Abstract

We develop a theoretical approach for describing the optical trapping and manipulation of carbon nanoclusters in air with a dual-vortex optical trap, as realized recently in experiment [V. Shvedov et al., Opt. Express 17, 5743 (2009)]. We calculate both longitudinal and transverse photophoretic forces acting on a spherical absorbing particle, and then compare our theoretical predictions with the experimental data.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008).
    [CrossRef] [PubMed]
  2. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
    [CrossRef]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  4. E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena, (Springer, 2002), pp. 780-785.
  5. F. Ehrenhaft, "On the physics of millionths of centimeters," Phys. Z. 18, 352-368 (1917).
  6. O. Preining, "Photophoresis," in Aerosol Sciences Ed. C. N. Davies (Academic Press, N. Y. 1966), pp. 111-135.
  7. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Yu. S. Kivshar, "Optical guiding of absorbing nanoclusters in air," Opt. Express 17, 5743-5757 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-7-5743
    [CrossRef] [PubMed]
  8. H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quant. Chem. 30, 469-492 (1998).
    [CrossRef]
  9. D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
    [CrossRef] [PubMed]
  10. A. V. Rode, E. G. Gamaly, and B Luther-Davies, "Formation of cluster-assembled carbon nano-foam by highrepetition-rate laser ablation," Appl. Phys. A 70, 135-144 (2000).
    [CrossRef]
  11. A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation," Appl. Surf. Science 197-198, 644-649 (2002).
  12. J. F. Nye and M. V. Berry, "Dislocations in wave trains," Proc. R. Soc. London A 336, 165 (1974).
    [CrossRef]
  13. M. S. Soskin and M. V. Vasnetsov, "Singular Optics," Prog. Opt. 42, 219-276 E. Wolf, ed., (Elsevier, 2001).
    [CrossRef]
  14. C. N. Alexeyev, M. A. Yavorsky, and V. G. Shvedov, "Angular momentum flux of counter-propagating paraxial beams," J. Opt. Soc. Am. B 25, 643-646 (2008).
    [CrossRef]
  15. Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces, D. L. Andrews, ed., (Elsevier, Academic Press, 2008).
    [PubMed]
  16. G. T. Best and T. N. L. Patterson, "The capture of small absorbing particles by the solar radiation field," Planet. Space Sci. 9, 801-809 (1962).
    [CrossRef]
  17. G. M. Hidy and J. R. Broc, "Photophoresis and the descent of particles into the lower stratosphere," J. Geophys. Res. 72, 455 (1967).
    [CrossRef]
  18. A. A. Cheremisin, Yu. V. Vassilyev, and H. Horvath, "Gravito-photophoresis and aerosol stratification in the atmosphere," J. Aerosol Sci. 36, 1277-1299 (2005).
    [CrossRef]
  19. G. Wurm and O. Krauss, "Experiments on negative photophoresis and application to the atmosphere," Atm. Env. 42, 2682-2690 (2008).
    [CrossRef]
  20. O. Krauss, G. Wurm, O. Mousis, J.-M. Petit, J. Horner, and Y. Alibert, "The photophoretic sweeping of dust in transient protoplanetary disks," Astron. Astrophys. 462, 977 (2007).
    [CrossRef]
  21. O. Mousis, J.-M. Petit, G. Wurm, O. Krauss, Y. Alibert, and J. Horner, "Photophoresis as a source of hot minerals in comets," Astron. Astrophys. 466, L9-L12 (2007).
    [CrossRef]
  22. L. D. Reed, "Low Knudsen number photophoresis", J. Aerosol Sci. 8, 123-131 (1977).
    [CrossRef]
  23. J. C. Maxwell, "On Stresses in Rarified Gases Arising from Inequalities of Temperature," Phil Trans. R. Soc. London 170, 231-256 (1879).
    [CrossRef]
  24. S. Beresnev, V. Chernyak, and G. Fomyagin, "Photophoresis of a spherical particle in rarefied gas," Phys. Fluids A 5, 2043-2052 (1993).
    [CrossRef]
  25. Yu. I. Yalamov, V. B. Kutukov, and E. R. Shchukin, "Theory of the photophoretic motion of the large-size volatile aerosol particle," J. Colloid Interface Sci. 57, 564 (1976).
    [CrossRef]
  26. S. Arnold and M. Lewittes, "Size dependence of the photophoretic force", J. Appl. Phys. 53, 5314 (1982).
    [CrossRef]
  27. P. W. Dusel, M. Kerker, and D. D. Cooke, "Distribution of absorption centers within irradiated spheres", J. Opt. Soc. Am. 69, 55 (1979).
    [CrossRef]
  28. Yu. I. Yalamov, V. B. Kutukov, and E. R. Shchukin, "Motion of a small aerosol particle in a light field," J. Eng. Phys. 30, 648-652 (1976).
    [CrossRef]
  29. M. Kerker and D. D. Cooke, "Photophoretic force on aerosol particles in the free-molecule regime", J. Opt. Soc. Am. 72, 1267 (1982).
    [CrossRef]
  30. M. Lewittes, S. Arnold, and G. Oster, "Radiometric levitation of micron sized spheres," Appl. Phys. Lett. 40, 455 (1982).
    [CrossRef]

