Abstract

When one uses a metallic nanostructure to excite surface plasmon polaritons (SPPs) for subwavelength focusing, there is the distinct shape of the light emerging from the plasmonic lens in the transverse directions due to 2D confinement of SPPs. To study the tuning of symmetry of a focal spot, we consider an annular plasmonic lens incident with a polarized plane wave having various polarization states, including circular polarization (CP), elliptical polarization (EP), and radial polarization (RP), compared to linear polarization (TM). We find that plasmonic modes are independent of the polarization approach and the different polarization states enable to tune transverse electric field. More specifically, for CP case where the phase function Re[exp()]= 0, the total-electric-field intensity is distributed uniformly in the transverse plane, while for RP case where the phase function Re[exp()]= 1, a significant intensity contrast is observed in the two diagonal directions. We show an agreement between the analytical description and numerical simulation.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).
    [PubMed]
  2. S. Kawata, Near-field Optics and Surface Plasmon Polaritons (Springer, Berlin, 2001).
    [CrossRef]
  3. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  4. W. Knoll, "Interfaces and thin films as seen by bound electromagnetic waves," Ann. Rev. Phys. Chem. 49, 569-638 (1998).
    [CrossRef]
  5. E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
    [CrossRef] [PubMed]
  6. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano. Lett. 5, 1726-1729 (2005).
    [CrossRef] [PubMed]
  7. N. Fang, Z. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-11-7-682.
    [CrossRef] [PubMed]
  8. Z. Sun and H. K. Kim, "Refractive transmission of light and beam shaping with metallic nano-optic lenses," Appl. Phys. Lett. 85, 642-644 (2004).
    [CrossRef]
  9. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, H. Hua, U. Welp, E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano. Lett. 5, 1399-1402 (2005).
    [CrossRef] [PubMed]
  10. Y. Fu, W. Zhou, L. E. N. Lennie, C. Du, and X. Luo, "Plasmonic microzone plate: superfocusing at visible regime," Appl. Phys. Lett. 87, 061124 (2007).
    [CrossRef]
  11. H. Ko, H. C. Kim, and M. Cheng, "Light transmission through a metallic/dielectric nano-optic lens," J. Vac. Sci. Technol. B 26, 62188-2191 (2008).
    [CrossRef]
  12. H. C. Kim, H. Ko, and M. Cheng, "Optical focusing of plasmonic Fresnel zone plate-based metallic structure covered with a dielectric layer," J. Vac. Sci. Technol. B 26, 2197-2203 (2008).
    [CrossRef]
  13. J. Wang and W. Zhou, "Subwavelength beaming using depth-tuned annular nanostructures," J. Mod. Opt. (DOI: 10.1080/09500340902812094, in press) (2009).
  14. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
    [CrossRef]
  15. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  16. D. F. V. James and E. Wolf, "Determination of the degree of coherence of light from spectroscopic measurements," Opt. Commun. 145, 1-4 (1998).
    [CrossRef]
  17. FDTD Solutions, from Lumerical Solutions Inc., http://www.lumerical.com.
  18. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  19. Z. W. Liu, J. M. Steele, H. Lee, and X. Zhang, "Tuning the focus of a plasmonic lens by the incident angle," Appl. Phys. Lett. 88, 171108 (2006).
    [CrossRef]

2009 (1)

J. Wang and W. Zhou, "Subwavelength beaming using depth-tuned annular nanostructures," J. Mod. Opt. (DOI: 10.1080/09500340902812094, in press) (2009).

