Abstract

We report angular and polarization dependent transmission properties of Fano resonance optical filters with transferred silicon nanomembrane on glass substrate. The transmission spectra of the filters can have either weak or strong polarization and angular dependence, depending on properties of individual Fano resonance modal dispersion. Measurement results agree very well with simulations based on a rigorous coupled-wave analysis for the transmission spectra, on planewave expansion wave-vector technique for the dispersion property analysis, and on a three-dimensional finite-difference time-domain technique for the propagating modal study. These results will provide importance guidance for the design of a new class of ultra-compact surface-normal frequency selective components with preferred polarization and angular properties. These components are highly desirable for silicon photonic integration.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
    [CrossRef]
  2. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022 (1992).
    [CrossRef]
  3. C. Lin, Z. Lu, S. Shi, G. Jin, and D. W. Prather, “Experimentally demonstrated filters based on guided resonance of photonic-crystal films,” Appl. Phys. Lett. 87(9), 091102 (2005).
    [CrossRef]
  4. A. Rosenberg, M. Carter, J. Casey, M. Kim, R. Holm, R. Henry, C. Eddy, V. Shamamian, K. Bussmann, S. Shi, and D. W. Prather, “Guided resonances in asymmetrical GaN photonic crystal slabs observed in the visible spectrum,” Opt. Express 13(17), 6564–6571 (2005).
    [CrossRef] [PubMed]
  5. W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84(24), 4905 (2004).
    [CrossRef]
  6. S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18(7), 835–837 (2006).
    [CrossRef]
  7. A. R. Cowan and J. F. Young, “Optical bistability involving photonic crystal microcavities and Fano line shapes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(4), 046606 (2003).
    [CrossRef] [PubMed]
  8. X. Yang, C. Husko, C. W. Wong, M. Yu, and D.-L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/V[sub m] silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007).
    [CrossRef]
  9. S. A. Scott and M. G. Lagally, “Elastically strain-sharing nanomembranes: flexible and transferable strained silicon and silicon–germanium alloys,” J. Phys. D Appl. Phys. 40(4), R75–R92 (2007).
    [CrossRef]
  10. H. C. Yuan, Z. Ma, M. M. Roberts, D. E. Savage, and M. G. Lagally, “High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers,” J. Appl. Phys. 100(1), 013708 (2006).
    [CrossRef]
  11. J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks,” Proc. Natl. Acad. Sci. U.S.A. 98(9), 4835–4840 (2001).
    [CrossRef] [PubMed]
  12. H. Yuan, G. Celler, and Z. Ma, “7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate,” J. Appl. Phys. 102(3), 034501 (2007).
    [CrossRef]
  13. H. Yang, Z. Qiang, H. Pang, Z. Ma, and W. D. Zhou, “Surface-Normal Fano Filters Based on Transferred Silicon Nanomembranes on Glass Substrates,” Electron. Lett. 44(14), 858–859 (2008).
    [CrossRef]
  14. Z. Qiang, H. Yang, L. Chen, H. Pang, Z. Ma, and W. Zhou, “Fano filters based on transferred silicon nanomembranes on plastic substrates,” Appl. Phys. Lett. 93(6), 061106 (2008).
    [CrossRef]
  15. S. Peng and G. Morris, “Resonant scattering from two-dimensional gratings,” J. Opt. Soc. Am. A 13(5), 993–1005 (1996).
    [CrossRef]
  16. G. Niederer, W. Nakagawa, H. Herzig, and H. Thiele, “Design and characterization of a tunable polarization-independent resonant grating filter,” Opt. Express 13(6), 2196–2200 (2005).
    [CrossRef] [PubMed]
  17. D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express 15(4), 1415–1427 (2007).
    [CrossRef] [PubMed]
  18. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express 12(8), 1575–1582 (2004).
    [CrossRef] [PubMed]
  19. J. Song, R. Proietti Zaccaria, M. B. Yu, and X. W. Sun, “Tunable Fano resonance in photonic crystal slabs,” Opt. Express 14(19), 8812–8826 (2006).
    [CrossRef] [PubMed]
  20. Z. Qiang, W. D. Zhou, M. Lu, and G. J. Brown, “Fano Resonance Enhanced Infrared Absorption for Infrared Photodetectors,” Proc. SPIE 6901, 69010F (2008).
    [CrossRef]
  21. H.-C. Yuan, G. K. Celler, and Z. Ma, “7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate,” J. Appl. Phys. 102(3), 034501 (2007).
    [CrossRef]
  22. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [CrossRef]
  23. K. C. Johnson, “Coupled scalar wave diffraction theory,” Appl. Phys., A Mater. Sci. Process. 24, 249–260 (1981).
  24. E. Drouard, H. Hattori, C. Grillet, A. Kazmierczak, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “Directional channel-drop filter based on a slow Bloch mode photonic crystal waveguide section,” Opt. Express 13(8), 3037–3048 (2005).
    [CrossRef] [PubMed]
  25. W. Zhou, Z. Qiang, and L. Chen, “Photonic crystal defect mode cavity modelling: a phenomenological dimensional reduction approach,” J. Phys. D. 40(9), 2615–2623 (2007).
    [CrossRef]

