plasmon-Photon Conversion in Plasmonic Nanostructures,” Phys. Rev. Lett. 99, 136 802 (2007).
    [CrossRef]
  24. J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon, M. Laemmlin, D. Bimberg, E. Malic, M. Richter, E. Scholl, and A. Knorr, “Impact of Coulomb scattering on the ultrafast gain recovery in InGaAs quantum dots,” Phys. Rev. Lett. 101, 256 803 (2008).
    [CrossRef]
  25. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett. 94, 053 901 (2005).
    [CrossRef]
  26. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. B 72, 156–160 (1982).
    [CrossRef]
  27. T. Kreis, Handbook of Holographic Interferometry (John Wiley & Sons, New York, 2004).
    [CrossRef]
  28. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, B. Rethfeld, V. E. Gruzdev, A. El-Khamhawy, and D. von der Linde, “Ionization mechanisms in dielectrics irradiated by femtosecond laser pulses,” Proc. SPIE 5448, 1119–1126 (2004).
    [CrossRef]
  29. R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Effect of a nonthermal electron distribution on the electron-phonon energy relaxation process in noble metals,” Phys. Rev. B 45, 5079–5082 (1992).
    [CrossRef]
  30. N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61, 16 956–16 966 (2000).
    [CrossRef]
  31. V. E. Gusev and O. B. Wright, “Ultrafast nonequilibrium dynamics of electrons in metals,” Phys. Rev. B 57, 2878–2888 (1998).
    [CrossRef]
  32. C. K. Sun, Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50, 15337–15 348 (1994).
    [CrossRef]
  33. M. Bonn, D. Denzler, S. Funk, M. Wolf, S. S. Wellershoff, and J. Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101–1105 (2000).
    [CrossRef]
  34. C. S. Moreira, A. M. N. Lima, H. Neff, and C. Thirstrup, “Temperature-dependent sensitivity of surface plasmon resonance sensors at the goldwater interface,” Sens. Actuators B 134, 854–862 (2008).
    [CrossRef]
  35. R. Bonifacio and H. Morawitz, “Cooperative Emission of an Excited Molecular Monolayer into Surface Plasmons,” Phys. Rev. Lett. 36, 1559–1562 (1976).
    [CrossRef]
  36. V. V. Temnov and U. Woggon, “Superradiance and Subradiance in an Inhomogeneously Broadened Ensemble of Two-Level Systems Coupled to a Low-Q Cavity,” Phys. Rev. Lett. 95, 243 602 (2005).
    [CrossRef]
  37. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
    [CrossRef] [PubMed]
  38. S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by Four-Wave Mixing,” Phys. Rev. Lett. 101, 056 802 (2008).
    [CrossRef]

2008 (7)

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Brats-chitsch, “Nanomechanical control of an optical antenna,” Nature Photonics 2, 230–233 (2008).
[CrossRef]

M. Tong, A. S. Kirakosyan, T. V. Shahbazyan, and Z. V. Vardeny, “Ultrafast Response of Surface Electromagnetic Waves in an Aluminum Film Perforated with Subwavelength Hole Arrays,” Phys. Rev. Lett. 100, 056 808 (2008).
[CrossRef]

V. Halte, A. Benabbas, and J. Y. Bigot, “Surface plasmon dynamics in arrays of subwavelength holes: the role of optical interband transitions,” Opt. Express 16, 11 611–11 617 (2008).

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nature Photon. 3, 55–58 (2008).
[CrossRef]

J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon, M. Laemmlin, D. Bimberg, E. Malic, M. Richter, E. Scholl, and A. Knorr, “Impact of Coulomb scattering on the ultrafast gain recovery in InGaAs quantum dots,” Phys. Rev. Lett. 101, 256 803 (2008).
[CrossRef]

C. S. Moreira, A. M. N. Lima, H. Neff, and C. Thirstrup, “Temperature-dependent sensitivity of surface plasmon resonance sensors at the goldwater interface,” Sens. Actuators B 134, 854–862 (2008).
[CrossRef]

S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by Four-Wave Mixing,” Phys. Rev. Lett. 101, 056 802 (2008).
[CrossRef]

2007 (8)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon interferometry: measuring group velocity of surface plasmons,” Opt. Lett. 32, 1235–1237 (2007).
[CrossRef] [PubMed]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nature Phot. 1, 402–406 (2007).
[CrossRef]

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-Plasmon-Photon Conversion in Plasmonic Nanostructures,” Phys. Rev. Lett. 99, 136 802 (2007).
[CrossRef]

J. Wang, J. Wu, and C. Guo, “Resolving dynamics of acoustic phonons by surface plasmons,” Opt. Lett. 32, 719–721 (2007).
[CrossRef] [PubMed]

A. Kubo, N. Pontius, and H. Petek, “Femtosecond Microscopy of Surface Plasmon Polariton Wave Packet Evolution at the Silver/Vacuum Interface,” Nano. Lett. 7, 470–475 (2007).
[CrossRef] [PubMed]

L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98, 266 802 (2007).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

2006 (3)

