Abstract

We propose an improved FDTD method to calculate the optical forces of tightly focused beams on microscopic metal particles. Comparison study on different kinds of tightly focused beams indicates that trapping efficiency can be altered by adjusting the polarization of the incident field. The results also show the size-dependence of trapping forces exerted on metal particles. Transverse tapping forces produced by different illumination wavelengths are also evaluated. The numeric simulation demonstrates the possibility of trapping moderate-sized metal particles whose radii are comparable to wavelength.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
    [CrossRef]
  2. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, "Recent Advances in Optical Tweezers," Annu. Rev. Biochem. 77, 205 (2008).
    [CrossRef] [PubMed]
  3. Q. Zhan, "Radiation forces on a dielectric sphere produced by highly focused cylindrical vector beams," J. Opt. A: Pure Appl. Opt. 5, 229-232 (2003).
    [CrossRef]
  4. S. K. Mohanty, R. S. Verma, and P. K. Gupta, "Trapping and controlled rotation of low-refractive-index particles using dual line optical tweezers," Appl. Phys. B 87,211-215 (2007).
    [CrossRef]
  5. H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, "Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam," Opt. Lett. 32, 1839-1841 (2007).
    [CrossRef] [PubMed]
  6. S. Yan and B. Yao, "Radiation forces of a highly focused radially polarized beam on spherical particles," Phys. Rev. A 76, 053836.1-6 (2007).
    [CrossRef]
  7. A. van der Horst and N. R. Forde, "Calibration of dynamic holographic optical tweezers for force measurements on biomaterials," Opt. Express 16, 20987-21003 (2008).
    [CrossRef] [PubMed]
  8. D. Benito, S. Simpson, and S. Hanna, "FDTD simulation of forces on particles during holographic assembly," Opt. Express 16, 2949-2957 (2008).
    [CrossRef]
  9. T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, "Forces in optical tweezers with radially and azimuthally polarized trapping beams," Opt. Lett. 33,122-124 (2008).
    [CrossRef] [PubMed]
  10. S. Sung and Y. Lee, "Trapping of a micro-bubble by non-paraxial Gaussian beam: computation using the FDTD method," Opt. Express 16, 3463-3473 (2008).
    [CrossRef] [PubMed]
  11. T. Wohland, A. Rosin, and E. Stelzer, "Theoretical determination of the influence of the polarization on forces exerted by optical tweezers," Optik 102, 181-190 (1996).
  12. P. Ke and M. Gu, "Characterization of trapping force on metallic Mie particles," Appl. Opt. 38, 160-167 (1999).
    [CrossRef]
  13. K. Sasaki, M. Koshioka, H. Misawa, and N. Kitamura, "Optical trapping of a metal particle and a water droplet by a scanning laser beam," Appl. Phys. Lett. 60, 807-809 (1991).
    [CrossRef]
  14. O’Neil and M. Padgett, "Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner," Opt. Commun. 185,139-143 (2000).
    [CrossRef]
  15. M. Gu and P. Ke, "Depolarization of evanescent waves scattered by laser-trapped gold particles: Effect of particle size," J. Appl. Phys. 88, 5415-5420 (2000).
    [CrossRef]
  16. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, "Expanding the Optical Trapping Range of Gold Nanoparticles," Nano. Lett. 5, 1937-1941 (2005).
    [CrossRef]
  17. S. Sato, Y. Harada, and Y. Waseda, "Optical trapping of microscopic metal particles," Opt. Lett. 19, 1807-1809 (1994).
    [CrossRef] [PubMed]
  18. K. Svoboda and S. M. Block, "Optical trapping of metallic Rayleigh particles," Opt. Lett. 19, 930-932 (1994).
    [CrossRef] [PubMed]
  19. H. Furukawa and I. Yamaguchi, "Optical trapping of metallic particles by a fixed Gaussian beam," Opt. Lett. 23216-218 (1998).
    [CrossRef]
  20. Q. Zhan, "Trapping metallic Rayliegh particles with radial polarization," Opt. Express 12, 3377-3382 (2004).
    [CrossRef] [PubMed]
  21. Y. Seol, A. Carpenter, and T. Perkins, "Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating," Opt Lett. 31, 2429-2431 (2006).
    [CrossRef] [PubMed]
  22. M. Dienerowitz, M. Mazilu, P. Reece, T. Krauss, and K. Dholakia, "Optical vortex trap for resonant confinement of metal nanoparticles," Opt. Express 16, 4991-4999 (2008).
    [CrossRef] [PubMed]
  23. A. Taflove and S. Hangess, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition (Artech House Inc. Norwood, MA, 2005).
  24. K. Kunz and R. Luebbers, the Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, 1993).
  25. W. Challener, I. Sendur, and C. Peng, "Scattered field formulation of finite difference time domain for a focused light beam in dense media with lossy material," Opt. Express 11, 3160-3170 (2003).
    [CrossRef] [PubMed]
  26. B. Richards and E. Wolf, "Electromagnetic diffraction in optical system II. Structure of the image field in an aplanatic system," Proc. Roy. Soc. A 253, 358-379 (1959).
    [CrossRef]
  27. A. Vial, A. Grimault, D. Macies, D. Barchiesi, and M. Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005).
    [CrossRef]

