Abstract

HfO2 thin films were deposited by e-beam evaporation, and were post-treated with plasma under different flow rate ratios of argon to oxygen. By measuring the surface defect density, weak absorption, laser-induced damage threshold (LIDT) and damage morphology, the influence of the flow rate ratio of argon to oxygen on the laser-induced damage characters of HfO2 thin films were analyzed. The experimental results show that plasma treatment is effective in reducing the surface defect density of thin films. Compared with the as-grown sample, the absorption reduction is obvious after plasma treatment when argon and oxygen flow rate ratio is 5:25, but the absorption increases gradually with the continued increase of argon and oxygen flow rate ratio. LIDT measurements in 1-on-1 mode demonstrate that plasma treatment is not effective in improving LIDT of the samples at 355 nm. Damage morphologies reveal that the LIDT is dominated by nanoscale absorbing defects in subsurface layers, which agrees well with our numerical simulation result based on a spherical absorber model.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Reichling, A. Bodeman, and N. Kaiser "New insight into defect-induced laser damage in UV multilayer coatings," Proc. SPIE 2428, 307-316 (1995).
    [CrossRef]
  2. H. S. Bennett, "Absorbing centers in laser materials," J. Appl. Phys. 42, 619-630 (1971).
    [CrossRef]
  3. Z. L. Wu, C. J. Stolz, S. C. Weakley, J. D. Hughes, and Q. Zhao, "Damage threshold prediction of hafnia-silica multilayer coatings by nondestructive evaluation of fluence-limiting defects," Appl. Opt. 40,1897-1906 (2001).
    [CrossRef]
  4. M. Reichling, A. Bodemann, and N. Kaiser, "Defect induced laser damage in oxide multilayer coatings for 246nm," Thin Solid Films 320, 264-279 (1998).
    [CrossRef]
  5. S. G. Wu, J. D. Shao, Z. X. Fan, "Negative-ion element impurities breakdown model," Acta Phys. Sin. 55, 1987-1990 (2006).
  6. T. A. Wiggins and R. S. Reid, "Observation and morphology of small-scale laser induced damage," Appl. Opt. 21, 1675-1680 (1982).
    [CrossRef] [PubMed]
  7. J. Dijon, T. Poiroux, and C. Desrumaux, "Nano absorbing centers: a key point in laser damage of thin films," Proc. SPIE 2966, 315-325 (1997).
    [CrossRef]
  8. S. Papernov, A. Schmid, J. Anzelotti, D. Smith, and Z. Chrzan, "AFM-mapped, nanoscale, absorber-driven laser damage in UV high reflector multilayer," Proc. SPIE 2714, 384-394 (1996).
    [CrossRef]
  9. R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, and M. R. Kozlowski, "Reactive evaporation of low-defect density hafnia," Appl. Opt. 32, 5567-5574 (1993).
    [CrossRef] [PubMed]
  10. C. Y. Wei, H. B. He, J. D. Shao, T. Wang, D. P. Zhang, and Z. X. Fan, "Effects of CO2 laser conditioning of the antireflection Y2O3/SiO2 coatings at 351 nm," Opt. Commun. 252, 336-343 (2005).
    [CrossRef]
  11. L. Yuan, C. J. Wang, Y. A. Zhao, and J. D. Shao, "Influence of oxygen post-treatment on laser-induced damage of antireflection coatings prepared by electron-beam evaporation and ion beam assisted deposition," Appl. Surf. Sci. 254, 6346-6349 (2008).
    [CrossRef]
  12. M. Alvisi, F. D. Tomasi, and M. R. Perrone, "Laser damage dependence on structural and optical properties of ion-assisted HfO2 thin films," Thin Solid Films 396, 44-52 (2001).
    [CrossRef]
  13. F. Rainer, W. H. Lowdermilk, D. Milam, C. K. Carniglia, T. T. Hart, and T. L. Lichtenstein, "Materials for optical coatings in the ultraviolet," Appl. Opt. 24, 496-500 (1985).
    [CrossRef] [PubMed]
  14. D. P. Zhang, J. D. Shao, D. W. Zhang, S. H. Fan, T. Y. Tan, and Z. X. Fan, "Employing oxygen-plasma posttreatment to improve the laser-induced damage threshold of ZrO2 films prepared by the electron-beam evaporation method," Opt. Lett. 29, 2870-2872 (2004).
    [CrossRef]
  15. Z. L. Wu, R. K. Kuo, Y. S. Lu, and S. T. Gu, "Laser-induced surface thermal lensing for thin film characterizations," Proc. SPIE 2714, 294-304 (1996).
    [CrossRef]
  16. M. Commandre and P. Roche, "Characterization of optical coating by photothermal deflection," Appl. Opt. 35, 5021-5034 (1996).
    [CrossRef] [PubMed]
  17. ISO 11254-1:2000, Lasers and laser-related equipment—Determination of laser-induced damage threshold of optical surfaces—Part I: 1-on-1 test.
  18. D. P. Zhang, J. D. Shao, Y. A. Zhao, S. H. Fan, R. J. Hong, and Z. X. Fan, "Laser-induced damage threshold of ZrO2 thin films prepared at different oxygen partial pressures by electron-beam evaporation," J. Vac. Sci. Technol. A 23,197-200 (2005).
    [CrossRef]
  19. H. Goldenberg and C. J. Tranter, "Heat flow in an infinite medium heated by a sphere," Br. J. Appl. Phys. 3, 296-301 (1952).
    [CrossRef]