2008 (2)

H. Ko, H. C. Kim, and M. Cheng, "Light transmission through a metallic/dielectric nano-optic lens," J. Vac. Sci. Technol. B 26, 62188-2191 (2008).
[CrossRef]

H. C. Kim, H. Ko, and M. Cheng, "Optical focusing of plasmonic Fresnel zone plate-based metallic structure covered with a dielectric layer," J. Vac. Sci. Technol. B 26, 2197-2203 (2008).
[CrossRef]

2007 (1)

Y. Fu, W. Zhou, L. E. N. Lennie, C. Du, and X. Luo, "Plasmonic microzone plate: superfocusing at visible regime," Appl. Phys. Lett. 87, 061124 (2007).
[CrossRef]

2006 (2)

Z. W. Liu, J. M. Steele, H. Lee, and X. Zhang, "Tuning the focus of a plasmonic lens by the incident angle," Appl. Phys. Lett. 88, 171108 (2006).
[CrossRef]

E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

2005 (2)

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano. Lett. 5, 1726-1729 (2005).
[CrossRef] [PubMed]

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, H. Hua, U. Welp, E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano. Lett. 5, 1399-1402 (2005).
[CrossRef] [PubMed]

2004 (1)

Z. Sun and H. K. Kim, "Refractive transmission of light and beam shaping with metallic nano-optic lenses," Appl. Phys. Lett. 85, 642-644 (2004).
[CrossRef]

2003 (1)

2000 (1)

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

1998 (2)

D. F. V. James and E. Wolf, "Determination of the degree of coherence of light from spectroscopic measurements," Opt. Commun. 145, 1-4 (1998).
[CrossRef]

W. Knoll, "Interfaces and thin films as seen by bound electromagnetic waves," Ann. Rev. Phys. Chem. 49, 569-638 (1998).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Brown, E.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, H. Hua, U. Welp, E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano. Lett. 5, 1399-1402 (2005).
[CrossRef] [PubMed]

Cheng, M.

H. Ko, H. C. Kim, and M. Cheng, "Light transmission through a metallic/dielectric nano-optic lens," J. Vac. Sci. Technol. B 26, 62188-2191 (2008).
[CrossRef]

H. C. Kim, H. Ko, and M. Cheng, "Optical focusing of plasmonic Fresnel zone plate-based metallic structure covered with a dielectric layer," J. Vac. Sci. Technol. B 26, 2197-2203 (2008).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Dorn, R.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Du, C.

Y. Fu, W. Zhou, L. E. N. Lennie, C. Du, and X. Luo, "Plasmonic microzone plate: superfocusing at visible regime," Appl. Phys. Lett. 87, 061124 (2007).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Fang, N.

Fu, Y.

Y. Fu, W. Zhou, L. E. N. Lennie, C. Du, and X. Luo, "Plasmonic microzone plate: superfocusing at visible regime," Appl. Phys. Lett. 87, 061124 (2007).
[CrossRef]

Glockl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Hiller, J. M.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, H. Hua, U. Welp, E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano. Lett. 5, 1399-1402 (2005).
[CrossRef] [PubMed]

Hua, H.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, H. Hua, U. Welp, E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano. Lett. 5, 1399-1402 (2005).
[CrossRef] [PubMed]

James, D. F. V.

D. F. V. James and E. Wolf, "Determination of the degree of coherence of light from spectroscopic measurements," Opt. Commun. 145, 1-4 (1998).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kim, H. C.

H. Ko, H. C. Kim, and M. Cheng, "Light transmission through a metallic/dielectric nano-optic lens," J. Vac. Sci. Technol. B 26, 62188-2191 (2008).
[CrossRef]

H. C. Kim, H. Ko, and M. Cheng, "Optical focusing of plasmonic Fresnel zone plate-based metallic structure covered with a dielectric layer," J. Vac. Sci. Technol. B 26, 2197-2203 (2008).
[CrossRef]

Kim, H. K.

Z. Sun and H. K. Kim, "Refractive transmission of light and beam shaping with metallic nano-optic lenses," Appl. Phys. Lett. 85, 642-644 (2004).
[CrossRef]

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, H. Hua, U. Welp, E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano. Lett. 5, 1399-1402 (2005).
[CrossRef] [PubMed]

Knoll, W.

W. Knoll, "Interfaces and thin films as seen by bound electromagnetic waves," Ann. Rev. Phys. Chem. 49, 569-638 (1998).
[CrossRef]

Ko, H.