2008 (6)

2007 (2)

H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, "Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam," Opt. Lett. 32, 1839-1841 (2007).
[CrossRef] [PubMed]

S. K. Mohanty, R. S. Verma, and P. K. Gupta, "Trapping and controlled rotation of low-refractive-index particles using dual line optical tweezers," Appl. Phys. B 87,211-215 (2007).
[CrossRef]

2006 (1)

Y. Seol, A. Carpenter, and T. Perkins, "Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating," Opt Lett. 31, 2429-2431 (2006).
[CrossRef] [PubMed]

2005 (2)

A. Vial, A. Grimault, D. Macies, D. Barchiesi, and M. Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005).
[CrossRef]

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, "Expanding the Optical Trapping Range of Gold Nanoparticles," Nano. Lett. 5, 1937-1941 (2005).
[CrossRef]

2004 (1)

2003 (2)

2000 (2)

O’Neil and M. Padgett, "Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner," Opt. Commun. 185,139-143 (2000).
[CrossRef]

M. Gu and P. Ke, "Depolarization of evanescent waves scattered by laser-trapped gold particles: Effect of particle size," J. Appl. Phys. 88, 5415-5420 (2000).
[CrossRef]

1999 (1)

1998 (1)

1996 (1)

T. Wohland, A. Rosin, and E. Stelzer, "Theoretical determination of the influence of the polarization on forces exerted by optical tweezers," Optik 102, 181-190 (1996).

1994 (2)

1991 (1)

K. Sasaki, M. Koshioka, H. Misawa, and N. Kitamura, "Optical trapping of a metal particle and a water droplet by a scanning laser beam," Appl. Phys. Lett. 60, 807-809 (1991).
[CrossRef]

1970 (1)

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

1959 (1)

B. Richards and E. Wolf, "Electromagnetic diffraction in optical system II. Structure of the image field in an aplanatic system," Proc. Roy. Soc. A 253, 358-379 (1959).
[CrossRef]

Ashkin, A.

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Barchiesi, D.

A. Vial, A. Grimault, D. Macies, D. Barchiesi, and M. Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Benito, D.

D. Benito, S. Simpson, and S. Hanna, "FDTD simulation of forces on particles during holographic assembly," Opt. Express 16, 2949-2957 (2008).
[CrossRef]

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, "Expanding the Optical Trapping Range of Gold Nanoparticles," Nano. Lett. 5, 1937-1941 (2005).
[CrossRef]

Block, S. M.

Bustamante, C.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, "Recent Advances in Optical Tweezers," Annu. Rev. Biochem. 77, 205 (2008).
[CrossRef] [PubMed]

Carpenter, A.