2008 (3)

H. Yang, Z. Qiang, H. Pang, Z. Ma, and W. D. Zhou, “Surface-Normal Fano Filters Based on Transferred Silicon Nanomembranes on Glass Substrates,” Electron. Lett. 44(14), 858–859 (2008).
[CrossRef]

Z. Qiang, H. Yang, L. Chen, H. Pang, Z. Ma, and W. Zhou, “Fano filters based on transferred silicon nanomembranes on plastic substrates,” Appl. Phys. Lett. 93(6), 061106 (2008).
[CrossRef]

Z. Qiang, W. D. Zhou, M. Lu, and G. J. Brown, “Fano Resonance Enhanced Infrared Absorption for Infrared Photodetectors,” Proc. SPIE 6901, 69010F (2008).
[CrossRef]

2007 (6)

H.-C. Yuan, G. K. Celler, and Z. Ma, “7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate,” J. Appl. Phys. 102(3), 034501 (2007).
[CrossRef]

W. Zhou, Z. Qiang, and L. Chen, “Photonic crystal defect mode cavity modelling: a phenomenological dimensional reduction approach,” J. Phys. D. 40(9), 2615–2623 (2007).
[CrossRef]

H. Yuan, G. Celler, and Z. Ma, “7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate,” J. Appl. Phys. 102(3), 034501 (2007).
[CrossRef]

D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express 15(4), 1415–1427 (2007).
[CrossRef] [PubMed]

X. Yang, C. Husko, C. W. Wong, M. Yu, and D.-L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/V[sub m] silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007).
[CrossRef]

S. A. Scott and M. G. Lagally, “Elastically strain-sharing nanomembranes: flexible and transferable strained silicon and silicon–germanium alloys,” J. Phys. D Appl. Phys. 40(4), R75–R92 (2007).
[CrossRef]

2006 (3)

H. C. Yuan, Z. Ma, M. M. Roberts, D. E. Savage, and M. G. Lagally, “High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers,” J. Appl. Phys. 100(1), 013708 (2006).
[CrossRef]

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

J. Song, R. Proietti Zaccaria, M. B. Yu, and X. W. Sun, “Tunable Fano resonance in photonic crystal slabs,” Opt. Express 14(19), 8812–8826 (2006).
[CrossRef] [PubMed]

2005 (4)

2004 (2)

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84(24), 4905 (2004).
[CrossRef]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express 12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

2003 (1)

A. R. Cowan and J. F. Young, “Optical bistability involving photonic crystal microcavities and Fano line shapes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(4), 046606 (2003).
[CrossRef] [PubMed]

2002 (1)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

2001 (1)

J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks,” Proc. Natl. Acad. Sci. U.S.A. 98(9), 4835–4840 (2001).
[CrossRef] [PubMed]

1996 (1)

1992 (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022 (1992).
[CrossRef]

1981 (2)

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
[CrossRef]

K. C. Johnson, “Coupled scalar wave diffraction theory,” Appl. Phys., A Mater. Sci. Process. 24, 249–260 (1981).

Amundson, K.