2009

2008

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
[CrossRef] [PubMed]

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008).
[CrossRef] [PubMed]

C. N. Alexeyev, M. A. Yavorsky, and V. G. Shvedov, "Angular momentum flux of counter-propagating paraxial beams," J. Opt. Soc. Am. B 25, 643-646 (2008).
[CrossRef]

G. Wurm and O. Krauss, "Experiments on negative photophoresis and application to the atmosphere," Atm. Env. 42, 2682-2690 (2008).
[CrossRef]

2007

O. Krauss, G. Wurm, O. Mousis, J.-M. Petit, J. Horner, and Y. Alibert, "The photophoretic sweeping of dust in transient protoplanetary disks," Astron. Astrophys. 462, 977 (2007).
[CrossRef]

O. Mousis, J.-M. Petit, G. Wurm, O. Krauss, Y. Alibert, and J. Horner, "Photophoresis as a source of hot minerals in comets," Astron. Astrophys. 466, L9-L12 (2007).
[CrossRef]

2005

A. A. Cheremisin, Yu. V. Vassilyev, and H. Horvath, "Gravito-photophoresis and aerosol stratification in the atmosphere," J. Aerosol Sci. 36, 1277-1299 (2005).
[CrossRef]

2002

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation," Appl. Surf. Science 197-198, 644-649 (2002).

2000

A. V. Rode, E. G. Gamaly, and B Luther-Davies, "Formation of cluster-assembled carbon nano-foam by highrepetition-rate laser ablation," Appl. Phys. A 70, 135-144 (2000).
[CrossRef]

1998

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quant. Chem. 30, 469-492 (1998).
[CrossRef]

1993

S. Beresnev, V. Chernyak, and G. Fomyagin, "Photophoresis of a spherical particle in rarefied gas," Phys. Fluids A 5, 2043-2052 (1993).
[CrossRef]

1986

1982

S. Arnold and M. Lewittes, "Size dependence of the photophoretic force", J. Appl. Phys. 53, 5314 (1982).
[CrossRef]

M. Kerker and D. D. Cooke, "Photophoretic force on aerosol particles in the free-molecule regime", J. Opt. Soc. Am. 72, 1267 (1982).
[CrossRef]

M. Lewittes, S. Arnold, and G. Oster, "Radiometric levitation of micron sized spheres," Appl. Phys. Lett. 40, 455 (1982).
[CrossRef]

1979

1977

L. D. Reed, "Low Knudsen number photophoresis", J. Aerosol Sci. 8, 123-131 (1977).
[CrossRef]

1976

Yu. I. Yalamov, V. B. Kutukov, and E. R. Shchukin, "Motion of a small aerosol particle in a light field," J. Eng. Phys. 30, 648-652 (1976).
[CrossRef]

Yu. I. Yalamov, V. B. Kutukov, and E. R. Shchukin, "Theory of the photophoretic motion of the large-size volatile aerosol particle," J. Colloid Interface Sci. 57, 564 (1976).
[CrossRef]