Y. Seol, A. Carpenter, and T. Perkins, "Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating," Opt Lett. 31, 2429-2431 (2006).
[CrossRef] [PubMed]

Challener, W.

Chapelle, M.

A. Vial, A. Grimault, D. Macies, D. Barchiesi, and M. Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Chemla, Y. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, "Recent Advances in Optical Tweezers," Annu. Rev. Biochem. 77, 205 (2008).
[CrossRef] [PubMed]

Dholakia, K.

Dienerowitz, M.

Forde, N. R.

Furukawa, H.

Grimault, A.

A. Vial, A. Grimault, D. Macies, D. Barchiesi, and M. Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Gu, M.

M. Gu and P. Ke, "Depolarization of evanescent waves scattered by laser-trapped gold particles: Effect of particle size," J. Appl. Phys. 88, 5415-5420 (2000).
[CrossRef]

P. Ke and M. Gu, "Characterization of trapping force on metallic Mie particles," Appl. Opt. 38, 160-167 (1999).
[CrossRef]

Gupta, P. K.

S. K. Mohanty, R. S. Verma, and P. K. Gupta, "Trapping and controlled rotation of low-refractive-index particles using dual line optical tweezers," Appl. Phys. B 87,211-215 (2007).
[CrossRef]

Hanna, S.

D. Benito, S. Simpson, and S. Hanna, "FDTD simulation of forces on particles during holographic assembly," Opt. Express 16, 2949-2957 (2008).
[CrossRef]

Hansen, P. M.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, "Expanding the Optical Trapping Range of Gold Nanoparticles," Nano. Lett. 5, 1937-1941 (2005).
[CrossRef]

Harada, Y.

Harrit, N.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, "Expanding the Optical Trapping Range of Gold Nanoparticles," Nano. Lett. 5, 1937-1941 (2005).
[CrossRef]

Heckenberg, N.

Kawauchi, H.

Ke, P.

M. Gu and P. Ke, "Depolarization of evanescent waves scattered by laser-trapped gold particles: Effect of particle size," J. Appl. Phys. 88, 5415-5420 (2000).
[CrossRef]

P. Ke and M. Gu, "Characterization of trapping force on metallic Mie particles," Appl. Opt. 38, 160-167 (1999).
[CrossRef]

Kitamura, N.

K. Sasaki, M. Koshioka, H. Misawa, and N. Kitamura, "Optical trapping of a metal particle and a water droplet by a scanning laser beam," Appl. Phys. Lett. 60, 807-809 (1991).
[CrossRef]

Koshioka, M.

K. Sasaki, M. Koshioka, H. Misawa, and N. Kitamura, "Optical trapping of a metal particle and a water droplet by a scanning laser beam," Appl. Phys. Lett. 60, 807-809 (1991).
[CrossRef]

Kozawa, Y.

Krauss, T.

Lee, Y.

Macies, D.

A. Vial, A. Grimault, D. Macies, D. Barchiesi, and M. Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Mazilu, M.

Misawa, H.

K. Sasaki, M. Koshioka, H. Misawa, and N. Kitamura, "Optical trapping of a metal particle and a water droplet by a scanning laser beam," Appl. Phys. Lett. 60, 807-809 (1991).
[CrossRef]

Moffitt, J. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, "Recent Advances in Optical Tweezers," Annu. Rev. Biochem. 77, 205 (2008).
[CrossRef] [PubMed]

Mohanty, S. K.

S. K. Mohanty, R. S. Verma, and P. K. Gupta, "Trapping and controlled rotation of low-refractive-index particles using dual line optical tweezers," Appl. Phys. B 87,211-215 (2007).
[CrossRef]

Nieminen, T.

O’Neil,

O’Neil and M. Padgett, "Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner," Opt. Commun. 185,139-143 (2000).
[CrossRef]

Oddershede, L.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, "Expanding the Optical Trapping Range of Gold Nanoparticles," Nano. Lett. 5, 1937-1941 (2005).
[CrossRef]

Padgett, M.