J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks,” Proc. Natl. Acad. Sci. U.S.A. 98(9), 4835–4840 (2001).
[CrossRef] [PubMed]

Bakir, B. B.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

Baldwin, K.

J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks,” Proc. Natl. Acad. Sci. U.S.A. 98(9), 4835–4840 (2001).
[CrossRef] [PubMed]

Bao, Z.

J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks,” Proc. Natl. Acad. Sci. U.S.A. 98(9), 4835–4840 (2001).
[CrossRef] [PubMed]

Boutami, S.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

Brown, G. J.

Z. Qiang, W. D. Zhou, M. Lu, and G. J. Brown, “Fano Resonance Enhanced Infrared Absorption for Infrared Photodetectors,” Proc. SPIE 6901, 69010F (2008).
[CrossRef]

Bussmann, K.

Carter, M.

Casey, J.

Celler, G.

H. Yuan, G. Celler, and Z. Ma, “7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate,” J. Appl. Phys. 102(3), 034501 (2007).
[CrossRef]

Celler, G. K.

H.-C. Yuan, G. K. Celler, and Z. Ma, “7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate,” J. Appl. Phys. 102(3), 034501 (2007).
[CrossRef]

Chen, L.

Z. Qiang, H. Yang, L. Chen, H. Pang, Z. Ma, and W. Zhou, “Fano filters based on transferred silicon nanomembranes on plastic substrates,” Appl. Phys. Lett. 93(6), 061106 (2008).
[CrossRef]

W. Zhou, Z. Qiang, and L. Chen, “Photonic crystal defect mode cavity modelling: a phenomenological dimensional reduction approach,” J. Phys. D. 40(9), 2615–2623 (2007).
[CrossRef]

Cowan, A. R.

A. R. Cowan and J. F. Young, “Optical bistability involving photonic crystal microcavities and Fano line shapes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(4), 046606 (2003).
[CrossRef] [PubMed]

Crone, B.

J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks,” Proc. Natl. Acad. Sci. U.S.A. 98(9), 4835–4840 (2001).
[CrossRef] [PubMed]

Crouse, D.

Dodabalapur, A.

J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks,” Proc. Natl. Acad. Sci. U.S.A. 98(9), 4835–4840 (2001).
[CrossRef] [PubMed]

Drouard, E.

Drzaic, P.

J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks,” Proc. Natl. Acad. Sci. U.S.A. 98(9), 4835–4840 (2001).
[CrossRef] [PubMed]

Eddy, C.

Ewing, J.

J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks,” Proc. Natl. Acad. Sci. U.S.A. 98(9), 4835–4840 (2001).
[CrossRef] [PubMed]

Fan, S.

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84(24), 4905 (2004).
[CrossRef]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express 12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

Garrigues, M.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

Gaylord, T. K.

Grillet, C.

Hattori, H.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

E. Drouard, H. Hattori, C. Grillet, A. Kazmierczak, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “Directional channel-drop filter based on a slow Bloch mode photonic crystal waveguide section,” Opt. Express 13(8), 3037–3048 (2005).
[CrossRef] [PubMed]

Henry, R.

Herzig, H.

Holm, R.

Husko, C.

X. Yang, C. Husko, C. W. Wong, M. Yu, and D.-L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/V[sub m] silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007).
[CrossRef]

Jin, G.

C. Lin, Z. Lu, S. Shi, G. Jin, and D. W. Prather, “Experimentally demonstrated filters based on guided resonance of photonic-crystal films,” Appl. Phys. Lett. 87(9), 091102 (2005).
[CrossRef]

Joannopoulos, J. D.

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

Johnson, K. C.

K. C. Johnson, “Coupled scalar wave diffraction theory,” Appl. Phys., A Mater. Sci. Process. 24, 249–260 (1981).

Katz, H.