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Ultrafast imaging interferometry at femtosecond laser-excited surfaces,” J. Opt. Soc. Am. B 23, 1954–1964 (2006).
[CrossRef]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization,” Phys. Rev. Lett. 97, 237 403 (2006).
[CrossRef]

G. Gay, O. Alloschery, B. V. de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The response of nanostructured surfaces in the near field,” Nature Phys. 2, 262–267 (2006).
[CrossRef]

2005 (4)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 208, 1607–1609 (2005).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett. 94, 017 402 (2005).
[CrossRef]

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett. 94, 053 901 (2005).
[CrossRef]

V. V. Temnov and U. Woggon, “Superradiance and Subradiance in an Inhomogeneously Broadened Ensemble of Two-Level Systems Coupled to a Low-Q Cavity,” Phys. Rev. Lett. 95, 243 602 (2005).
[CrossRef]

2004 (1)

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, B. Rethfeld, V. E. Gruzdev, A. El-Khamhawy, and D. von der Linde, “Ionization mechanisms in dielectrics irradiated by femtosecond laser pulses,” Proc. SPIE 5448, 1119–1126 (2004).
[CrossRef]

2000 (2)

N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61, 16 956–16 966 (2000).
[CrossRef]

M. Bonn, D. Denzler, S. Funk, M. Wolf, S. S. Wellershoff, and J. Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101–1105 (2000).
[CrossRef]

1999 (1)

H. Petek, H. Nagano, and S. Ogawa, “Hole decoherence of d-bands in copper,” Phys. Rev. Lett. 83, 832–835 (1999).
[CrossRef]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[CrossRef]

V. E. Gusev and O. B. Wright, “Ultrafast nonequilibrium dynamics of electrons in metals,” Phys. Rev. B 57, 2878–2888 (1998).
[CrossRef]

1997 (1)

S. Ogawa, H. Nagano, H. Petek, and A. P. Heberle, “Optical dephasing in Cu(111) measured by interferometric two-photon time-resolved photoemission,” Phys. Rev. Lett. 78, 1339–1342 (1997).
[CrossRef]

1994 (1)

C. K. Sun, Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50, 15337–15 348 (1994).
[CrossRef]

1992 (1)

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Effect of a nonthermal electron distribution on the electron-phonon energy relaxation process in noble metals,” Phys. Rev. B 45, 5079–5082 (1992).
[CrossRef]

1990 (1)

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Ultrafast relaxation of electrons probed by surface plasmons at a thin silver film,” Phys. Rev. Lett. 64, 784–787 (1990).
[CrossRef] [PubMed]

1988 (1)

M. van Exter and A. Lagendijk, “Ultrashort surface-plasmon and phonon dynamics,” Phys. Rev. Lett. 60, 49–52 (1988).
[CrossRef] [PubMed]

1982 (1)

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. B 72, 156–160 (1982).
[CrossRef]

1981 (1)

1976 (1)

R. Bonifacio and H. Morawitz, “Cooperative Emission of an Excited Molecular Monolayer into Surface Plasmons,” Phys. Rev. Lett. 36, 1559–1562 (1976).
[CrossRef]

1968 (1)

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Natur-forsch. A 23, 2135–2136 (1968).

’t Hooft, G. W.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett. 94, 053 901 (2005).
[CrossRef]

Achermann, M.

N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61, 16 956–16 966 (2000).
[CrossRef]

Acioli, L. H.

C. K. Sun, Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50, 15337–15 348 (1994).
[CrossRef]

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

Alkemade, P. F. A.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett. 94, 053 901 (2005).
[CrossRef]

Alloschery, O.

G. Gay, O. Alloschery, B. V. de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The response of nanostructured surfaces in the near field,” Nature Phys. 2, 262–267 (2006).
[CrossRef]

Artemyev, M. V.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-Plasmon-Photon Conversion in Plasmonic Nanostructures,” Phys. Rev. Lett. 99, 136 802 (2007).
[CrossRef]

Atwater, H. A.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nature Phot. 1, 402–406 (2007).
[CrossRef]

Benabbas, A.

V. Halte, A. Benabbas, and J. Y. Bigot, “Surface plasmon dynamics in arrays of subwavelength holes: the role of optical interband transitions,” Opt. Express 16, 11 611–11 617 (2008).

Bigot, J. Y.

V. Halte, A. Benabbas, and J. Y. Bigot, “Surface plasmon dynamics in arrays of subwavelength holes: the role of optical interband transitions,” Opt. Express 16, 11 611–11 617 (2008).

Bimberg, D.

J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon, M. Laemmlin, D. Bimberg, E. Malic, M. Richter, E. Scholl, and A. Knorr, “Impact of Coulomb scattering on the ultrafast gain recovery in InGaAs quantum dots,” Phys. Rev. Lett. 101, 256 803 (2008).
[CrossRef]

Blok, H.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett. 94, 053 901 (2005).
[CrossRef]

Boneberg, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Brats-chitsch, “Nanomechanical control of an optical antenna,” Nature Photonics 2, 230–233 (2008).
[CrossRef]

Bonifacio, R.

R. Bonifacio and H. Morawitz, “Cooperative Emission of an Excited Molecular Monolayer into Surface Plasmons,” Phys. Rev. Lett. 36, 1559–1562 (1976).
[CrossRef]

Bonn, M.

M. Bonn, D. Denzler, S. Funk, M. Wolf, S. S. Wellershoff, and J. Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101–1105 (2000).
[CrossRef]

Brats-chitsch, R.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Brats-chitsch, “Nanomechanical control of an optical antenna,” Nature Photonics 2, 230–233 (2008).
[CrossRef]

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

Christofilos, D.

N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61, 16 956–16 966 (2000).
[CrossRef]

de Lesegno, B. V.

G. Gay, O. Alloschery, B. V. de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The response of nanostructured surfaces in the near field,” Nature Phys. 2, 262–267 (2006).
[CrossRef]

Del Fatti, N.

N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61, 16 956–16 966 (2000).
[CrossRef]

Denzler, D.

M. Bonn, D. Denzler, S. Funk, M. Wolf, S. S. Wellershoff, and J. Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101–1105 (2000).
[CrossRef]

Devaux, E.

Dintinger, J.

Dommers, S.

J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon, M. Laemmlin, D. Bimberg, E. Malic, M. Richter, E. Scholl, and A. Knorr, “Impact of Coulomb scattering on the ultrafast gain recovery in InGaAs quantum dots,” Phys. Rev. Lett. 101, 256 803 (2008).
[CrossRef]

Dubois, G.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett. 94, 053 901 (2005).
[CrossRef]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon interferometry: measuring group velocity of surface plasmons,” Opt. Lett. 32, 1235–1237 (2007).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[CrossRef]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 208, 1607–1609 (2005).
[CrossRef]

Eliel, E. R.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett. 94, 053 901 (2005).
[CrossRef]

El-Khamhawy, A.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization,” Phys. Rev. Lett. 97, 237 403 (2006).
[CrossRef]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, B. Rethfeld, V. E. Gruzdev, A. El-Khamhawy, and D. von der Linde, “Ionization mechanisms in dielectrics irradiated by femtosecond laser pulses,” Proc. SPIE 5448, 1119–1126 (2004).
[CrossRef]

Fedutik, Y.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-Plasmon-Photon Conversion in Plasmonic Nanostructures,” Phys. Rev. Lett. 99, 136 802 (2007).
[CrossRef]

Ford, G. W.

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett. 94, 017 402 (2005).
[CrossRef]

Fujimoto, J. G.

C. K. Sun, Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50, 15337–15 348 (1994).
[CrossRef]

Funk, S.

M. Bonn, D. Denzler, S. Funk, M. Wolf, S. S. Wellershoff, and J. Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101–1105 (2000).
[CrossRef]

Gay, G.

G. Gay, O. Alloschery, B. V. de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The response of nanostructured surfaces in the near field,” Nature Phys. 2, 262–267 (2006).
[CrossRef]

Gbur, G.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett. 94, 053 901 (2005).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[CrossRef]

Gomis-Bresco, J.

J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon, M. Laemmlin, D. Bimberg, E. Malic, M. Richter, E. Scholl, and A. Knorr, “Impact of Coulomb scattering on the ultrafast gain recovery in InGaAs quantum dots,” Phys. Rev. Lett. 101, 256 803 (2008).
[CrossRef]

Groeneveld, R. H. M.

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Effect of a nonthermal electron distribution on the electron-phonon energy relaxation process in noble metals,” Phys. Rev. B 45, 5079–5082 (1992).
[CrossRef]

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Ultrafast relaxation of electrons probed by surface plasmons at a thin silver film,” Phys. Rev. Lett. 64, 784–787 (1990).
[CrossRef] [PubMed]

Gruzdev, V. E.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, B. Rethfeld, V. E. Gruzdev, A. El-Khamhawy, and D. von der Linde, “Ionization mechanisms in dielectrics irradiated by femtosecond laser pulses,” Proc. SPIE 5448, 1119–1126 (2004).
[CrossRef]

Guo, C.

Gusev, V. E.

V. E. Gusev and O. B. Wright, “Ultrafast nonequilibrium dynamics of electrons in metals,” Phys. Rev. B 57, 2878–2888 (1998).
[CrossRef]

Halm, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Brats-chitsch, “Nanomechanical control of an optical antenna,” Nature Photonics 2, 230–233 (2008).
[CrossRef]

Halte, V.

V. Halte, A. Benabbas, and J. Y. Bigot, “Surface plasmon dynamics in arrays of subwavelength holes: the role of optical interband transitions,” Opt. Express 16, 11 611–11 617 (2008).

Heberle, A. P.

S. Ogawa, H. Nagano, H. Petek, and A. P. Heberle, “Optical dephasing in Cu(111) measured by interferometric two-photon time-resolved photoemission,” Phys. Rev. Lett. 78, 1339–1342 (1997).
[CrossRef]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 208, 1607–1609 (2005).
[CrossRef]

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

Hohlfeld, J.