2008 (1)

L. Yuan, C. J. Wang, Y. A. Zhao, and J. D. Shao, "Influence of oxygen post-treatment on laser-induced damage of antireflection coatings prepared by electron-beam evaporation and ion beam assisted deposition," Appl. Surf. Sci. 254, 6346-6349 (2008).
[CrossRef]

2006 (1)

S. G. Wu, J. D. Shao, Z. X. Fan, "Negative-ion element impurities breakdown model," Acta Phys. Sin. 55, 1987-1990 (2006).

2005 (2)

D. P. Zhang, J. D. Shao, Y. A. Zhao, S. H. Fan, R. J. Hong, and Z. X. Fan, "Laser-induced damage threshold of ZrO2 thin films prepared at different oxygen partial pressures by electron-beam evaporation," J. Vac. Sci. Technol. A 23,197-200 (2005).
[CrossRef]

C. Y. Wei, H. B. He, J. D. Shao, T. Wang, D. P. Zhang, and Z. X. Fan, "Effects of CO2 laser conditioning of the antireflection Y2O3/SiO2 coatings at 351 nm," Opt. Commun. 252, 336-343 (2005).
[CrossRef]

2004 (1)

2001 (2)

M. Alvisi, F. D. Tomasi, and M. R. Perrone, "Laser damage dependence on structural and optical properties of ion-assisted HfO2 thin films," Thin Solid Films 396, 44-52 (2001).
[CrossRef]

Z. L. Wu, C. J. Stolz, S. C. Weakley, J. D. Hughes, and Q. Zhao, "Damage threshold prediction of hafnia-silica multilayer coatings by nondestructive evaluation of fluence-limiting defects," Appl. Opt. 40,1897-1906 (2001).
[CrossRef]

1998 (1)

M. Reichling, A. Bodemann, and N. Kaiser, "Defect induced laser damage in oxide multilayer coatings for 246nm," Thin Solid Films 320, 264-279 (1998).
[CrossRef]

1997 (1)

J. Dijon, T. Poiroux, and C. Desrumaux, "Nano absorbing centers: a key point in laser damage of thin films," Proc. SPIE 2966, 315-325 (1997).
[CrossRef]

1996 (3)

S. Papernov, A. Schmid, J. Anzelotti, D. Smith, and Z. Chrzan, "AFM-mapped, nanoscale, absorber-driven laser damage in UV high reflector multilayer," Proc. SPIE 2714, 384-394 (1996).
[CrossRef]

Z. L. Wu, R. K. Kuo, Y. S. Lu, and S. T. Gu, "Laser-induced surface thermal lensing for thin film characterizations," Proc. SPIE 2714, 294-304 (1996).
[CrossRef]

M. Commandre and P. Roche, "Characterization of optical coating by photothermal deflection," Appl. Opt. 35, 5021-5034 (1996).
[CrossRef] [PubMed]

1995 (1)

M. Reichling, A. Bodeman, and N. Kaiser "New insight into defect-induced laser damage in UV multilayer coatings," Proc. SPIE 2428, 307-316 (1995).
[CrossRef]

1993 (1)

1985 (1)

1982 (1)

1971 (1)

H. S. Bennett, "Absorbing centers in laser materials," J. Appl. Phys. 42, 619-630 (1971).
[CrossRef]

1952 (1)

H. Goldenberg and C. J. Tranter, "Heat flow in an infinite medium heated by a sphere," Br. J. Appl. Phys. 3, 296-301 (1952).
[CrossRef]

Alvisi, M.

M. Alvisi, F. D. Tomasi, and M. R. Perrone, "Laser damage dependence on structural and optical properties of ion-assisted HfO2 thin films," Thin Solid Films 396, 44-52 (2001).
[CrossRef]

Anzelotti, J.

S. Papernov, A. Schmid, J. Anzelotti, D. Smith, and Z. Chrzan, "AFM-mapped, nanoscale, absorber-driven laser damage in UV high reflector multilayer," Proc. SPIE 2714, 384-394 (1996).
[CrossRef]

Bennett, H. S.

H. S. Bennett, "Absorbing centers in laser materials," J. Appl. Phys. 42, 619-630 (1971).
[CrossRef]

Bodeman, A.

M. Reichling, A. Bodeman, and N. Kaiser "New insight into defect-induced laser damage in UV multilayer coatings," Proc. SPIE 2428, 307-316 (1995).
[CrossRef]

Bodemann, A.

M. Reichling, A. Bodemann, and N. Kaiser, "Defect induced laser damage in oxide multilayer coatings for 246nm," Thin Solid Films 320, 264-279 (1998).
[CrossRef]

Carniglia, C. K.

Chow, R.

Chrzan, Z.

S. Papernov, A. Schmid, J. Anzelotti, D. Smith, and Z. Chrzan, "AFM-mapped, nanoscale, absorber-driven laser damage in UV high reflector multilayer," Proc. SPIE 2714, 384-394 (1996).
[CrossRef]

Commandre, M.

Desrumaux, C.

J. Dijon, T. Poiroux, and C. Desrumaux, "Nano absorbing centers: a key point in laser damage of thin films," Proc. SPIE 2966, 315-325 (1997).
[CrossRef]

Dijon, J.

J. Dijon, T. Poiroux, and C. Desrumaux, "Nano absorbing centers: a key point in laser damage of thin films," Proc. SPIE 2966, 315-325 (1997).
[CrossRef]

Falabella, S.

Fan, S. H.

D. P. Zhang, J. D. Shao, Y. A. Zhao, S. H. Fan, R. J. Hong, and Z. X. Fan, "Laser-induced damage threshold of ZrO2 thin films prepared at different oxygen partial pressures by electron-beam evaporation," J. Vac. Sci. Technol. A 23,197-200 (2005).
[CrossRef]

D. P. Zhang, J. D. Shao, D. W. Zhang, S. H. Fan, T. Y. Tan, and Z. X. Fan, "Employing oxygen-plasma posttreatment to improve the laser-induced damage threshold of ZrO2 films prepared by the electron-beam evaporation method," Opt. Lett. 29, 2870-2872 (2004).
[CrossRef]

Fan, Z. X.

S. G. Wu, J. D. Shao, Z. X. Fan, "Negative-ion element impurities breakdown model," Acta Phys. Sin. 55, 1987-1990 (2006).

D. P. Zhang, J. D. Shao, Y. A. Zhao, S. H. Fan, R. J. Hong, and Z. X. Fan, "Laser-induced damage threshold of ZrO2 thin films prepared at different oxygen partial pressures by electron-beam evaporation," J. Vac. Sci. Technol. A 23,197-200 (2005).
[CrossRef]

C. Y. Wei, H. B. He, J. D. Shao, T. Wang, D. P. Zhang, and Z. X. Fan, "Effects of CO2 laser conditioning of the antireflection Y2O3/SiO2 coatings at 351 nm," Opt. Commun. 252, 336-343 (2005).
[CrossRef]

D. P. Zhang, J. D. Shao, D. W. Zhang, S. H. Fan, T. Y. Tan, and Z. X. Fan, "Employing oxygen-plasma posttreatment to improve the laser-induced damage threshold of ZrO2 films prepared by the electron-beam evaporation method," Opt. Lett. 29, 2870-2872 (2004).
[CrossRef]

Goldenberg, H.

H. Goldenberg and C. J. Tranter, "Heat flow in an infinite medium heated by a sphere," Br. J. Appl. Phys. 3, 296-301 (1952).
[CrossRef]

Gu, S. T.

