Abstract

We report a wavelength-swept fiber laser with high speed and wide tuning range, and its application to fiber sensors. The laser is based on the dispersion tuning technique, which does not require any optical tunable filter in the laser cavity. By directly modulating the semiconductor amplifier and adjusting the dispersion in the cavity, a wide wavelength tuning range of 178.7 nm and a fast tuning rate of over 200 kHz are obtained. The wavelength-swept laser source is applied to a dynamic fiber Bragg grating sensing system. Dynamic measurement of a 150 Hz sinusoidal strain is demonstrated with a measuring speed as fast as 40 kHz.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Y. Ryu, W. - K. Lee, H. S. Moon, H. S. Suh, "Tunable erbium-doped fiber ring laser for applications of infrared absorption spectroscopy," Opt. Commun. 275, 379-384 (2007).
    [CrossRef]
  2. C. Chong, A. Morosawa and T. Sakai, "High-speed wavelength-swept laser source with high-linearity sweep for optical coherence tomography," IEEE J. Sel. Top. Quantum Electron. 14, 235-242 (2008).
    [CrossRef]
  3. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005).
    [CrossRef] [PubMed]
  4. R. Huber, D. C. Adler and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
    [CrossRef] [PubMed]
  5. S. Yamashita and M. Asano, "Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning," Opt. Express 14, 9299-9306 (2006).
    [CrossRef] [PubMed]
  6. R. Konishi and S. Yamashita, "Widely and fast wavelength-tunable mode-locked linear cavity fiber laser," The 13th microoptics conference 2007, 2007.
  7. K. Hotate and Z. He, "Synthesis of optical-coherence function and its applications in distributed and multiplexed optical sensing," J. Lightwave Technol. 24, 2541-2557 (2006).
    [CrossRef]
  8. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber Grating Sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
    [CrossRef]
  9. K. Hotate and K. Kajiwara, "Proposal and experimental verification of Bragg wavelength distribution measurement within a long-length FBG by synthesis of optical coherence function," Opt. Express 16, 7881-7887 (2008).
    [CrossRef] [PubMed]
  10. Turan Erdogan, "Fiber Grating Spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
    [CrossRef]
  11. K. O. Hill and G. Meltz, "Fiber Bragg Grating Technology Fundamental and Overview," J. Lightwave Technol. 15, 1263-1276 (1997).
    [CrossRef]
  12. A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter," Opt. Lett. 18, 1370-1372 (1993).
    [CrossRef] [PubMed]
  13. C. - Y. Ryu and C. - S. Hong, "Development of fiber Bragg grating sensor system using wavelength-swept fiber laser," I. O. P. Smart material and structure 11, 468-473 (2002).
    [CrossRef]
  14. Y. Wang, Y. Cui, and B. Yun, "A Fiber Bragg Grating Sensor System for Simultaneously Static and Dynamic Measurements with a Wavelength-swept Fiber Laser," IEEE Photon. Technol. Lett. 18, 1539-1541 (2006).
    [CrossRef]
  15. E. J. Jung, C. - S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, "Characteristics of FBG sensor interrogation based on FDML wavelength swept laser," Opt. Express 16, 16552-16560 (2008).
    [PubMed]
  16. S. Li and K. T. Chan, "Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser," Appl. Phys. Lett. 72, 1954-1956 (1998).
    [CrossRef]
  17. K. Tamura and M. Nakazawa, "Dispersion-tuned harmonically mode-locked fiber ring laser for selfsynchronization to an external clock," Opt. Lett. 21, 1984-1986 (1996).
    [CrossRef] [PubMed]
  18. S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
    [CrossRef]

2008

2007

H. Y. Ryu, W. - K. Lee, H. S. Moon, H. S. Suh, "Tunable erbium-doped fiber ring laser for applications of infrared absorption spectroscopy," Opt. Commun. 275, 379-384 (2007).
[CrossRef]

2006

2005

2004

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

2002

C. - Y. Ryu and C. - S. Hong, "Development of fiber Bragg grating sensor system using wavelength-swept fiber laser," I. O. P. Smart material and structure 11, 468-473 (2002).
[CrossRef]

1998

S. Li and K. T. Chan, "Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser," Appl. Phys. Lett. 72, 1954-1956 (1998).
[CrossRef]

1997

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber Grating Sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Turan Erdogan, "Fiber Grating Spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

K. O. Hill and G. Meltz, "Fiber Bragg Grating Technology Fundamental and Overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

1996

1993

Adler, D. C.