M. Bonn, D. Denzler, S. Funk, M. Wolf, S. S. Wellershoff, and J. Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101–1105 (2000).
[CrossRef]

Ina, H.

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. B 72, 156–160 (1982).
[CrossRef]

Ippen, E. P.

C. K. Sun, Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50, 15337–15 348 (1994).
[CrossRef]

Kahl, M.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Brats-chitsch, “Nanomechanical control of an optical antenna,” Nature Photonics 2, 230–233 (2008).
[CrossRef]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett. 94, 017 402 (2005).
[CrossRef]

Kirakosyan, A. S.

M. Tong, A. S. Kirakosyan, T. V. Shahbazyan, and Z. V. Vardeny, “Ultrafast Response of Surface Electromagnetic Waves in an Aluminum Film Perforated with Subwavelength Hole Arrays,” Phys. Rev. Lett. 100, 056 808 (2008).
[CrossRef]

Knorr, A.

J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon, M. Laemmlin, D. Bimberg, E. Malic, M. Richter, E. Scholl, and A. Knorr, “Impact of Coulomb scattering on the ultrafast gain recovery in InGaAs quantum dots,” Phys. Rev. Lett. 101, 256 803 (2008).
[CrossRef]

Kobayashi, S.

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. B 72, 156–160 (1982).
[CrossRef]

Kreis, T.

T. Kreis, Handbook of Holographic Interferometry (John Wiley & Sons, New York, 2004).
[CrossRef]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Natur-forsch. A 23, 2135–2136 (1968).

Kubo, A.

A. Kubo, N. Pontius, and H. Petek, “Femtosecond Microscopy of Surface Plasmon Polariton Wave Packet Evolution at the Silver/Vacuum Interface,” Nano. Lett. 7, 470–475 (2007).
[CrossRef] [PubMed]

Kuzmin, N.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett. 94, 053 901 (2005).
[CrossRef]

Laemmlin, M.

J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon, M. Laemmlin, D. Bimberg, E. Malic, M. Richter, E. Scholl, and A. Knorr, “Impact of Coulomb scattering on the ultrafast gain recovery in InGaAs quantum dots,” Phys. Rev. Lett. 101, 256 803 (2008).
[CrossRef]

Lagendijk, A.

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Effect of a nonthermal electron distribution on the electron-phonon energy relaxation process in noble metals,” Phys. Rev. B 45, 5079–5082 (1992).
[CrossRef]

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Ultrafast relaxation of electrons probed by surface plasmons at a thin silver film,” Phys. Rev. Lett. 64, 784–787 (1990).
[CrossRef] [PubMed]

M. van Exter and A. Lagendijk, “Ultrashort surface-plasmon and phonon dynamics,” Phys. Rev. Lett. 60, 49–52 (1988).
[CrossRef] [PubMed]

Leiderer, P.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Brats-chitsch, “Nanomechanical control of an optical antenna,” Nature Photonics 2, 230–233 (2008).
[CrossRef]

Leitenstorfer, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Brats-chitsch, “Nanomechanical control of an optical antenna,” Nature Photonics 2, 230–233 (2008).
[CrossRef]

Lenstra, D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett. 94, 053 901 (2005).
[CrossRef]

Lezec, H. J.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nature Phot. 1, 402–406 (2007).
[CrossRef]

G. Gay, O. Alloschery, B. V. de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The response of nanostructured surfaces in the near field,” Nature Phys. 2, 262–267 (2006).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[CrossRef]

Lima, A. M. N.

C. S. Moreira, A. M. N. Lima, H. Neff, and C. Thirstrup, “Temperature-dependent sensitivity of surface plasmon resonance sensors at the goldwater interface,” Sens. Actuators B 134, 854–862 (2008).
[CrossRef]

Lukin, M. D.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

MacDonald, K. F.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nature Photon. 3, 55–58 (2008).
[CrossRef]

Malic, E.

J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon, M. Laemmlin, D. Bimberg, E. Malic, M. Richter, E. Scholl, and A. Knorr, “Impact of Coulomb scattering on the ultrafast gain recovery in InGaAs quantum dots,” Phys. Rev. Lett. 101, 256 803 (2008).
[CrossRef]

Martin, O. J. F.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 208, 1607–1609 (2005).
[CrossRef]

Merlein, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Brats-chitsch, “Nanomechanical control of an optical antenna,” Nature Photonics 2, 230–233 (2008).
[CrossRef]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett. 94, 017 402 (2005).
[CrossRef]

Morawitz, H.

R. Bonifacio and H. Morawitz, “Cooperative Emission of an Excited Molecular Monolayer into Surface Plasmons,” Phys. Rev. Lett. 36, 1559–1562 (1976).
[CrossRef]

Moreira, C. S.

C. S. Moreira, A. M. N. Lima, H. Neff, and C. Thirstrup, “Temperature-dependent sensitivity of surface plasmon resonance sensors at the goldwater interface,” Sens. Actuators B 134, 854–862 (2008).
[CrossRef]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 208, 1607–1609 (2005).
[CrossRef]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

Nagano, H.