J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks,” Proc. Natl. Acad. Sci. U.S.A. 98(9), 4835–4840 (2001).
[CrossRef] [PubMed]

Kazmierczak, A.

Keshavareddy, P.

Kilic, O.

Kim, M.

Kim, S.

Kuck, V.

J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks,” Proc. Natl. Acad. Sci. U.S.A. 98(9), 4835–4840 (2001).
[CrossRef] [PubMed]

Kwong, D.-L.

X. Yang, C. Husko, C. W. Wong, M. Yu, and D.-L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/V[sub m] silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007).
[CrossRef]

Lagally, M. G.

S. A. Scott and M. G. Lagally, “Elastically strain-sharing nanomembranes: flexible and transferable strained silicon and silicon–germanium alloys,” J. Phys. D Appl. Phys. 40(4), R75–R92 (2007).
[CrossRef]

H. C. Yuan, Z. Ma, M. M. Roberts, D. E. Savage, and M. G. Lagally, “High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers,” J. Appl. Phys. 100(1), 013708 (2006).
[CrossRef]

Leclercq, J.-L.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

Letartre, X.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

E. Drouard, H. Hattori, C. Grillet, A. Kazmierczak, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “Directional channel-drop filter based on a slow Bloch mode photonic crystal waveguide section,” Opt. Express 13(8), 3037–3048 (2005).
[CrossRef] [PubMed]

Lin, C.

C. Lin, Z. Lu, S. Shi, G. Jin, and D. W. Prather, “Experimentally demonstrated filters based on guided resonance of photonic-crystal films,” Appl. Phys. Lett. 87(9), 091102 (2005).
[CrossRef]

Lousse, V.

Lu, M.

Z. Qiang, W. D. Zhou, M. Lu, and G. J. Brown, “Fano Resonance Enhanced Infrared Absorption for Infrared Photodetectors,” Proc. SPIE 6901, 69010F (2008).
[CrossRef]

Lu, Z.

C. Lin, Z. Lu, S. Shi, G. Jin, and D. W. Prather, “Experimentally demonstrated filters based on guided resonance of photonic-crystal films,” Appl. Phys. Lett. 87(9), 091102 (2005).
[CrossRef]

Ma, Z.

H. Yang, Z. Qiang, H. Pang, Z. Ma, and W. D. Zhou, “Surface-Normal Fano Filters Based on Transferred Silicon Nanomembranes on Glass Substrates,” Electron. Lett. 44(14), 858–859 (2008).
[CrossRef]

Z. Qiang, H. Yang, L. Chen, H. Pang, Z. Ma, and W. Zhou, “Fano filters based on transferred silicon nanomembranes on plastic substrates,” Appl. Phys. Lett. 93(6), 061106 (2008).
[CrossRef]

H. Yuan, G. Celler, and Z. Ma, “7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate,” J. Appl. Phys. 102(3), 034501 (2007).
[CrossRef]

H.-C. Yuan, G. K. Celler, and Z. Ma, “7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate,” J. Appl. Phys. 102(3), 034501 (2007).
[CrossRef]

H. C. Yuan, Z. Ma, M. M. Roberts, D. E. Savage, and M. G. Lagally, “High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers,” J. Appl. Phys. 100(1), 013708 (2006).
[CrossRef]

Magnusson, R.

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022 (1992).
[CrossRef]

Moharam, M. G.

Morris, G.

Nakagawa, W.

Niederer, G.

Pang, H.

Z. Qiang, H. Yang, L. Chen, H. Pang, Z. Ma, and W. Zhou, “Fano filters based on transferred silicon nanomembranes on plastic substrates,” Appl. Phys. Lett. 93(6), 061106 (2008).
[CrossRef]

H. Yang, Z. Qiang, H. Pang, Z. Ma, and W. D. Zhou, “Surface-Normal Fano Filters Based on Transferred Silicon Nanomembranes on Glass Substrates,” Electron. Lett. 44(14), 858–859 (2008).
[CrossRef]

Peng, S.