Z. L. Wu, R. K. Kuo, Y. S. Lu, and S. T. Gu, "Laser-induced surface thermal lensing for thin film characterizations," Proc. SPIE 2714, 294-304 (1996).
[CrossRef]

Hart, T. T.

He, H. B.

C. Y. Wei, H. B. He, J. D. Shao, T. Wang, D. P. Zhang, and Z. X. Fan, "Effects of CO2 laser conditioning of the antireflection Y2O3/SiO2 coatings at 351 nm," Opt. Commun. 252, 336-343 (2005).
[CrossRef]

Hong, R. J.

D. P. Zhang, J. D. Shao, Y. A. Zhao, S. H. Fan, R. J. Hong, and Z. X. Fan, "Laser-induced damage threshold of ZrO2 thin films prepared at different oxygen partial pressures by electron-beam evaporation," J. Vac. Sci. Technol. A 23,197-200 (2005).
[CrossRef]

Hughes, J. D.

Kaiser, N.

M. Reichling, A. Bodemann, and N. Kaiser, "Defect induced laser damage in oxide multilayer coatings for 246nm," Thin Solid Films 320, 264-279 (1998).
[CrossRef]

M. Reichling, A. Bodeman, and N. Kaiser "New insight into defect-induced laser damage in UV multilayer coatings," Proc. SPIE 2428, 307-316 (1995).
[CrossRef]

Kozlowski, M. R.

Kuo, R. K.

Z. L. Wu, R. K. Kuo, Y. S. Lu, and S. T. Gu, "Laser-induced surface thermal lensing for thin film characterizations," Proc. SPIE 2714, 294-304 (1996).
[CrossRef]

Lichtenstein, T. L.

Loomis, G. E.

Lowdermilk, W. H.

Lu, Y. S.

Z. L. Wu, R. K. Kuo, Y. S. Lu, and S. T. Gu, "Laser-induced surface thermal lensing for thin film characterizations," Proc. SPIE 2714, 294-304 (1996).
[CrossRef]

Milam, D.

Papernov, S.

S. Papernov, A. Schmid, J. Anzelotti, D. Smith, and Z. Chrzan, "AFM-mapped, nanoscale, absorber-driven laser damage in UV high reflector multilayer," Proc. SPIE 2714, 384-394 (1996).
[CrossRef]

Perrone, M. R.

M. Alvisi, F. D. Tomasi, and M. R. Perrone, "Laser damage dependence on structural and optical properties of ion-assisted HfO2 thin films," Thin Solid Films 396, 44-52 (2001).
[CrossRef]

Poiroux, T.

J. Dijon, T. Poiroux, and C. Desrumaux, "Nano absorbing centers: a key point in laser damage of thin films," Proc. SPIE 2966, 315-325 (1997).
[CrossRef]

Rainer, F.

Reichling, M.

M. Reichling, A. Bodemann, and N. Kaiser, "Defect induced laser damage in oxide multilayer coatings for 246nm," Thin Solid Films 320, 264-279 (1998).
[CrossRef]

M. Reichling, A. Bodeman, and N. Kaiser "New insight into defect-induced laser damage in UV multilayer coatings," Proc. SPIE 2428, 307-316 (1995).
[CrossRef]

Reid, R. S.

Roche, P.

Schmid, A.

S. Papernov, A. Schmid, J. Anzelotti, D. Smith, and Z. Chrzan, "AFM-mapped, nanoscale, absorber-driven laser damage in UV high reflector multilayer," Proc. SPIE 2714, 384-394 (1996).
[CrossRef]

Shao, J. D.

L. Yuan, C. J. Wang, Y. A. Zhao, and J. D. Shao, "Influence of oxygen post-treatment on laser-induced damage of antireflection coatings prepared by electron-beam evaporation and ion beam assisted deposition," Appl. Surf. Sci. 254, 6346-6349 (2008).
[CrossRef]

S. G. Wu, J. D. Shao, Z. X. Fan, "Negative-ion element impurities breakdown model," Acta Phys. Sin. 55, 1987-1990 (2006).