H. Petek, H. Nagano, and S. Ogawa, “Hole decoherence of d-bands in copper,” Phys. Rev. Lett. 83, 832–835 (1999).
[CrossRef]

S. Ogawa, H. Nagano, H. Petek, and A. P. Heberle, “Optical dephasing in Cu(111) measured by interferometric two-photon time-resolved photoemission,” Phys. Rev. Lett. 78, 1339–1342 (1997).
[CrossRef]

Neff, H.

C. S. Moreira, A. M. N. Lima, H. Neff, and C. Thirstrup, “Temperature-dependent sensitivity of surface plasmon resonance sensors at the goldwater interface,” Sens. Actuators B 134, 854–862 (2008).
[CrossRef]

Novotny, L.

S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by Four-Wave Mixing,” Phys. Rev. Lett. 101, 056 802 (2008).
[CrossRef]

L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98, 266 802 (2007).
[CrossRef]

O’Dwyer, C.

G. Gay, O. Alloschery, B. V. de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The response of nanostructured surfaces in the near field,” Nature Phys. 2, 262–267 (2006).
[CrossRef]

Ogawa, S.

H. Petek, H. Nagano, and S. Ogawa, “Hole decoherence of d-bands in copper,” Phys. Rev. Lett. 83, 832–835 (1999).
[CrossRef]

S. Ogawa, H. Nagano, H. Petek, and A. P. Heberle, “Optical dephasing in Cu(111) measured by interferometric two-photon time-resolved photoemission,” Phys. Rev. Lett. 78, 1339–1342 (1997).
[CrossRef]

Pacifici, D.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nature Phot. 1, 402–406 (2007).
[CrossRef]

Palomba, S.

S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by Four-Wave Mixing,” Phys. Rev. Lett. 101, 056 802 (2008).
[CrossRef]

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

Petek, H.

A. Kubo, N. Pontius, and H. Petek, “Femtosecond Microscopy of Surface Plasmon Polariton Wave Packet Evolution at the Silver/Vacuum Interface,” Nano. Lett. 7, 470–475 (2007).
[CrossRef] [PubMed]

H. Petek, H. Nagano, and S. Ogawa, “Hole decoherence of d-bands in copper,” Phys. Rev. Lett. 83, 832–835 (1999).
[CrossRef]

S. Ogawa, H. Nagano, H. Petek, and A. P. Heberle, “Optical dephasing in Cu(111) measured by interferometric two-photon time-resolved photoemission,” Phys. Rev. Lett. 78, 1339–1342 (1997).
[CrossRef]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 208, 1607–1609 (2005).
[CrossRef]

Pontius, N.

A. Kubo, N. Pontius, and H. Petek, “Femtosecond Microscopy of Surface Plasmon Polariton Wave Packet Evolution at the Silver/Vacuum Interface,” Nano. Lett. 7, 470–475 (2007).
[CrossRef] [PubMed]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Natur-forsch. A 23, 2135–2136 (1968).

Rethfeld, B.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, B. Rethfeld, V. E. Gruzdev, A. El-Khamhawy, and D. von der Linde, “Ionization mechanisms in dielectrics irradiated by femtosecond laser pulses,” Proc. SPIE 5448, 1119–1126 (2004).
[CrossRef]

Richter, M.

J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon, M. Laemmlin, D. Bimberg, E. Malic, M. Richter, E. Scholl, and A. Knorr, “Impact of Coulomb scattering on the ultrafast gain recovery in InGaAs quantum dots,” Phys. Rev. Lett. 101, 256 803 (2008).
[CrossRef]

Samson, Z. L.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nature Photon. 3, 55–58 (2008).
[CrossRef]

Scholl, E.

J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon, M. Laemmlin, D. Bimberg, E. Malic, M. Richter, E. Scholl, and A. Knorr, “Impact of Coulomb scattering on the ultrafast gain recovery in InGaAs quantum dots,” Phys. Rev. Lett. 101, 256 803 (2008).
[CrossRef]

Schöps, O.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-Plasmon-Photon Conversion in Plasmonic Nanostructures,” Phys. Rev. Lett. 99, 136 802 (2007).
[CrossRef]

Schouten, H. F.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett. 94, 053 901 (2005).
[CrossRef]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett. 94, 017 402 (2005).
[CrossRef]

Sell, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Brats-chitsch, “Nanomechanical control of an optical antenna,” Nature Photonics 2, 230–233 (2008).
[CrossRef]

Shahbazyan, T. V.