H. C. Kim, H. Ko, and M. Cheng, "Optical focusing of plasmonic Fresnel zone plate-based metallic structure covered with a dielectric layer," J. Vac. Sci. Technol. B 26, 2197-2203 (2008).
[CrossRef]

H. Ko, H. C. Kim, and M. Cheng, "Light transmission through a metallic/dielectric nano-optic lens," J. Vac. Sci. Technol. B 26, 62188-2191 (2008).
[CrossRef]

Lee, H.

Z. W. Liu, J. M. Steele, H. Lee, and X. Zhang, "Tuning the focus of a plasmonic lens by the incident angle," Appl. Phys. Lett. 88, 171108 (2006).
[CrossRef]

Lennie, L. E. N.

Y. Fu, W. Zhou, L. E. N. Lennie, C. Du, and X. Luo, "Plasmonic microzone plate: superfocusing at visible regime," Appl. Phys. Lett. 87, 061124 (2007).
[CrossRef]

Leuchs, G.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Liu, Z.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano. Lett. 5, 1726-1729 (2005).
[CrossRef] [PubMed]

N. Fang, Z. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-11-7-682.
[CrossRef] [PubMed]

Liu, Z. W.

Z. W. Liu, J. M. Steele, H. Lee, and X. Zhang, "Tuning the focus of a plasmonic lens by the incident angle," Appl. Phys. Lett. 88, 171108 (2006).
[CrossRef]

Luo, X.

Y. Fu, W. Zhou, L. E. N. Lennie, C. Du, and X. Luo, "Plasmonic microzone plate: superfocusing at visible regime," Appl. Phys. Lett. 87, 061124 (2007).
[CrossRef]

Ozbay, E.

E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, H. Hua, U. Welp, E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano. Lett. 5, 1399-1402 (2005).
[CrossRef] [PubMed]

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano. Lett. 5, 1726-1729 (2005).
[CrossRef] [PubMed]

Quabis, S.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Srituravanich, W.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano. Lett. 5, 1726-1729 (2005).
[CrossRef] [PubMed]

Steele, J. M.

Z. W. Liu, J. M. Steele, H. Lee, and X. Zhang, "Tuning the focus of a plasmonic lens by the incident angle," Appl. Phys. Lett. 88, 171108 (2006).
[CrossRef]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano. Lett. 5, 1726-1729 (2005).
[CrossRef] [PubMed]

Sun, C.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano. Lett. 5, 1726-1729 (2005).
[CrossRef] [PubMed]

Sun, Z.

Z. Sun and H. K. Kim, "Refractive transmission of light and beam shaping with metallic nano-optic lenses," Appl. Phys. Lett. 85, 642-644 (2004).
[CrossRef]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, H. Hua, U. Welp, E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano. Lett. 5, 1399-1402 (2005).
[CrossRef] [PubMed]

Wang, J.

J. Wang and W. Zhou, "Subwavelength beaming using depth-tuned annular nanostructures," J. Mod. Opt. (DOI: 10.1080/09500340902812094, in press) (2009).

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, H. Hua, U. Welp, E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano. Lett. 5, 1399-1402 (2005).
[CrossRef] [PubMed]

Wolf, E.

D. F. V. James and E. Wolf, "Determination of the degree of coherence of light from spectroscopic measurements," Opt. Commun. 145, 1-4 (1998).
[CrossRef]

Yen, T. J.

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, H. Hua, U. Welp, E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano. Lett. 5, 1399-1402 (2005).
[CrossRef] [PubMed]

Zhang, X.

Z. W. Liu, J. M. Steele, H. Lee, and X. Zhang, "Tuning the focus of a plasmonic lens by the incident angle," Appl. Phys. Lett. 88, 171108 (2006).
[CrossRef]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano. Lett. 5, 1726-1729 (2005).
[CrossRef] [PubMed]

N. Fang, Z. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-11-7-682.
[CrossRef] [PubMed]

Zhou, W.

J. