Abstract

A widely tunable, narrow band Ti:Sapphire oscillator is reported. Tunability and spectral narrowing were achieved by use of a volume Bragg grating in the cavity. Tunability was observed from 785 nm to 852 nm while maintaining a spectral linewidth less than 10 pm with essentially no spectral jitter. Oscillation on only 2 longitudinal modes is also reported at 852 nm with the grating at normal incidence providing ~200 mW output power.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jacobsson, J. E. Hellström, V. Pasiskevicius, and F. Laurell, "Widely tunable Yb:KYW laser with a volume Bragg grating," Opt. Express 15, 1003-1010 (2007).
    [CrossRef] [PubMed]
  2. T.-Y. Chung, S. S. Yang, C.-W. Chen, H.-C. Yang, C.-R. Liao, Y.-H. Lien, and J.-T. Shy "Wavelength tunable single mode Nd:GdVO4 laser using a volume Bragg grating fold mirror," in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CThE4.
  3. C.-J. Liao, Y.-H. Lien, T.-y. Chung, S. S. Yangl, and J.-T. Shy, "Lasing action of Nd:GdVO4 at 1070 nm by Volumetric Bragg Grating," in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CThE3.
  4. L. B. Glebov, "Volume Bragg Gratings in PTR glass - New optical elements for laser design," in Advanced Solid State Photonics (Optical Society of America, 2008), paper MD1
  5. L. B. Glebov, "High brightness laser design based on volume Bragg gratings," Proc. SPIE 621, 621601 (2006).
    [CrossRef]
  6. G. G. Venus, V. Smirnov, and L. Glebov, "Efficient pumping of Rb vapor by high-power volume Bragg diode laser," Opt. Lett. 32, 2611-2613 (2007).
    [CrossRef] [PubMed]
  7. T. Y. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, "Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror," Opt. Lett. 31, 229-231 (2006).
    [CrossRef] [PubMed]
  8. W. Koechner, Solid-State Laser Engineering (Springer), Chap. 3.
  9. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, seventh edition, 1999).
  10. J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, "Finite Beams in Reflective Volume Bragg Gratings: Theory and Experiments," IEEE J. Quantum Electron. 44, 81-89 (2008).
    [CrossRef]

2008 (1)

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, "Finite Beams in Reflective Volume Bragg Gratings: Theory and Experiments," IEEE J. Quantum Electron. 44, 81-89 (2008).
[CrossRef]

2007 (2)

2006 (1)

Bass, M.

Chung, T. Y.

Glebov, L.

Glebov, L. B.

Hellström, J. E.

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, "Finite Beams in Reflective Volume Bragg Gratings: Theory and Experiments," IEEE J. Quantum Electron. 44, 81-89 (2008).
[CrossRef]

B. Jacobsson, J. E. Hellström, V. Pasiskevicius, and F. Laurell, "Widely tunable Yb:KYW laser with a volume Bragg grating," Opt. Express 15, 1003-1010 (2007).
[CrossRef] [PubMed]

Jacobsson, B.

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, "Finite Beams in Reflective Volume Bragg Gratings: Theory and Experiments," IEEE J. Quantum Electron. 44, 81-89 (2008).
[CrossRef]

B. Jacobsson, J. E. Hellström, V. Pasiskevicius, and F. Laurell, "Widely tunable Yb:KYW laser with a volume Bragg grating," Opt. Express 15, 1003-1010 (2007).
[CrossRef] [PubMed]

Laurell, F.

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, "Finite Beams in Reflective Volume Bragg Gratings: Theory and Experiments," IEEE J. Quantum Electron. 44, 81-89 (2008).
[CrossRef]

B. Jacobsson, J. E. Hellström, V. Pasiskevicius, and F. Laurell, "Widely tunable Yb:KYW laser with a volume Bragg grating," Opt. Express 15, 1003-1010 (2007).
[CrossRef] [PubMed]

Pasiskevicius, V.

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, "Finite Beams in Reflective Volume Bragg Gratings: Theory and Experiments," IEEE J. Quantum Electron. 44, 81-89 (2008).
[CrossRef]

B. Jacobsson, J. E. Hellström, V. Pasiskevicius, and F. Laurell, "Widely tunable Yb:KYW laser with a volume Bragg grating," Opt. Express 15, 1003-1010 (2007).
[CrossRef] [PubMed]

Rapaport, A.

Richardson, M. C.

Smirnov, V.

Venus, G. G.

IEEE J. of Quantum Electron. (1)

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, "Finite Beams in Reflective Volume Bragg Gratings: Theory and Experiments," IEEE J. Quantum Electron. 44, 81-89 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (6)

T.-Y. Chung, S. S. Yang, C.-W. Chen, H.-C. Yang, C.-R. Liao, Y.-H. Lien, and J.-T. Shy "Wavelength tunable single mode Nd:GdVO4 laser using a volume Bragg grating fold mirror," in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CThE4.

C.-J. Liao, Y.-H. Lien, T.-y. Chung, S. S. Yangl, and J.-T. Shy, "Lasing action of Nd:GdVO4 at 1070 nm by Volumetric Bragg Grating," in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CThE3.

L. B. Glebov, "Volume Bragg Gratings in PTR glass - New optical elements for laser design," in Advanced Solid State Photonics (Optical Society of America, 2008), paper MD1

L. B. Glebov, "High brightness laser design based on volume Bragg gratings," Proc. SPIE 621, 621601 (2006).
[CrossRef]

W. Koechner, Solid-State Laser Engineering (Springer), Chap. 3.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, seventh edition, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) Theoretical representation of longitudinal modes for an (a) 80 cm and a (b) 25 cm long-cavity

Fig. 2.
Fig. 2.

Cavity configuration

Fig. 3.
Fig. 3.

Characteristics of the oscillator with (a) configuration (i) with M1 = 4% OC and M2 = HR mirror, (b) configuration (ii) with M1 = 4% OC and M2 = VBG, (c) configuration (iii) with M1 = VBG and M2 = VBG, (d) configuration (i) with M1 = 12% OC and M2 = VBG

Fig. 4.
Fig. 4.

Effected of adding the VBG to the resonator showing (a) the spectrum of configuration (i) and (b) configuration (ii) with the VBG.

Fig. 5.
Fig. 5.

Interferogram showing two longitudinal modes obtained from Fabry Perot interferometer.

Fig. 6.
Fig. 6.

Ti:Sapphire X-cavity including a tuning prism and a VBG to achieve both tuning and spectral narrowing.

Fig. 7.
Fig. 7.

Wavelength dependence of the effective reflectivity of the VBG used in the oblique incidence configuration.

Fig. 8.
Fig. 8.

(a) Output power (solid line) and slope efficiency (dashed line) for a constant pump power P = 4 W, (b) Threshold power as a function of wavelength.

Fig. 9.
Fig. 9.

(a) Characteristics output power versus input power at 785 nm – slope efficiency ~14%, threshold power 5 W (b) Characteristics output power versus input power at 845 nm – slope efficiency ~11%, threshold power 1.7 W.

Fig. 10.
Fig. 10.

Normalized spectrum at the lower end of the tuning range (785 nm).

Fig. 11.
Fig. 11.

Fabry-Perot fringes at 834 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Pt=hc2λστ [g0La+t1] tπw2
a=g0L2Ptλστhctπw2+1 t
η=IreflectedIreflected+Iransmitted ×100

Metrics