M. Tong, A. S. Kirakosyan, T. V. Shahbazyan, and Z. V. Vardeny, “Ultrafast Response of Surface Electromagnetic Waves in an Aluminum Film Perforated with Subwavelength Hole Arrays,” Phys. Rev. Lett. 100, 056 808 (2008).
[CrossRef]

Sokolowski-Tinten, K.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization,” Phys. Rev. Lett. 97, 237 403 (2006).
[CrossRef]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Ultrafast imaging interferometry at femtosecond laser-excited surfaces,” J. Opt. Soc. Am. B 23, 1954–1964 (2006).
[CrossRef]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, B. Rethfeld, V. E. Gruzdev, A. El-Khamhawy, and D. von der Linde, “Ionization mechanisms in dielectrics irradiated by femtosecond laser pulses,” Proc. SPIE 5448, 1119–1126 (2004).
[CrossRef]

Sprik, R.

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Effect of a nonthermal electron distribution on the electron-phonon energy relaxation process in noble metals,” Phys. Rev. B 45, 5079–5082 (1992).
[CrossRef]

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Ultrafast relaxation of electrons probed by surface plasmons at a thin silver film,” Phys. Rev. Lett. 64, 784–787 (1990).
[CrossRef] [PubMed]

Stockman, M. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nature Photon. 3, 55–58 (2008).
[CrossRef]

Sun, C. K.

C. K. Sun, Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50, 15337–15 348 (1994).
[CrossRef]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett. 94, 017 402 (2005).
[CrossRef]

Takeda, M.

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. B 72, 156–160 (1982).
[CrossRef]

Temnov, V. V.

J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon, M. Laemmlin, D. Bimberg, E. Malic, M. Richter, E. Scholl, and A. Knorr, “Impact of Coulomb scattering on the ultrafast gain recovery in InGaAs quantum dots,” Phys. Rev. Lett. 101, 256 803 (2008).
[CrossRef]

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-Plasmon-Photon Conversion in Plasmonic Nanostructures,” Phys. Rev. Lett. 99, 136 802 (2007).
[CrossRef]

V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon interferometry: measuring group velocity of surface plasmons,” Opt. Lett. 32, 1235–1237 (2007).
[CrossRef] [PubMed]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Ultrafast imaging interferometry at femtosecond laser-excited surfaces,” J. Opt. Soc. Am. B 23, 1954–1964 (2006).
[CrossRef]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization,” Phys. Rev. Lett. 97, 237 403 (2006).
[CrossRef]

V. V. Temnov and U. Woggon, “Superradiance and Subradiance in an Inhomogeneously Broadened Ensemble of Two-Level Systems Coupled to a Low-Q Cavity,” Phys. Rev. Lett. 95, 243 602 (2005).
[CrossRef]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, B. Rethfeld, V. E. Gruzdev, A. El-Khamhawy, and D. von der Linde, “Ionization mechanisms in dielectrics irradiated by femtosecond laser pulses,” Proc. SPIE 5448, 1119–1126 (2004).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[CrossRef]

Thirstrup, C.

C. S. Moreira, A. M. N. Lima, H. Neff, and C. Thirstrup, “Temperature-dependent sensitivity of surface plasmon resonance sensors at the goldwater interface,” Sens. Actuators B 134, 854–862 (2008).
[CrossRef]

Tong, M.

M. Tong, A. S. Kirakosyan, T. V. Shahbazyan, and Z. V. Vardeny, “Ultrafast Response of Surface Electromagnetic Waves in an Aluminum Film Perforated with Subwavelength Hole Arrays,” Phys. Rev. Lett. 100, 056 808 (2008).
[CrossRef]

Tzortzakis, S.

N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61, 16 956–16 966 (2000).
[CrossRef]

Vallée,

C. K. Sun, Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50, 15337–15 348 (1994).
[CrossRef]

Vallée, F.

N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61, 16 956–16 966 (2000).
[CrossRef]

van Exter, M.

M. van Exter and A. Lagendijk, “Ultrashort surface-plasmon and phonon dynamics,” Phys. Rev. Lett. 60, 49–52 (1988).
[CrossRef] [PubMed]

Vardeny, Z. V.

M. Tong, A. S. Kirakosyan, T. V. Shahbazyan, and Z. V. Vardeny, “Ultrafast Response of Surface Electromagnetic Waves in an Aluminum Film Perforated with Subwavelength Hole Arrays,” Phys. Rev. Lett. 100, 056 808 (2008).
[CrossRef]

Visser, T. D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett. 94, 053 901 (2005).
[CrossRef]

Voisin, C.

N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61, 16 956–16 966 (2000).
[CrossRef]

von der Linde, D.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization,” Phys. Rev. Lett. 97, 237 403 (2006).
[CrossRef]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Ultrafast imaging interferometry at femtosecond laser-excited surfaces,” J. Opt. Soc. Am. B 23, 1954–1964 (2006).
[CrossRef]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, B. Rethfeld, V. E. Gruzdev, A. El-Khamhawy, and D. von der Linde, “Ionization mechanisms in dielectrics irradiated by femtosecond laser pulses,” Proc. SPIE 5448, 1119–1126 (2004).
[CrossRef]

Wang, J.

Weber, W. H.

Weiner, J.

G. Gay, O. Alloschery, B. V. de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The response of nanostructured surfaces in the near field,” Nature Phys. 2, 262–267 (2006).
[CrossRef]

Wellershoff, S. S.