1974

J. F. Nye and M. V. Berry, "Dislocations in wave trains," Proc. R. Soc. London A 336, 165 (1974).
[CrossRef]

1970

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

1967

G. M. Hidy and J. R. Broc, "Photophoresis and the descent of particles into the lower stratosphere," J. Geophys. Res. 72, 455 (1967).
[CrossRef]

1962

G. T. Best and T. N. L. Patterson, "The capture of small absorbing particles by the solar radiation field," Planet. Space Sci. 9, 801-809 (1962).
[CrossRef]

1917

F. Ehrenhaft, "On the physics of millionths of centimeters," Phys. Z. 18, 352-368 (1917).

1879

J. C. Maxwell, "On Stresses in Rarified Gases Arising from Inequalities of Temperature," Phil Trans. R. Soc. London 170, 231-256 (1879).
[CrossRef]

Alexeyev, C. N.

C. N. Alexeyev, M. A. Yavorsky, and V. G. Shvedov, "Angular momentum flux of counter-propagating paraxial beams," J. Opt. Soc. Am. B 25, 643-646 (2008).
[CrossRef]

Alibert, Y.

O. Krauss, G. Wurm, O. Mousis, J.-M. Petit, J. Horner, and Y. Alibert, "The photophoretic sweeping of dust in transient protoplanetary disks," Astron. Astrophys. 462, 977 (2007).
[CrossRef]

O. Mousis, J.-M. Petit, G. Wurm, O. Krauss, Y. Alibert, and J. Horner, "Photophoresis as a source of hot minerals in comets," Astron. Astrophys. 466, L9-L12 (2007).
[CrossRef]

Anand, S.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
[CrossRef] [PubMed]

Arnold, S.

S. Arnold and M. Lewittes, "Size dependence of the photophoretic force", J. Appl. Phys. 53, 5314 (1982).
[CrossRef]

M. Lewittes, S. Arnold, and G. Oster, "Radiometric levitation of micron sized spheres," Appl. Phys. Lett. 40, 455 (1982).
[CrossRef]

Ashkin, A.

Beresnev, S.

S. Beresnev, V. Chernyak, and G. Fomyagin, "Photophoresis of a spherical particle in rarefied gas," Phys. Fluids A 5, 2043-2052 (1993).
[CrossRef]

Berry, M. V.

J. F. Nye and M. V. Berry, "Dislocations in wave trains," Proc. R. Soc. London A 336, 165 (1974).
[CrossRef]

Best, G. T.

G. T. Best and T. N. L. Patterson, "The capture of small absorbing particles by the solar radiation field," Planet. Space Sci. 9, 801-809 (1962).
[CrossRef]

Bjorkholm, J. E.

Broc, J. R.

G. M. Hidy and J. R. Broc, "Photophoresis and the descent of particles into the lower stratosphere," J. Geophys. Res. 72, 455 (1967).
[CrossRef]

Burnham, D. R.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
[CrossRef] [PubMed]

Cheremisin, A. A.

A. A. Cheremisin, Yu. V. Vassilyev, and H. Horvath, "Gravito-photophoresis and aerosol stratification in the atmosphere," J. Aerosol Sci. 36, 1277-1299 (2005).
[CrossRef]

Chernyak, V.

S. Beresnev, V. Chernyak, and G. Fomyagin, "Photophoresis of a spherical particle in rarefied gas," Phys. Fluids A 5, 2043-2052 (1993).
[CrossRef]

Christy, A. G.

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation," Appl. Surf. Science 197-198, 644-649 (2002).

Chu, S.

Cooke, D. D.

Desyatnikov, A. S.

Dewara, N.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
[CrossRef] [PubMed]

Dholakia, K.

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008).
[CrossRef] [PubMed]

Dusel, P. W.

Dziedzic, J. M.

Ehrenhaft, F.

F. Ehrenhaft, "On the physics of millionths of centimeters," Phys. Z. 18, 352-368 (1917).

Elliman, R. G.

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation," Appl. Surf. Science 197-198, 644-649 (2002).

Fomyagin, G.

S. Beresnev, V. Chernyak, and G. Fomyagin, "Photophoresis of a spherical particle in rarefied gas," Phys. Fluids A 5, 2043-2052 (1993).
[CrossRef]

Friese, M. E. J.

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quant. Chem. 30, 469-492 (1998).
[CrossRef]

Gamaly, E. G.

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation," Appl. Surf. Science 197-198, 644-649 (2002).

A. V. Rode, E. G. Gamaly, and B Luther-Davies, "Formation of cluster-assembled carbon nano-foam by highrepetition-rate laser ablation," Appl. Phys. A 70, 135-144 (2000).
[CrossRef]

Gu, M.

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008).
[CrossRef] [PubMed]

Heckenberg, N. R.

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quant. Chem. 30, 469-492 (1998).
[CrossRef]

Hidy, G. M.

G. M. Hidy and J. R. Broc, "Photophoresis and the descent of particles into the lower stratosphere," J. Geophys. Res. 72, 455 (1967).
[CrossRef]

Horner, J.

O. Krauss, G. Wurm, O. Mousis, J.-M. Petit, J. Horner, and Y. Alibert, "The photophoretic sweeping of dust in transient protoplanetary disks," Astron. Astrophys. 462, 977 (2007).
[CrossRef]

O. Mousis, J.-M. Petit, G. Wurm, O. Krauss, Y. Alibert, and J. Horner, "Photophoresis as a source of hot minerals in comets," Astron. Astrophys. 466, L9-L12 (2007).
[CrossRef]

Horvath, H.

A. A. Cheremisin, Yu. V. Vassilyev, and H. Horvath, "Gravito-photophoresis and aerosol stratification in the atmosphere," J. Aerosol Sci. 36, 1277-1299 (2005).
[CrossRef]

Hyde, S. T.

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation," Appl. Surf. Science 197-198, 644-649 (2002).

Kerker, M.

Kivshar, Yu. S.

Krauss, O.

G. Wurm and O. Krauss, "Experiments on negative photophoresis and application to the atmosphere," Atm. Env. 42, 2682-2690 (2008).
[CrossRef]

O. Krauss, G. Wurm, O. Mousis, J.-M. Petit, J. Horner, and Y. Alibert, "The photophoretic sweeping of dust in transient protoplanetary disks," Astron. Astrophys. 462, 977 (2007).
[CrossRef]

O. Mousis, J.-M. Petit, G. Wurm, O. Krauss, Y. Alibert, and J. Horner, "Photophoresis as a source of hot minerals in comets," Astron. Astrophys. 466, L9-L12 (2007).
[CrossRef]

Krolikowski, W.

Kutukov, V. B.

Yu. I. Yalamov, V. B. Kutukov, and E. R. Shchukin, "Theory of the photophoretic motion of the large-size volatile aerosol particle," J. Colloid Interface Sci. 57, 564 (1976).
[CrossRef]

Yu. I. Yalamov, V. B. Kutukov, and E. R. Shchukin, "Motion of a small aerosol particle in a light field," J. Eng. Phys. 30, 648-652 (1976).
[CrossRef]

Lewittes, M.

M. Lewittes, S. Arnold, and G. Oster, "Radiometric levitation of micron sized spheres," Appl. Phys. Lett. 40, 455 (1982).
[CrossRef]

S. Arnold and M. Lewittes, "Size dependence of the photophoretic force", J. Appl. Phys. 53, 5314 (1982).
[CrossRef]

Luther-Davies, B

A. V. Rode, E. G. Gamaly, and B Luther-Davies, "Formation of cluster-assembled carbon nano-foam by highrepetition-rate laser ablation," Appl. Phys. A 70, 135-144 (2000).
[CrossRef]

Luther-Davies, B.

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation," Appl. Surf. Science 197-198, 644-649 (2002).

Maxwell, J. C.

J. C. Maxwell, "On Stresses in Rarified Gases Arising from Inequalities of Temperature," Phil Trans. R. Soc. London 170, 231-256 (1879).
[CrossRef]

McGloin, D.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
[CrossRef] [PubMed]

Mousis, O.

O. Mousis, J.-M. Petit, G. Wurm, O. Krauss, Y. Alibert, and J. Horner, "Photophoresis as a source of hot minerals in comets," Astron. Astrophys. 466, L9-L12 (2007).
[CrossRef]

O. Krauss, G. Wurm, O. Mousis, J.-M. Petit, J. Horner, and Y. Alibert, "The photophoretic sweeping of dust in transient protoplanetary disks," Astron. Astrophys. 462, 977 (2007).
[CrossRef]

Nieminen, T. A.

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quant. Chem. 30, 469-492 (1998).
[CrossRef]

Nye, J. F.

J. F. Nye and M. V. Berry, "Dislocations in wave trains," Proc. R. Soc. London A 336, 165 (1974).
[CrossRef]

Oster, G.

M. Lewittes, S. Arnold, and G. Oster, "Radiometric levitation of micron sized spheres," Appl. Phys. Lett. 40, 455 (1982).
[CrossRef]

Patterson, T. N. L.

G. T. Best and T. N. L. Patterson, "The capture of small absorbing particles by the solar radiation field," Planet. Space Sci. 9, 801-809 (1962).
[CrossRef]

Petit, J.-M.

O. Krauss, G. Wurm, O. Mousis, J.-M. Petit, J. Horner, and Y. Alibert, "The photophoretic sweeping of dust in transient protoplanetary disks," Astron. Astrophys. 462, 977 (2007).
[CrossRef]

O. Mousis, J.-M. Petit, G. Wurm, O. Krauss, Y. Alibert, and J. Horner, "Photophoresis as a source of hot minerals in comets," Astron. Astrophys. 466, L9-L12 (2007).
[CrossRef]

Reece, P.

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008).
[CrossRef] [PubMed]

Reed, L. D.

L. D. Reed, "Low Knudsen number photophoresis", J. Aerosol Sci. 8, 123-131 (1977).
[CrossRef]

Rode, A. V.

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Yu. S. Kivshar, "Optical guiding of absorbing nanoclusters in air," Opt. Express 17, 5743-5757 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-7-5743
[CrossRef] [PubMed]

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation," Appl. Surf. Science 197-198, 644-649 (2002).

A. V. Rode, E. G. Gamaly, and B Luther-Davies, "Formation of cluster-assembled carbon nano-foam by highrepetition-rate laser ablation," Appl. Phys. A 70, 135-144 (2000).
[CrossRef]

Rubinsztein-Dunlop, H.

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quant. Chem. 30, 469-492 (1998).
[CrossRef]

Rudd, D.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
[CrossRef] [PubMed]

Shchukin, E. R.

Yu. I. Yalamov, V. B. Kutukov, and E. R. Shchukin, "Theory of the photophoretic motion of the large-size volatile aerosol particle," J. Colloid Interface Sci. 57, 564 (1976).
[CrossRef]

Yu. I. Yalamov, V. B. Kutukov, and E. R. Shchukin, "Motion of a small aerosol particle in a light field," J. Eng. Phys. 30, 648-652 (1976).
[CrossRef]

Shvedov, V. G.

Summers, M. D.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
[CrossRef] [PubMed]

Vassilyev, Yu. V.

A. A. Cheremisin, Yu. V. Vassilyev, and H. Horvath, "Gravito-photophoresis and aerosol stratification in the atmosphere," J. Aerosol Sci. 36, 1277-1299 (2005).
[CrossRef]

Veinger, A. I.

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation," Appl. Surf. Science 197-198, 644-649 (2002).

Wurm, G.

G. Wurm and O. Krauss, "Experiments on negative photophoresis and application to the atmosphere," Atm. Env. 42, 2682-2690 (2008).
[CrossRef]

O. Krauss, G. Wurm, O. Mousis, J.-M. Petit, J. Horner, and Y. Alibert, "The photophoretic sweeping of dust in transient protoplanetary disks," Astron. Astrophys. 462, 977 (2007).
[CrossRef]

O. Mousis, J.-M. Petit, G. Wurm, O. Krauss, Y. Alibert, and J. Horner, "Photophoresis as a source of hot minerals in comets," Astron. Astrophys. 466, L9-L12 (2007).
[CrossRef]

Yalamov, Yu. I.

Yu. I. Yalamov, V. B. Kutukov, and E. R. Shchukin, "Theory of the photophoretic motion of the large-size volatile aerosol particle," J. Colloid Interface Sci. 57, 564 (1976).
[CrossRef]

Yu. I. Yalamov, V. B. Kutukov, and E. R. Shchukin, "Motion of a small aerosol particle in a light field," J. Eng. Phys. 30, 648-652 (1976).
[CrossRef]

Yavorsky, M. A.