Asano, M.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber Grating Sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Berkoff, T. A.

Boudoux, C.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

Bouma, B. E.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

Chan, K. T.

S. Li and K. T. Chan, "Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser," Appl. Phys. Lett. 72, 1954-1956 (1998).
[CrossRef]

Chen, Z.

Chong, C.

C. Chong, A. Morosawa and T. Sakai, "High-speed wavelength-swept laser source with high-linearity sweep for optical coherence tomography," IEEE J. Sel. Top. Quantum Electron. 14, 235-242 (2008).
[CrossRef]

Cui, Y.

Y. Wang, Y. Cui, and B. Yun, "A Fiber Bragg Grating Sensor System for Simultaneously Static and Dynamic Measurements with a Wavelength-swept Fiber Laser," IEEE Photon. Technol. Lett. 18, 1539-1541 (2006).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber Grating Sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

de Boer, J. F.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber Grating Sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Fujimoto, J. G.

He, Z.

Hill, K. O.

K. O. Hill and G. Meltz, "Fiber Bragg Grating Technology Fundamental and Overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

Hong, C. - S.

C. - Y. Ryu and C. - S. Hong, "Development of fiber Bragg grating sensor system using wavelength-swept fiber laser," I. O. P. Smart material and structure 11, 468-473 (2002).
[CrossRef]

Hotate, K.

Hsu, K.

Huber, R.

Jeon, M. Y.

Jeong, M. Y.

Jung, E. J.

Jung, W.

Kajiwara, K.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber Grating Sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter," Opt. Lett. 18, 1370-1372 (1993).
[CrossRef] [PubMed]

Kim, C. - S.

Kim, M. K.

Konishi, R.

R. Konishi and S. Yamashita, "Widely and fast wavelength-tunable mode-locked linear cavity fiber laser," The 13th microoptics conference 2007, 2007.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber Grating Sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber Grating Sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Lee, W. - K.

H. Y. Ryu, W. - K. Lee, H. S. Moon, H. S. Suh, "Tunable erbium-doped fiber ring laser for applications of infrared absorption spectroscopy," Opt. Commun. 275, 379-384 (2007).
[CrossRef]

Li, S.

S. Li and K. T. Chan, "Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser," Appl. Phys. Lett. 72, 1954-1956 (1998).
[CrossRef]

Meltz, G.

K. O. Hill and G. Meltz, "Fiber Bragg Grating Technology Fundamental and Overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

Moon, H. S.

H. Y. Ryu, W. - K. Lee, H. S. Moon, H. S. Suh, "Tunable erbium-doped fiber ring laser for applications of infrared absorption spectroscopy," Opt. Commun. 275, 379-384 (2007).
[CrossRef]

Morosawa, A.

C. Chong, A. Morosawa and T. Sakai, "High-speed wavelength-swept laser source with high-linearity sweep for optical coherence tomography," IEEE J. Sel. Top. Quantum Electron. 14, 235-242 (2008).
[CrossRef]

Nakazawa, M.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber Grating Sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Pierce, M. C.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber Grating Sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Ryu, C. - Y.

C. - Y. Ryu and C. - S. Hong, "Development of fiber Bragg grating sensor system using wavelength-swept fiber laser," I. O. P. Smart material and structure 11, 468-473 (2002).
[CrossRef]

Ryu, H. Y.

H. Y. Ryu, W. - K. Lee, H. S. Moon, H. S. Suh, "Tunable erbium-doped fiber ring laser for applications of infrared absorption spectroscopy," Opt. Commun. 275, 379-384 (2007).
[CrossRef]

Sakai, T.

C. Chong, A. Morosawa and T. Sakai, "High-speed wavelength-swept laser source with high-linearity sweep for optical coherence tomography," IEEE J. Sel. Top. Quantum Electron. 14, 235-242 (2008).
[CrossRef]

Suh, H. S.

H. Y. Ryu, W. - K. Lee, H. S. Moon, H. S. Suh, "Tunable erbium-doped fiber ring laser for applications of infrared absorption spectroscopy," Opt. Commun. 275, 379-384 (2007).
[CrossRef]

Taira, K.

Tamura, K.

Tearney, G. J.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

Wang, Y.