M. Bonn, D. Denzler, S. Funk, M. Wolf, S. S. Wellershoff, and J. Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101–1105 (2000).
[CrossRef]

Woggon, U.

J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon, M. Laemmlin, D. Bimberg, E. Malic, M. Richter, E. Scholl, and A. Knorr, “Impact of Coulomb scattering on the ultrafast gain recovery in InGaAs quantum dots,” Phys. Rev. Lett. 101, 256 803 (2008).
[CrossRef]

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-Plasmon-Photon Conversion in Plasmonic Nanostructures,” Phys. Rev. Lett. 99, 136 802 (2007).
[CrossRef]

V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon interferometry: measuring group velocity of surface plasmons,” Opt. Lett. 32, 1235–1237 (2007).
[CrossRef] [PubMed]

V. V. Temnov and U. Woggon, “Superradiance and Subradiance in an Inhomogeneously Broadened Ensemble of Two-Level Systems Coupled to a Low-Q Cavity,” Phys. Rev. Lett. 95, 243 602 (2005).
[CrossRef]

Wolf, M.

M. Bonn, D. Denzler, S. Funk, M. Wolf, S. S. Wellershoff, and J. Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101–1105 (2000).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[CrossRef]

Wright, O. B.

V. E. Gusev and O. B. Wright, “Ultrafast nonequilibrium dynamics of electrons in metals,” Phys. Rev. B 57, 2878–2888 (1998).
[CrossRef]

Wu, J.

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

Zheludev, N. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nature Photon. 3, 55–58 (2008).
[CrossRef]

Zhou, P.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization,” Phys. Rev. Lett. 97, 237 403 (2006).
[CrossRef]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Ultrafast imaging interferometry at femtosecond laser-excited surfaces,” J. Opt. Soc. Am. B 23, 1954–1964 (2006).
[CrossRef]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, B. Rethfeld, V. E. Gruzdev, A. El-Khamhawy, and D. von der Linde, “Ionization mechanisms in dielectrics irradiated by femtosecond laser pulses,” Proc. SPIE 5448, 1119–1126 (2004).
[CrossRef]

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

Zuschlag, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Brats-chitsch, “Nanomechanical control of an optical antenna,” Nature Photonics 2, 230–233 (2008).
[CrossRef]

J. Opt. Soc. Am. B (2)

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, “Ultrafast imaging interferometry at femtosecond laser-excited surfaces,” J. Opt. Soc. Am. B 23, 1954–1964 (2006).
[CrossRef]

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. B 72, 156–160 (1982).
[CrossRef]

Nano. Lett. (1)

A. Kubo, N. Pontius, and H. Petek, “Femtosecond Microscopy of Surface Plasmon Polariton Wave Packet Evolution at the Silver/Vacuum Interface,” Nano. Lett. 7, 470–475 (2007).
[CrossRef] [PubMed]

Nature (3)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
[CrossRef]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef] [PubMed]

Nature Phot. (1)

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nature Phot. 1, 402–406 (2007).
[CrossRef]

Nature Photon. (1)

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nature Photon. 3, 55–58 (2008).
[CrossRef]

Nature Photonics (1)

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Brats-chitsch, “Nanomechanical control of an optical antenna,” Nature Photonics 2, 230–233 (2008).
[CrossRef]

Nature Phys. (1)

G. Gay, O. Alloschery, B. V. de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The response of nanostructured surfaces in the near field,” Nature Phys. 2, 262–267 (2006).
[CrossRef]

Opt. Express (1)

V. Halte, A. Benabbas, and J. Y. Bigot, “Surface plasmon dynamics in arrays of subwavelength holes: the role of optical interband transitions,” Opt. Express 16, 11 611–11 617 (2008).

Opt. Lett. (3)

Phys. Rev. B (5)

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Effect of a nonthermal electron distribution on the electron-phonon energy relaxation process in noble metals,” Phys. Rev. B 45, 5079–5082 (1992).
[CrossRef]

N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61, 16 956–16 966 (2000).
[CrossRef]

V. E. Gusev and O. B. Wright, “Ultrafast nonequilibrium dynamics of electrons in metals,” Phys. Rev. B 57, 2878–2888 (1998).
[CrossRef]

C. K. Sun, Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50, 15337–15 348 (1994).
[CrossRef]

M. Bonn, D. Denzler, S. Funk, M. Wolf, S. S. Wellershoff, and J. Hohlfeld, “Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101–1105 (2000).
[CrossRef]

Phys. Rev. Lett. (14)

R. Bonifacio and H. Morawitz, “Cooperative Emission of an Excited Molecular Monolayer into Surface Plasmons,” Phys. Rev. Lett. 36, 1559–1562 (1976).
[CrossRef]

V. V. Temnov and U. Woggon, “Superradiance and Subradiance in an Inhomogeneously Broadened Ensemble of Two-Level Systems Coupled to a Low-Q Cavity,” Phys. Rev. Lett. 95, 243 602 (2005).
[CrossRef]

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-Plasmon-Photon Conversion in Plasmonic Nanostructures,” Phys. Rev. Lett. 99, 136 802 (2007).
[CrossRef]