C. N. Alexeyev, M. A. Yavorsky, and V. G. Shvedov, "Angular momentum flux of counter-propagating paraxial beams," J. Opt. Soc. Am. B 25, 643-646 (2008).
[CrossRef]

Adv. Quant. Chem.

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quant. Chem. 30, 469-492 (1998).
[CrossRef]

Appl. Phys. A

A. V. Rode, E. G. Gamaly, and B Luther-Davies, "Formation of cluster-assembled carbon nano-foam by highrepetition-rate laser ablation," Appl. Phys. A 70, 135-144 (2000).
[CrossRef]

Appl. Phys. Lett.

M. Lewittes, S. Arnold, and G. Oster, "Radiometric levitation of micron sized spheres," Appl. Phys. Lett. 40, 455 (1982).
[CrossRef]

Appl. Surf. Science

A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation," Appl. Surf. Science 197-198, 644-649 (2002).

Astron. Astrophys.

O. Krauss, G. Wurm, O. Mousis, J.-M. Petit, J. Horner, and Y. Alibert, "The photophoretic sweeping of dust in transient protoplanetary disks," Astron. Astrophys. 462, 977 (2007).
[CrossRef]

O. Mousis, J.-M. Petit, G. Wurm, O. Krauss, Y. Alibert, and J. Horner, "Photophoresis as a source of hot minerals in comets," Astron. Astrophys. 466, L9-L12 (2007).
[CrossRef]

Atm. Env.

G. Wurm and O. Krauss, "Experiments on negative photophoresis and application to the atmosphere," Atm. Env. 42, 2682-2690 (2008).
[CrossRef]

Chem. Soc. Rev.

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008).
[CrossRef] [PubMed]

Faraday Discuss.

D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008).
[CrossRef] [PubMed]

J. Aerosol Sci.

A. A. Cheremisin, Yu. V. Vassilyev, and H. Horvath, "Gravito-photophoresis and aerosol stratification in the atmosphere," J. Aerosol Sci. 36, 1277-1299 (2005).
[CrossRef]

L. D. Reed, "Low Knudsen number photophoresis", J. Aerosol Sci. 8, 123-131 (1977).
[CrossRef]

J. Appl. Phys.

S. Arnold and M. Lewittes, "Size dependence of the photophoretic force", J. Appl. Phys. 53, 5314 (1982).
[CrossRef]

J. Colloid Interface Sci.

Yu. I. Yalamov, V. B. Kutukov, and E. R. Shchukin, "Theory of the photophoretic motion of the large-size volatile aerosol particle," J. Colloid Interface Sci. 57, 564 (1976).
[CrossRef]

J. Eng. Phys.

Yu. I. Yalamov, V. B. Kutukov, and E. R. Shchukin, "Motion of a small aerosol particle in a light field," J. Eng. Phys. 30, 648-652 (1976).
[CrossRef]

J. Geophys. Res.

G. M. Hidy and J. R. Broc, "Photophoresis and the descent of particles into the lower stratosphere," J. Geophys. Res. 72, 455 (1967).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

C. N. Alexeyev, M. A. Yavorsky, and V. G. Shvedov, "Angular momentum flux of counter-propagating paraxial beams," J. Opt. Soc. Am. B 25, 643-646 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phil Trans. R. Soc. London

J. C. Maxwell, "On Stresses in Rarified Gases Arising from Inequalities of Temperature," Phil Trans. R. Soc. London 170, 231-256 (1879).
[CrossRef]

Phys. Fluids A

S. Beresnev, V. Chernyak, and G. Fomyagin, "Photophoresis of a spherical particle in rarefied gas," Phys. Fluids A 5, 2043-2052 (1993).
[CrossRef]

Phys. Rev. Lett.

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Phys. Z.

F. Ehrenhaft, "On the physics of millionths of centimeters," Phys. Z. 18, 352-368 (1917).

Planet. Space Sci.

