Abstract

We describe the design, construction, calibration, and validation of a Stokes vector polarimeter for investigating the polarization characteristics of fiber optic gyroscope coils. The device measures the complete Stokes vector, and reports conventional polarization properties including the Degree of Polarization (DoP), the orientation and Degree of Linear Polarization (DoLP), and the handedness and Degree of Circular Polarization (DoCP). The sensor operates at 1550 nm and employs a division of aperture optical architecture to acquire full Stokes vectors at 8 kHz while calculating polarization properties at a rate of 200 Hz. Preliminary measurements performed on both traditionally and unconventionally wound gyroscope coils are also presented.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. David, Krohn, Fiber Optic Sensors- 2nd Ed., (ISA, Research Triangle Park, NC, 1992).
  2. S. Yin, P. B. Ruffin, and F. T. S. Yu, eds., Fiber Optic Sensors - 2nd Ed., (CRC Press, New York, NY, 2008).
  3. H. L. W. Chan, K. S. Chiang, and J. L. Gardner, ““Polarimetric optical fiber sensor for ultrasonic power measurement,” Ultrasonics Symposium,” Proc. IEEE 1, 599–602 (1988).
  4. H. Y. Fu, H. Y. Tam, L.-Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47(15), 2835–2839 (2008).
    [CrossRef] [PubMed]
  5. K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-Drift Fibre Gyro Using a Superluminescent Diode,” Electron. Lett. 17(10), 352–353 (1981).
    [CrossRef]
  6. A. Lompado, M. S. Kranz, J. S. Baeder, L. C. Heaton, and P. B. Ruffin, “Geometrical and polarization analyses of crossover-free fiber optic gyroscope sensor coils,” Proc SPIE 6314, 63140E.1 - 63140E.12 (2006).
  7. W. A. Shurcliff, and S. S. Ballard, Polarized Light, (Van Nostrand, Princeton, NJ, 1969), Chap. 2.
  8. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [CrossRef] [PubMed]
  9. D. B. Chenault, A. Lompado, E. R. Cabot, and M. P. Fetrow, “Handheld polarimeter for phenomenology studies,” Proc. SPIE 6619, 145–154 (2004).
    [CrossRef]
  10. E. Collett and B. Schaefer, “Visualization and calculation of polarized light. I. The polarization ellipse, the Poincaré sphere and the hybrid polarization sphere,” Appl. Opt. 47(22), 4009–4016 (2008).
    [CrossRef] [PubMed]
  11. G. R. Bird and M. Parrish., “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. 50(9), 886–891 (1960).
    [CrossRef]
  12. R. A. Chipman, “Polarimetry,” in Handbook of Optics – Volume II, M. Bass ed. (McGraw-Hill, New York, NY., 1995), Chap. 22.
  13. J. C. Ramella-Roman and D. Duncan, “A new approach to Mueller matrix reconstruction of skin cancer lesions using a dual rotating retarder polarimeter,” Proc. SPIE 6080, 60800M (2006).
    [CrossRef]
  14. D. M. Bates, and D. G. Watts, Nonlinear Regression and Its Applications, (Wiley, New York, NY, 1988).
  15. Dennis Goldstein, Polarized Light-2nd Ed., (Marcel-Dekker, New York, NY, 2003).
  16. J. H. Shields and J. W. Ellis, “Dispersion of Birefringence of Quartz in the Near Infrared,” J. Opt. Soc. Am. 46(4), 263–265 (1956).
    [CrossRef]
  17. J. Williams, P. Ruffin, A. Lompado, J. Reinhardt, and C. Heaton, “Polarization and Drift Analysis of Thermally Symmetric Double Sided Crossover Free SM Fiber Coils,” Proc. SPIE 7056, 70560Z (2008).
    [CrossRef]
  18. Edward Collett, Polarized Light in Fiber Optics, (The PolaWave Group, Lincroft, NJ, 2003).

2008 (3)

2006 (2)

J. C. Ramella-Roman and D. Duncan, “A new approach to Mueller matrix reconstruction of skin cancer lesions using a dual rotating retarder polarimeter,” Proc. SPIE 6080, 60800M (2006).
[CrossRef]

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
[CrossRef] [PubMed]

2004 (1)

D. B. Chenault, A. Lompado, E. R. Cabot, and M. P. Fetrow, “Handheld polarimeter for phenomenology studies,” Proc. SPIE 6619, 145–154 (2004).
[CrossRef]

1988 (1)

H. L. W. Chan, K. S. Chiang, and J. L. Gardner, ““Polarimetric optical fiber sensor for ultrasonic power measurement,” Ultrasonics Symposium,” Proc. IEEE 1, 599–602 (1988).

1981 (1)

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-Drift Fibre Gyro Using a Superluminescent Diode,” Electron. Lett. 17(10), 352–353 (1981).
[CrossRef]

1960 (1)

1956 (1)

Bird, G. R.

Böhm, K.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-Drift Fibre Gyro Using a Superluminescent Diode,” Electron. Lett. 17(10), 352–353 (1981).
[CrossRef]

Cabot, E. R.

D. B. Chenault, A. Lompado, E. R. Cabot, and M. P. Fetrow, “Handheld polarimeter for phenomenology studies,” Proc. SPIE 6619, 145–154 (2004).
[CrossRef]

Chan, H. L. W.

H. L. W. Chan, K. S. Chiang, and J. L. Gardner, ““Polarimetric optical fiber sensor for ultrasonic power measurement,” Ultrasonics Symposium,” Proc. IEEE 1, 599–602 (1988).

Chenault, D. B.

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
[CrossRef] [PubMed]

D. B. Chenault, A. Lompado, E. R. Cabot, and M. P. Fetrow, “Handheld polarimeter for phenomenology studies,” Proc. SPIE 6619, 145–154 (2004).
[CrossRef]

Chiang, K. S.

H. L. W. Chan, K. S. Chiang, and J. L. Gardner, ““Polarimetric optical fiber sensor for ultrasonic power measurement,” Ultrasonics Symposium,” Proc. IEEE 1, 599–602 (1988).

Collett, E.

Dong, X.

Duncan, D.

J. C. Ramella-Roman and D. Duncan, “A new approach to Mueller matrix reconstruction of skin cancer lesions using a dual rotating retarder polarimeter,” Proc. SPIE 6080, 60800M (2006).
[CrossRef]

Ellis, J. W.

Fetrow, M. P.

D. B. Chenault, A. Lompado, E. R. Cabot, and M. P. Fetrow, “Handheld polarimeter for phenomenology studies,” Proc. SPIE 6619, 145–154 (2004).
[CrossRef]

Fu, H. Y.

Gardner, J. L.

H. L. W. Chan, K. S. Chiang, and J. L. Gardner, ““Polarimetric optical fiber sensor for ultrasonic power measurement,” Ultrasonics Symposium,” Proc. IEEE 1, 599–602 (1988).

Goldstein, D. L.

Heaton, C.

J. Williams, P. Ruffin, A. Lompado, J. Reinhardt, and C. Heaton, “Polarization and Drift Analysis of Thermally Symmetric Double Sided Crossover Free SM Fiber Coils,” Proc. SPIE 7056, 70560Z (2008).
[CrossRef]

Khijwania, S. K.

Lompado, A.

J. Williams, P. Ruffin, A. Lompado, J. Reinhardt, and C. Heaton, “Polarization and Drift Analysis of Thermally Symmetric Double Sided Crossover Free SM Fiber Coils,” Proc. SPIE 7056, 70560Z (2008).
[CrossRef]

D. B. Chenault, A. Lompado, E. R. Cabot, and M. P. Fetrow, “Handheld polarimeter for phenomenology studies,” Proc. SPIE 6619, 145–154 (2004).
[CrossRef]

Lu, C.

Marten, P.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-Drift Fibre Gyro Using a Superluminescent Diode,” Electron. Lett. 17(10), 352–353 (1981).
[CrossRef]

Parrish, M.

Petermann, K.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-Drift Fibre Gyro Using a Superluminescent Diode,” Electron. Lett. 17(10), 352–353 (1981).
[CrossRef]

Ramella-Roman, J. C.

J. C. Ramella-Roman and D. Duncan, “A new approach to Mueller matrix reconstruction of skin cancer lesions using a dual rotating retarder polarimeter,” Proc. SPIE 6080, 60800M (2006).
[CrossRef]

Reinhardt, J.

J. Williams, P. Ruffin, A. Lompado, J. Reinhardt, and C. Heaton, “Polarization and Drift Analysis of Thermally Symmetric Double Sided Crossover Free SM Fiber Coils,” Proc. SPIE 7056, 70560Z (2008).
[CrossRef]

Ruffin, P.

J. Williams, P. Ruffin, A. Lompado, J. Reinhardt, and C. Heaton, “Polarization and Drift Analysis of Thermally Symmetric Double Sided Crossover Free SM Fiber Coils,” Proc. SPIE 7056, 70560Z (2008).
[CrossRef]

Schaefer, B.

Shao, L.-Y.

Shaw, J. A.

Shields, J. H.

Tam, H. Y.

Tyo, J. S.

Ulrich, R.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-Drift Fibre Gyro Using a Superluminescent Diode,” Electron. Lett. 17(10), 352–353 (1981).
[CrossRef]

Wai, P. K. A.

Weidel, E.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-Drift Fibre Gyro Using a Superluminescent Diode,” Electron. Lett. 17(10), 352–353 (1981).
[CrossRef]

Williams, J.