C. Y. Wei, H. B. He, J. D. Shao, T. Wang, D. P. Zhang, and Z. X. Fan, "Effects of CO2 laser conditioning of the antireflection Y2O3/SiO2 coatings at 351 nm," Opt. Commun. 252, 336-343 (2005).
[CrossRef]

D. P. Zhang, J. D. Shao, Y. A. Zhao, S. H. Fan, R. J. Hong, and Z. X. Fan, "Laser-induced damage threshold of ZrO2 thin films prepared at different oxygen partial pressures by electron-beam evaporation," J. Vac. Sci. Technol. A 23,197-200 (2005).
[CrossRef]

D. P. Zhang, J. D. Shao, D. W. Zhang, S. H. Fan, T. Y. Tan, and Z. X. Fan, "Employing oxygen-plasma posttreatment to improve the laser-induced damage threshold of ZrO2 films prepared by the electron-beam evaporation method," Opt. Lett. 29, 2870-2872 (2004).
[CrossRef]

Smith, D.

S. Papernov, A. Schmid, J. Anzelotti, D. Smith, and Z. Chrzan, "AFM-mapped, nanoscale, absorber-driven laser damage in UV high reflector multilayer," Proc. SPIE 2714, 384-394 (1996).
[CrossRef]

Stolz, C. J.

Tan, T. Y.

Tomasi, F. D.

M. Alvisi, F. D. Tomasi, and M. R. Perrone, "Laser damage dependence on structural and optical properties of ion-assisted HfO2 thin films," Thin Solid Films 396, 44-52 (2001).
[CrossRef]

Tranter, C. J.

H. Goldenberg and C. J. Tranter, "Heat flow in an infinite medium heated by a sphere," Br. J. Appl. Phys. 3, 296-301 (1952).
[CrossRef]

Wang, C. J.

L. Yuan, C. J. Wang, Y. A. Zhao, and J. D. Shao, "Influence of oxygen post-treatment on laser-induced damage of antireflection coatings prepared by electron-beam evaporation and ion beam assisted deposition," Appl. Surf. Sci. 254, 6346-6349 (2008).
[CrossRef]

Wang, T.

C. Y. Wei, H. B. He, J. D. Shao, T. Wang, D. P. Zhang, and Z. X. Fan, "Effects of CO2 laser conditioning of the antireflection Y2O3/SiO2 coatings at 351 nm," Opt. Commun. 252, 336-343 (2005).
[CrossRef]

Weakley, S. C.

Wei, C. Y.

C. Y. Wei, H. B. He, J. D. Shao, T. Wang, D. P. Zhang, and Z. X. Fan, "Effects of CO2 laser conditioning of the antireflection Y2O3/SiO2 coatings at 351 nm," Opt. Commun. 252, 336-343 (2005).
[CrossRef]

Wiggins, T. A.

Wu, S. G.

S. G. Wu, J. D. Shao, Z. X. Fan, "Negative-ion element impurities breakdown model," Acta Phys. Sin. 55, 1987-1990 (2006).

Wu, Z. L.

Yuan, L.

L. Yuan, C. J. Wang, Y. A. Zhao, and J. D. Shao, "Influence of oxygen post-treatment on laser-induced damage of antireflection coatings prepared by electron-beam evaporation and ion beam assisted deposition," Appl. Surf. Sci. 254, 6346-6349 (2008).
[CrossRef]

Zhang, D. P.

D. P. Zhang, J. D. Shao, Y. A. Zhao, S. H. Fan, R. J. Hong, and Z. X. Fan, "Laser-induced damage threshold of ZrO2 thin films prepared at different oxygen partial pressures by electron-beam evaporation," J. Vac. Sci. Technol. A 23,197-200 (2005).
[CrossRef]

C. Y. Wei, H. B. He, J. D. Shao, T. Wang, D. P. Zhang, and Z. X. Fan, "Effects of CO2 laser conditioning of the antireflection Y2O3/SiO2 coatings at 351 nm," Opt. Commun. 252, 336-343 (2005).
[CrossRef]

D. P. Zhang, J. D. Shao, D. W. Zhang, S. H. Fan, T. Y. Tan, and Z. X. Fan, "Employing oxygen-plasma posttreatment to improve the laser-induced damage threshold of ZrO2 films prepared by the electron-beam evaporation method," Opt. Lett. 29, 2870-2872 (2004).
[CrossRef]

Zhang, D. W.

Zhao, Q.

Zhao, Y. A.