Prather, D. W.

Proietti Zaccaria, R.

Qiang, Z.

Z. Qiang, W. D. Zhou, M. Lu, and G. J. Brown, “Fano Resonance Enhanced Infrared Absorption for Infrared Photodetectors,” Proc. SPIE 6901, 69010F (2008).
[CrossRef]

H. Yang, Z. Qiang, H. Pang, Z. Ma, and W. D. Zhou, “Surface-Normal Fano Filters Based on Transferred Silicon Nanomembranes on Glass Substrates,” Electron. Lett. 44(14), 858–859 (2008).
[CrossRef]

Z. Qiang, H. Yang, L. Chen, H. Pang, Z. Ma, and W. Zhou, “Fano filters based on transferred silicon nanomembranes on plastic substrates,” Appl. Phys. Lett. 93(6), 061106 (2008).
[CrossRef]

W. Zhou, Z. Qiang, and L. Chen, “Photonic crystal defect mode cavity modelling: a phenomenological dimensional reduction approach,” J. Phys. D. 40(9), 2615–2623 (2007).
[CrossRef]

Raju, V. R.

J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks,” Proc. Natl. Acad. Sci. U.S.A. 98(9), 4835–4840 (2001).
[CrossRef] [PubMed]

Roberts, M. M.

H. C. Yuan, Z. Ma, M. M. Roberts, D. E. Savage, and M. G. Lagally, “High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers,” J. Appl. Phys. 100(1), 013708 (2006).
[CrossRef]

Rogers, J. A.

J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks,” Proc. Natl. Acad. Sci. U.S.A. 98(9), 4835–4840 (2001).
[CrossRef] [PubMed]

Rojo-Rome, P.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

Rojo-Romeo, P.

Rosenberg, A.

Savage, D. E.

H. C. Yuan, Z. Ma, M. M. Roberts, D. E. Savage, and M. G. Lagally, “High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers,” J. Appl. Phys. 100(1), 013708 (2006).
[CrossRef]

Scott, S. A.

S. A. Scott and M. G. Lagally, “Elastically strain-sharing nanomembranes: flexible and transferable strained silicon and silicon–germanium alloys,” J. Phys. D Appl. Phys. 40(4), R75–R92 (2007).
[CrossRef]

Seassal, C.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

Shamamian, V.

Shi, S.

Solgaard, O.

Song, J.

Suh, W.

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express 12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84(24), 4905 (2004).
[CrossRef]

Sun, X. W.

Thiele, H.

Viktorovitch, P.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

E. Drouard, H. Hattori, C. Grillet, A. Kazmierczak, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “Directional channel-drop filter based on a slow Bloch mode photonic crystal waveguide section,” Opt. Express 13(8), 3037–3048 (2005).
[CrossRef] [PubMed]

Wang, S. S.

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022 (1992).
[CrossRef]

Wong, C. W.

X. Yang, C. Husko, C. W. Wong, M. Yu, and D.-L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/V[sub m] silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007).
[CrossRef]

Yang, H.

Z. Qiang, H. Yang, L. Chen, H. Pang, Z. Ma, and W. Zhou, “Fano filters based on transferred silicon nanomembranes on plastic substrates,” Appl. Phys. Lett. 93(6), 061106 (2008).
[CrossRef]

H. Yang, Z. Qiang, H. Pang, Z. Ma, and W. D. Zhou, “Surface-Normal Fano Filters Based on Transferred Silicon Nanomembranes on Glass Substrates,” Electron. Lett. 44(14), 858–859 (2008).
[CrossRef]

Yang, X.

X. Yang, C. Husko, C. W. Wong, M. Yu, and D.-L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/V[sub m] silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007).
[CrossRef]

Young, J. F.

A. R. Cowan and J. F. Young, “Optical bistability involving photonic crystal microcavities and Fano line shapes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(4), 046606 (2003).
[CrossRef] [PubMed]

Yu, M.