J. Williams, P. Ruffin, A. Lompado, J. Reinhardt, and C. Heaton, “Polarization and Drift Analysis of Thermally Symmetric Double Sided Crossover Free SM Fiber Coils,” Proc. SPIE 7056, 70560Z (2008).
[CrossRef]

Appl. Opt. (3)

Electron. Lett. (1)

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-Drift Fibre Gyro Using a Superluminescent Diode,” Electron. Lett. 17(10), 352–353 (1981).
[CrossRef]

J. Opt. Soc. Am. (2)

Proc. IEEE (1)

H. L. W. Chan, K. S. Chiang, and J. L. Gardner, ““Polarimetric optical fiber sensor for ultrasonic power measurement,” Ultrasonics Symposium,” Proc. IEEE 1, 599–602 (1988).

Proc. SPIE (3)

J. Williams, P. Ruffin, A. Lompado, J. Reinhardt, and C. Heaton, “Polarization and Drift Analysis of Thermally Symmetric Double Sided Crossover Free SM Fiber Coils,” Proc. SPIE 7056, 70560Z (2008).
[CrossRef]

J. C. Ramella-Roman and D. Duncan, “A new approach to Mueller matrix reconstruction of skin cancer lesions using a dual rotating retarder polarimeter,” Proc. SPIE 6080, 60800M (2006).
[CrossRef]

D. B. Chenault, A. Lompado, E. R. Cabot, and M. P. Fetrow, “Handheld polarimeter for phenomenology studies,” Proc. SPIE 6619, 145–154 (2004).
[CrossRef]

Other (8)

A. David, Krohn, Fiber Optic Sensors- 2nd Ed., (ISA, Research Triangle Park, NC, 1992).

S. Yin, P. B. Ruffin, and F. T. S. Yu, eds., Fiber Optic Sensors - 2nd Ed., (CRC Press, New York, NY, 2008).

A. Lompado, M. S. Kranz, J. S. Baeder, L. C. Heaton, and P. B. Ruffin, “Geometrical and polarization analyses of crossover-free fiber optic gyroscope sensor coils,” Proc SPIE 6314, 63140E.1 - 63140E.12 (2006).

W. A. Shurcliff, and S. S. Ballard, Polarized Light, (Van Nostrand, Princeton, NJ, 1969), Chap. 2.

D. M. Bates, and D. G. Watts, Nonlinear Regression and Its Applications, (Wiley, New York, NY, 1988).

Dennis Goldstein, Polarized Light-2nd Ed., (Marcel-Dekker, New York, NY, 2003).

R. A. Chipman, “Polarimetry,” in Handbook of Optics – Volume II, M. Bass ed. (McGraw-Hill, New York, NY., 1995), Chap. 22.

Edward Collett, Polarized Light in Fiber Optics, (The PolaWave Group, Lincroft, NJ, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig 1
Fig 1

Top: Optical ray trace of fiber optic polarimeter. Bottom: Opto-mechanical details of the polarization filters, array lenses, and detectors.

Fig. 2
Fig. 2

Radiometrically corrected calibration modulation measurements

Fig. 3
Fig. 3

The data of Fig. 2 (symbols) overlain with the fits of Eq. (3) using the regressed polarization parameters of Table 1 (curves).

Fig. 4
Fig. 4

Measured (left) and ideal calibration matrices.

Fig. 5
Fig. 5

Measured polarization properties for a rotating linearly polarized input. Top: DoP and DoLP. Bottom: DoCP and orientation residuals.

Fig. 6
Fig. 6

Polarization products' accuracy and repeatability. Accuracy over 3 identical measurements is similar to that of Fig. 5, with excellent repeatability (typically < ±0.15%).

Fig. 7
Fig. 7

Polarization products of a linear polarizer followed by a rotating 95.3° waveplate. Note the sign of the DoCP indicates polarization handedness.

Fig. 8
Fig. 8

FOG coil polarimetric testing setup.

Fig. 9
Fig. 9

Time evolution of the polarization properties of a traditionally wound FOG coil. From top to bottom are the DoLP, DoCP, DoP, and θ measured as the input polarizer was rotated 500° (≈1.5 cycles).

Fig. 10
Fig. 10

Polarimetric properties of 8 (top) and 24 (bottom) layer CF coils.

Fig. 11
Fig. 11

Polarimetric properties of a 2 m long PM patch cord.

Tables (1)

Tables Icon

Table 1 Regressed parameter values after data fitting

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P=(M(q,r,θi)·Mcal(q,r,θcal)·Sin)[[1]]   i=1,2,3
P=(M(q,r,θi)·Mret(δ,θret)·Mcal(q,r,θcal)·Sin)[[1]]
Pi=12((q+r)2+(qr)2cos(2(θiθcal))
P4=12((q+r)2+(qr)2(cos(δ)sin(2(θ4θret))sin(2(θcalθret))+       cos(2(θ4θret))cos(2(θcalθret))))
DoP=s12+s22+s32s0DoLP=s12+s22s0DoP=s3s0θ=tan1(s2s1)

Metrics