Y. Wang, Y. Cui, and B. Yun, "A Fiber Bragg Grating Sensor System for Simultaneously Static and Dynamic Measurements with a Wavelength-swept Fiber Laser," IEEE Photon. Technol. Lett. 18, 1539-1541 (2006).
[CrossRef]

Wojtkowski, M.

Yamashita, S.

S. Yamashita and M. Asano, "Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning," Opt. Express 14, 9299-9306 (2006).
[CrossRef] [PubMed]

R. Konishi and S. Yamashita, "Widely and fast wavelength-tunable mode-locked linear cavity fiber laser," The 13th microoptics conference 2007, 2007.

Yun, B.

Y. Wang, Y. Cui, and B. Yun, "A Fiber Bragg Grating Sensor System for Simultaneously Static and Dynamic Measurements with a Wavelength-swept Fiber Laser," IEEE Photon. Technol. Lett. 18, 1539-1541 (2006).
[CrossRef]

Yun, S. H.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

Appl. Phys. Lett.

S. Li and K. T. Chan, "Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser," Appl. Phys. Lett. 72, 1954-1956 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. Chong, A. Morosawa and T. Sakai, "High-speed wavelength-swept laser source with high-linearity sweep for optical coherence tomography," IEEE J. Sel. Top. Quantum Electron. 14, 235-242 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004).
[CrossRef]

Y. Wang, Y. Cui, and B. Yun, "A Fiber Bragg Grating Sensor System for Simultaneously Static and Dynamic Measurements with a Wavelength-swept Fiber Laser," IEEE Photon. Technol. Lett. 18, 1539-1541 (2006).
[CrossRef]

J. Lightwave Technol.

K. Hotate and Z. He, "Synthesis of optical-coherence function and its applications in distributed and multiplexed optical sensing," J. Lightwave Technol. 24, 2541-2557 (2006).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber Grating Sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Turan Erdogan, "Fiber Grating Spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

K. O. Hill and G. Meltz, "Fiber Bragg Grating Technology Fundamental and Overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

Opt. Commun.

H. Y. Ryu, W. - K. Lee, H. S. Moon, H. S. Suh, "Tunable erbium-doped fiber ring laser for applications of infrared absorption spectroscopy," Opt. Commun. 275, 379-384 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Smart material and structure

C. - Y. Ryu and C. - S. Hong, "Development of fiber Bragg grating sensor system using wavelength-swept fiber laser," I. O. P. Smart material and structure 11, 468-473 (2002).
[CrossRef]

Other

R. Konishi and S. Yamashita, "Widely and fast wavelength-tunable mode-locked linear cavity fiber laser," The 13th microoptics conference 2007, 2007.

Supplementary Material (1)

» Media 1: AVI (3432 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Concept of the dispersion tuning. The lasing wavelength is tuned as the mode-locking freuency changes.

Fig. 2.
Fig. 2.

The schematic construction of the dispersion tuning-based swept laser.

Fig. 3.
Fig. 3.

The static characteristics of the swept laser (a): optical spectra and (b): lasing wavelength as a function of the mode-locking frequency

Fig. 4.
Fig. 4.

Triangular FM waveform to sweep the wavelength linearly

Fig. 5.
Fig. 5.

The dynamic characteristics of the swept laser. (a): the peak-hold spectra and (b): the temporal waveform when the mode locking frequency is modulated by triangular waveform

Fig. 6.
Fig. 6.

Experimental setup of the FBG sensor

Fig. 7.
Fig. 7.

Interrogation process of our FBG sensor (a): optical spectrum and (b): detected temporal waveform

Fig. 8.
Fig. 8.

(a) temporal waveform of the reflected light (b) differentiated waveform after filtering

Fig. 9.
Fig. 9.

Change of relative wavelength when the FBG2 is stretched manually

Fig. 10.
Fig. 10.

Dynamic response of the system (a): Abrupt change of applied sinusoidal strain from 1 Hz to 10 Hz (Media 1) (b): The FFT spectrum when the 150 Hz sinusoidal strain is added.

Tables (1)

Tables Icon

Table 1. Static properties of the system

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

F=cnL,
λ=n0cDF0(FF0)+λ0=n02Lc2D(FF0)+λ0,
λm=n02Lc2ND(fmfm0)+λ0=n0cDfm0(fmfm0)+λ0,
Δλmax=n0cDfm0F0=1DLfm0,
δω=(πfm0λ)1/2(8πcMDL)1/4,
Δλ=ΔtSsSr,

Metrics