X. Yang, C. Husko, C. W. Wong, M. Yu, and D.-L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/V[sub m] silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007).
[CrossRef]

Yu, M. B.

Yuan, H.

H. Yuan, G. Celler, and Z. Ma, “7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate,” J. Appl. Phys. 102(3), 034501 (2007).
[CrossRef]

Yuan, H. C.

H. C. Yuan, Z. Ma, M. M. Roberts, D. E. Savage, and M. G. Lagally, “High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers,” J. Appl. Phys. 100(1), 013708 (2006).
[CrossRef]

Yuan, H.-C.

H.-C. Yuan, G. K. Celler, and Z. Ma, “7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate,” J. Appl. Phys. 102(3), 034501 (2007).
[CrossRef]

Zhou, W.

Z. Qiang, H. Yang, L. Chen, H. Pang, Z. Ma, and W. Zhou, “Fano filters based on transferred silicon nanomembranes on plastic substrates,” Appl. Phys. Lett. 93(6), 061106 (2008).
[CrossRef]

W. Zhou, Z. Qiang, and L. Chen, “Photonic crystal defect mode cavity modelling: a phenomenological dimensional reduction approach,” J. Phys. D. 40(9), 2615–2623 (2007).
[CrossRef]

Zhou, W. D.

Z. Qiang, W. D. Zhou, M. Lu, and G. J. Brown, “Fano Resonance Enhanced Infrared Absorption for Infrared Photodetectors,” Proc. SPIE 6901, 69010F (2008).
[CrossRef]

H. Yang, Z. Qiang, H. Pang, Z. Ma, and W. D. Zhou, “Surface-Normal Fano Filters Based on Transferred Silicon Nanomembranes on Glass Substrates,” Electron. Lett. 44(14), 858–859 (2008).
[CrossRef]

Appl. Phys. Lett. (5)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022 (1992).
[CrossRef]

C. Lin, Z. Lu, S. Shi, G. Jin, and D. W. Prather, “Experimentally demonstrated filters based on guided resonance of photonic-crystal films,” Appl. Phys. Lett. 87(9), 091102 (2005).
[CrossRef]

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84(24), 4905 (2004).
[CrossRef]

X. Yang, C. Husko, C. W. Wong, M. Yu, and D.-L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/V[sub m] silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007).
[CrossRef]

Z. Qiang, H. Yang, L. Chen, H. Pang, Z. Ma, and W. Zhou, “Fano filters based on transferred silicon nanomembranes on plastic substrates,” Appl. Phys. Lett. 93(6), 061106 (2008).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

K. C. Johnson, “Coupled scalar wave diffraction theory,” Appl. Phys., A Mater. Sci. Process. 24, 249–260 (1981).

Electron. Lett. (1)

H. Yang, Z. Qiang, H. Pang, Z. Ma, and W. D. Zhou, “Surface-Normal Fano Filters Based on Transferred Silicon Nanomembranes on Glass Substrates,” Electron. Lett. 44(14), 858–859 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

J. Appl. Phys. (3)

H. C. Yuan, Z. Ma, M. M. Roberts, D. E. Savage, and M. G. Lagally, “High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers,” J. Appl. Phys. 100(1), 013708 (2006).
[CrossRef]

H. Yuan, G. Celler, and Z. Ma, “7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate,” J. Appl. Phys. 102(3), 034501 (2007).
[CrossRef]

H.-C. Yuan, G. K. Celler, and Z. Ma, “7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate,” J. Appl. Phys. 102(3), 034501 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

S. A. Scott and M. G. Lagally, “Elastically strain-sharing nanomembranes: flexible and transferable strained silicon and silicon–germanium alloys,” J. Phys. D Appl. Phys. 40(4), R75–R92 (2007).
[CrossRef]

J. Phys. D. (1)

W. Zhou, Z. Qiang, and L. Chen, “Photonic crystal defect mode cavity modelling: a phenomenological dimensional reduction approach,” J. Phys. D. 40(9), 2615–2623 (2007).
[CrossRef]