O’Neil and M. Padgett, "Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner," Opt. Commun. 185,139-143 (2000).
[CrossRef]

Peng, C.

Perkins, T.

Y. Seol, A. Carpenter, and T. Perkins, "Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating," Opt Lett. 31, 2429-2431 (2006).
[CrossRef] [PubMed]

Reece, P.

Richards, B.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical system II. Structure of the image field in an aplanatic system," Proc. Roy. Soc. A 253, 358-379 (1959).
[CrossRef]

Rosin, A.

T. Wohland, A. Rosin, and E. Stelzer, "Theoretical determination of the influence of the polarization on forces exerted by optical tweezers," Optik 102, 181-190 (1996).

Rubinsztein-Dunlop, H.

Sasaki, K.

K. Sasaki, M. Koshioka, H. Misawa, and N. Kitamura, "Optical trapping of a metal particle and a water droplet by a scanning laser beam," Appl. Phys. Lett. 60, 807-809 (1991).
[CrossRef]

Sato, S.

Sendur, I.

Seol, Y.

Y. Seol, A. Carpenter, and T. Perkins, "Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating," Opt Lett. 31, 2429-2431 (2006).
[CrossRef] [PubMed]

Simpson, S.

D. Benito, S. Simpson, and S. Hanna, "FDTD simulation of forces on particles during holographic assembly," Opt. Express 16, 2949-2957 (2008).
[CrossRef]

Smith, S. B.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, "Recent Advances in Optical Tweezers," Annu. Rev. Biochem. 77, 205 (2008).
[CrossRef] [PubMed]

Stelzer, E.

T. Wohland, A. Rosin, and E. Stelzer, "Theoretical determination of the influence of the polarization on forces exerted by optical tweezers," Optik 102, 181-190 (1996).

Sung, S.

Svoboda, K.

van der Horst, A.

Verma, R. S.

S. K. Mohanty, R. S. Verma, and P. K. Gupta, "Trapping and controlled rotation of low-refractive-index particles using dual line optical tweezers," Appl. Phys. B 87,211-215 (2007).
[CrossRef]

Vial, A.

A. Vial, A. Grimault, D. Macies, D. Barchiesi, and M. Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Waseda, Y.

Wohland, T.

T. Wohland, A. Rosin, and E. Stelzer, "Theoretical determination of the influence of the polarization on forces exerted by optical tweezers," Optik 102, 181-190 (1996).

Wolf, E.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical system II. Structure of the image field in an aplanatic system," Proc. Roy. Soc. A 253, 358-379 (1959).
[CrossRef]

Yamaguchi, I.

Yonezawa, K.

Zhan, Q.

Q. Zhan, "Trapping metallic Rayliegh particles with radial polarization," Opt. Express 12, 3377-3382 (2004).
[CrossRef] [PubMed]

Q. Zhan, "Radiation forces on a dielectric sphere produced by highly focused cylindrical vector beams," J. Opt. A: Pure Appl. Opt. 5, 229-232 (2003).
[CrossRef]

Annu. Rev. Biochem. (1)

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, "Recent Advances in Optical Tweezers," Annu. Rev. Biochem. 77, 205 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

S. K. Mohanty, R. S. Verma, and P. K. Gupta, "Trapping and controlled rotation of low-refractive-index particles using dual line optical tweezers," Appl. Phys. B 87,211-215 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

K. Sasaki, M. Koshioka, H. Misawa, and N. Kitamura, "Optical trapping of a metal particle and a water droplet by a scanning laser beam," Appl. Phys. Lett. 60, 807-809 (1991).
[CrossRef]

J. Appl. Phys. (1)

M. Gu and P. Ke, "Depolarization of evanescent waves scattered by laser-trapped gold particles: Effect of particle size," J. Appl. Phys. 88, 5415-5420 (2000).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