J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon, M. Laemmlin, D. Bimberg, E. Malic, M. Richter, E. Scholl, and A. Knorr, “Impact of Coulomb scattering on the ultrafast gain recovery in InGaAs quantum dots,” Phys. Rev. Lett. 101, 256 803 (2008).
[CrossRef]

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett. 94, 053 901 (2005).
[CrossRef]

M. van Exter and A. Lagendijk, “Ultrashort surface-plasmon and phonon dynamics,” Phys. Rev. Lett. 60, 49–52 (1988).
[CrossRef] [PubMed]

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Ultrafast relaxation of electrons probed by surface plasmons at a thin silver film,” Phys. Rev. Lett. 64, 784–787 (1990).
[CrossRef] [PubMed]

L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98, 266 802 (2007).
[CrossRef]

S. Ogawa, H. Nagano, H. Petek, and A. P. Heberle, “Optical dephasing in Cu(111) measured by interferometric two-photon time-resolved photoemission,” Phys. Rev. Lett. 78, 1339–1342 (1997).
[CrossRef]

H. Petek, H. Nagano, and S. Ogawa, “Hole decoherence of d-bands in copper,” Phys. Rev. Lett. 83, 832–835 (1999).
[CrossRef]

M. Tong, A. S. Kirakosyan, T. V. Shahbazyan, and Z. V. Vardeny, “Ultrafast Response of Surface Electromagnetic Waves in an Aluminum Film Perforated with Subwavelength Hole Arrays,” Phys. Rev. Lett. 100, 056 808 (2008).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett. 94, 017 402 (2005).
[CrossRef]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization,” Phys. Rev. Lett. 97, 237 403 (2006).
[CrossRef]

S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by Four-Wave Mixing,” Phys. Rev. Lett. 101, 056 802 (2008).
[CrossRef]

Proc. SPIE (1)

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, B. Rethfeld, V. E. Gruzdev, A. El-Khamhawy, and D. von der Linde, “Ionization mechanisms in dielectrics irradiated by femtosecond laser pulses,” Proc. SPIE 5448, 1119–1126 (2004).
[CrossRef]

Science (1)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 208, 1607–1609 (2005).
[CrossRef]

Sens. Actuators B (1)

C. S. Moreira, A. M. N. Lima, H. Neff, and C. Thirstrup, “Temperature-dependent sensitivity of surface plasmon resonance sensors at the goldwater interface,” Sens. Actuators B 134, 854–862 (2008).
[CrossRef]

Z. Natur-forsch. A (1)

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Natur-forsch. A 23, 2135–2136 (1968).

Other (1)

T. Kreis, Handbook of Holographic Interferometry (John Wiley & Sons, New York, 2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Plasmonic microinterferometer with a tilted slit-groove pair. (a) SEM image showing a typical depth profile of the slit-groove structure (slit-groove distance 1 μm, slit-groove tilt angle Θ = 3°, slit width 100 nm, groove width 200 nm, groove depth 100 nm) milled into a 200 nm thick gold film on glass by a focussed ion beam. (b) Optical transmission of a homogeneously illuminated microinterferometer with a minimum slit-groove spacing of d 0 = 20 μm and slit-groove tilt angle Θ = 15°. The periodic modulation of light intensity transmitted through the slit is due to interference with surface plasmons launched by the groove (see text for details).

Fig. 2.
Fig. 2.

Overview of the femtosecond plasmon interferometry technique. (a) Pump-probe excitation geometry of the plasmonic slit-groove microinterferometer: the probe spot illuminates the whole area of the microinterferometer. The pump beam (blue) is focussed to a 10 μm spot between the slit and the groove. (b) Experimental geometry for scanning pump-probe measurements. (PD - photodiode, MO - microscope objective, BS- beam splitter, AWS - adjustable width slit, GP - glass plate, F - color absorption filter, LIA - lock-in amplifier).

Fig. 3.
Fig. 3.

Plasmonic interferograms for slit-groove microinterferometer with d 0 = 20 μm and Θ = 15°. (a) Plasmonic interference pattern I(x,τ) (b) Plasmonic pump-probe interferogram I pp(x,τ).

Fig. 4.
Fig. 4.

Spatial and temporal dependence of the recorded pump-induced changes of real and imaginary parts of the complex dielectric function of gold, ′ (x, τ) and ″ (x, τ).

Fig. 5.
Fig. 5.

Transient pump-induced changes of real and imaginary parts of the complex dielectric function of gold, ′ (τ) and ″ (τ).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I(x)=E1(x)2+E2(x)2+2E1(x)E2(x)cos(Φ(x)),
E2(x)exp(kspd(x)),
Φ(x)=kspd(x)+ϕ0.
ksp=k0ε1+ε
IPP=2E1E2(dkspcosΦ+dkspsinΦ)Lint.
kspk0(112ε) .
dkspk02ε2,dkspk02ε2
Ipp=E1E2k0Lintε2(cosΦ+sinΦ),

Metrics