Opt. Express (6)

Phys. Rev. B (1)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. R. Cowan and J. F. Young, “Optical bistability involving photonic crystal microcavities and Fano line shapes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(4), 046606 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks,” Proc. Natl. Acad. Sci. U.S.A. 98(9), 4835–4840 (2001).
[CrossRef] [PubMed]

Proc. SPIE (1)

Z. Qiang, W. D. Zhou, M. Lu, and G. J. Brown, “Fano Resonance Enhanced Infrared Absorption for Infrared Photodetectors,” Proc. SPIE 6901, 69010F (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic and (b) scanning electron micrographs (SEMs) of photonic crystal (PC) patterned structure on the SOI wafer; (c) Schematic of PC patterned SiNM transferred on a glass substrate; and (d) SEM top view of a transferred SiNM on glass, with inset showing the micrograph of completely transferred patterned SiNM piece on a glass slide substrate.

Fig. 2
Fig. 2

(a) Measured and simulated surface normal transmission spectra for the fabricated patterned SiNM Fano filters on glass substrates; (b) Simulated dispersion plot for Fano filters on glass substrates, where r/a = 0.19, t/a = 0.25/0.6~0.417. The refractive indices of silicon and glass are 3.48 and 1.5, respectively. Note the surface-normal transmission dips/peaks at all three wavelength points (λ1, λ2, λ3) agree well with the dispersion plot ω1, ω2, ω3 at Γ point. (c) and (d) The simulated snapshots of electrical field intensity profiles for on-resonance wavelength (λ1) and off-resonances, respectively.

Fig. 3
Fig. 3

Angle and polarization definition for incident light beam onto patterned SiNM Fano filters. The PC lattice and Brillouin zone symmetric points (Γ, X and M) in the k-space are also shown in the inset.

Fig. 4
Fig. 4

Measured surface-normal transmission spectra at different angles φ for the incident beam either (a) without polarizer; or (b) with polarizer fixed at ψ = 0.

Fig. 5
Fig. 5

Measured transmission intensity contour plots under different polarization conditions (a) Γ-X direction with p-polarization light (b) Γ-X direction with s- polarization light; (c, d) Simulated transmission spectra under p- and s-polarizations, respectively.

Fig. 6
Fig. 6

Snapshots of electric field distributions of Fano filters at large incident angle (θ = 20° and φ = 0°): (a) p-polarization, on-resonance; (b) p-polarization, off-resonance; (c) s-polarization, on-resonance; and (d) s-polarization, off-resonance.

Fig. 7
Fig. 7

Measured transmission intensity contour plots for incident beam lies within x-z plane (along Γ-X direction) with (a) hybrid polarization (ψ = 45°) and (b) without polarization. (c) Simulated transmission spectra for different incident angles with the same incident beam orientation and polarization shown in (a). (d) Dispersion plot along Γ-X shown the p- and s-polarization states.

Fig. 8
Fig. 8

Measured transmission intensity contour plots under different polarizations (a) Γ-M direction with p-polarization light (b) Γ-M direction with s-polarization light; (c) Simulated transmission spectra with p-polarizations; and (d) (c) Simulated transmission spectra with s- polarizations.

Fig. 9
Fig. 9

(a) Measured transmission intensity contour plots for incident beam lies at 45 degree off x-z plane (Γ-M direction) with hybrid polarization (ψ = 45°). (b) Simulated transmission spectra for different incident angles with the same incident beam orientation and polarization shown in (a). (c) Dispersion plot along Γ-M direction shown both p- and s-polarization states.

Fig. 10
Fig. 10

Comparison of the simulated (Simu.) and experimental (Expr.) transmission contrast ratios for the dominant resonant modes for beam along: (a) ΓX direction for p- and s-polarizations (Fig. 5); (b) ΓX direction for hybrid-polarization and un-polarized beams (Fig. 7); (c) ΓM direction for p- and s-polarizations (Fig. 8); and (d) ΓM direction for hybrid-polarizations (Fig. 9).

Metrics