Q. Zhan, "Radiation forces on a dielectric sphere produced by highly focused cylindrical vector beams," J. Opt. A: Pure Appl. Opt. 5, 229-232 (2003).
[CrossRef]

Nano. Lett. (1)

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, "Expanding the Optical Trapping Range of Gold Nanoparticles," Nano. Lett. 5, 1937-1941 (2005).
[CrossRef]

Opt Lett. (1)

Y. Seol, A. Carpenter, and T. Perkins, "Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating," Opt Lett. 31, 2429-2431 (2006).
[CrossRef] [PubMed]

Opt. Commun (1)

O’Neil and M. Padgett, "Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner," Opt. Commun. 185,139-143 (2000).
[CrossRef]

Opt. Express (6)

Opt. Lett. (5)

Optik (1)

T. Wohland, A. Rosin, and E. Stelzer, "Theoretical determination of the influence of the polarization on forces exerted by optical tweezers," Optik 102, 181-190 (1996).

Phys. Rev. B (1)

A. Vial, A. Grimault, D. Macies, D. Barchiesi, and M. Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Proc. Roy. Soc. A (1)

B. Richards and E. Wolf, "Electromagnetic diffraction in optical system II. Structure of the image field in an aplanatic system," Proc. Roy. Soc. A 253, 358-379 (1959).
[CrossRef]

Other (3)

A. Taflove and S. Hangess, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition (Artech House Inc. Norwood, MA, 2005).

K. Kunz and R. Luebbers, the Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, 1993).

S. Yan and B. Yao, "Radiation forces of a highly focused radially polarized beam on spherical particles," Phys. Rev. A 76, 053836.1-6 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Transverse component of force on the 100 nm radius gold particle located at the focal plane with x and y coordinates, illuminated with 1064nm light of circular, linear(x-), azimuthal and radial polarization with the total power of 100 mW.

Fig. 2.
Fig. 2.

Axial components of force exerted on the 100nm radius gold particle located at the optical axis with 1064 nm light illumination of circular (cir), radial (rad) and azimuthal (azi) polarizations with the total power of 100 mW. The solid- line-symbol curve represents the total force, which is divided into even-symmetric and odd-symmetric components, shown by dashed and dotted lines, respectively.

Fig. 3.
Fig. 3.

Force exerted on the 50 nm radius gold particle under 1064 nm illumination of circular polarization with the total power of 100 mW. The blue solid-line-symbol curve represents the axial force when particle moving along optical axis. The axial force is divided into repulsive and attractive components, shown by green dashed and red dotted lines, respectively. The black solid line shows transverse force exerted on the 50 nm gold particle when it moving within the focal plane.

Fig. 4.
Fig. 4.

Transverse force components: (a) 200 nm, 250 nm and 300 nm radius gold particles illuminated by circular polarization of 1064 nm wavelength; (b) 50 nm, 75 nm, and 100 nm radius gold particles illuminated by circular polarization of 532nm wavelength; (c) 300 nm, 400 nm and 450 nm radius gold particles illuminated by radial polarization of 1064 nm wavelength.

Fig. 5.
Fig. 5.

Wavelength-dependence of the transverse trapping forces exerted on 125nm radius gold particle located at the focal plane, illuminated by circularly polarized light at 532 nm, 600 nm, 633 nm, 780 nm and 1064 nm wavelengths.

Fig. 6.
Fig. 6.

Transverse trapping forces exerted on 125nm radius gold particle, located at three different planes before the focal plane, illuminated by 532 nm circularly polarized light. The incident beam propagates along +z axis and is focused on the focus. Two-dimensional trapping becomes possible for the planes with distance 0.4mm and 0.5 mm before the focal plane.

Fig. 7.
Fig. 7.

Axial position-dependence of the transverse trapping forces exerted on gold particle of 300nm radius, illuminated by 1064nm circularly polarized light. (a) Particle was placed before the focal plane. (b) Particle was placed behind the focal plane.

Metrics