G. T. Best and T. N. L. Patterson, "The capture of small absorbing particles by the solar radiation field," Planet. Space Sci. 9, 801-809 (1962).
[CrossRef]

Proc. R. Soc. London A

J. F. Nye and M. V. Berry, "Dislocations in wave trains," Proc. R. Soc. London A 336, 165 (1974).
[CrossRef]

Other

M. S. Soskin and M. V. Vasnetsov, "Singular Optics," Prog. Opt. 42, 219-276 E. Wolf, ed., (Elsevier, 2001).
[CrossRef]

Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces, D. L. Andrews, ed., (Elsevier, Academic Press, 2008).
[PubMed]

O. Preining, "Photophoresis," in Aerosol Sciences Ed. C. N. Davies (Academic Press, N. Y. 1966), pp. 111-135.

E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena, (Springer, 2002), pp. 780-785.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Longitudinal force on a particle located on-axis of a vortex beam. (a) Vortex intensity cross-section; red-shaded is the part of a vortex beam illuminating particle (green sphere). (b) Transfer of a momentum (red arrow) from a gas molecule to a particle; the illuminated side of the particle is a hemisphere π/2 ≤ θπ, θ being a polar angle. (c) The PP force Eq. (6) versus axial distance z, the bottom frame shows the ring radius w(z) of the diffracting vortex beam. (d) Amplitude (f(a 2/w 0 2), top) and the full width at half maximum (FWHM, bottom) of the PP force curves shown in (c). The red and blue curves in (d) show the lowest order approximations of Eq. (6): f(t) ≃ t 2/2 (red) as in Eq. (7), and taking into account next term f(t) = t 2(1/2 −t/3) (blue).

Fig. 2.
Fig. 2.

Transverse photophoretic force. (a) The geometry of the problem; arrows show the transverse projection of the momentum flux density M transferred to the particle (green sphere); corresponding amplitude ∣M∣ = ∣Mρ∣ is color-coded in (b). The background in pictures (a) and (b) is the grey-coded intensity of a vortex with the ring radius w. (c, d) The magnitude of the transverse force Eq. (8) versus two key parameters, R/w and a/w.

Fig. 3.
Fig. 3.

Trap position. (a) The total longitudinal forces (black solid lines) for equal (ε = 1) and unequal (ε = 4) powers at the inter-focal distance δ =z 0. Corresponding stable (S) and unstable (U) positions of the trap are indicated in the Z(Θ) diagram in (b). Similar diagrams (c) and (d) show stable (red) and unstable (blue) roots Z(Θ) for different values of δ: solid lines for δ > 0 and dashed lines for δ < 0.

Fig. 4.
Fig. 4.

Theoretically calculated position of a particle in the trap (red lines) compared with the experimental data (black bars). (a) Static guiding with each position (of the polarizer and the particle) fixed in time, as in Fig. 5 of Ref [7]. (b) Dynamic guiding in real time with polarizer rotated and particles moving continuously, as in Fig. 6 of Ref. [7].

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Fpp=J1 9πμa2aI2ρaT(kf+2ka) ,
I(ρ,z)=Pπ ρ2w4(z) exp(ρ2w2(z)) .
Fa=Pac =πa2I0c {1lf22a2f(2alf)} , here the function f (t)=1(1+t)et .
FaPca33w2lf,foraplanewaveIin=I0.
w2(zZ)=w02 (1+(zZ)2z02)w02(1+Z2z02)=w2(Z).
FaPc8a515w4lf,foravortexbeamIin=I(ρ,Z).
Fz=S+MzdS,Mz=κcosθI(S+),
κ=J19μa22aρaT(kf+2ka)3μa2lfρaT(kf+2ka)=8.5×107sm,
Fz=κPf(a2w2),
FzκP2a4w4,
M=κsinθI(S+),
M=κρaI(S+),F=S+MdS=κS+ρaI(S)dS.
FR=κPπ∫∫x2+y2a2yax3+(y+R)2w4(Z)exp(x3+(y+R)2w4(Z))adxdya2x2y2.
FR=κP43Ra3w4(Z)κP43Ra3w04.
Ftot(Z)κ=Pff(a2/w021+(z+δ/2)2/z02)Pbf(a2/w021+(zδ/2)2/z02),
Z±=δ2ς+1ς1±δ2ς(ς1)2z02,
(dFtotdz)z=Z±=±δZ±C,hereC(δ,Z±)>0.

Metrics