L. Yuan, C. J. Wang, Y. A. Zhao, and J. D. Shao, "Influence of oxygen post-treatment on laser-induced damage of antireflection coatings prepared by electron-beam evaporation and ion beam assisted deposition," Appl. Surf. Sci. 254, 6346-6349 (2008).
[CrossRef]

D. P. Zhang, J. D. Shao, Y. A. Zhao, S. H. Fan, R. J. Hong, and Z. X. Fan, "Laser-induced damage threshold of ZrO2 thin films prepared at different oxygen partial pressures by electron-beam evaporation," J. Vac. Sci. Technol. A 23,197-200 (2005).
[CrossRef]

Acta Phys. Sin. (1)

S. G. Wu, J. D. Shao, Z. X. Fan, "Negative-ion element impurities breakdown model," Acta Phys. Sin. 55, 1987-1990 (2006).

Appl. Opt. (5)

Appl. Surf. Sci. (1)

L. Yuan, C. J. Wang, Y. A. Zhao, and J. D. Shao, "Influence of oxygen post-treatment on laser-induced damage of antireflection coatings prepared by electron-beam evaporation and ion beam assisted deposition," Appl. Surf. Sci. 254, 6346-6349 (2008).
[CrossRef]

Br. J. Appl. Phys. (1)

H. Goldenberg and C. J. Tranter, "Heat flow in an infinite medium heated by a sphere," Br. J. Appl. Phys. 3, 296-301 (1952).
[CrossRef]

J. Appl. Phys. (1)

H. S. Bennett, "Absorbing centers in laser materials," J. Appl. Phys. 42, 619-630 (1971).
[CrossRef]

J. Vac. Sci. Technol. A (1)

D. P. Zhang, J. D. Shao, Y. A. Zhao, S. H. Fan, R. J. Hong, and Z. X. Fan, "Laser-induced damage threshold of ZrO2 thin films prepared at different oxygen partial pressures by electron-beam evaporation," J. Vac. Sci. Technol. A 23,197-200 (2005).
[CrossRef]

Opt. Commun. (1)

C. Y. Wei, H. B. He, J. D. Shao, T. Wang, D. P. Zhang, and Z. X. Fan, "Effects of CO2 laser conditioning of the antireflection Y2O3/SiO2 coatings at 351 nm," Opt. Commun. 252, 336-343 (2005).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (4)

Z. L. Wu, R. K. Kuo, Y. S. Lu, and S. T. Gu, "Laser-induced surface thermal lensing for thin film characterizations," Proc. SPIE 2714, 294-304 (1996).
[CrossRef]

M. Reichling, A. Bodeman, and N. Kaiser "New insight into defect-induced laser damage in UV multilayer coatings," Proc. SPIE 2428, 307-316 (1995).
[CrossRef]

J. Dijon, T. Poiroux, and C. Desrumaux, "Nano absorbing centers: a key point in laser damage of thin films," Proc. SPIE 2966, 315-325 (1997).
[CrossRef]

S. Papernov, A. Schmid, J. Anzelotti, D. Smith, and Z. Chrzan, "AFM-mapped, nanoscale, absorber-driven laser damage in UV high reflector multilayer," Proc. SPIE 2714, 384-394 (1996).
[CrossRef]

Thin Solid Films (2)

M. Reichling, A. Bodemann, and N. Kaiser, "Defect induced laser damage in oxide multilayer coatings for 246nm," Thin Solid Films 320, 264-279 (1998).
[CrossRef]

M. Alvisi, F. D. Tomasi, and M. R. Perrone, "Laser damage dependence on structural and optical properties of ion-assisted HfO2 thin films," Thin Solid Films 396, 44-52 (2001).
[CrossRef]

Other (1)

ISO 11254-1:2000, Lasers and laser-related equipment—Determination of laser-induced damage threshold of optical surfaces—Part I: 1-on-1 test.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig.1.
Fig.1.

Surface defect density of the as-grown and treated samples

Fig. 2.
Fig. 2.

Weak absorption of the samples

Fig. 3.
Fig. 3.

Laser-induced damage threshold of the sample at 355nm wavelength

Fig. 4.
Fig. 4.

Laser-induced damage morphology of the sample at 355nm wavelength. (a) Microscopic laser damage morphology near LIDT. (b) Magnified image of the box area in Fig. 4(a).

Fig. 5.
Fig. 5.

The relations between the temperature rise of inclusion and host layer and the radial distance from the center of laser irradiation.

Tables (3)

Tables Icon

Table 1. Ion gun parameters of plasma treatment

Tables Icon

Table 2. Flow rate ratios (Ar/O2) for different samples

Tables Icon

Table 3. Parameters in simulation

Metrics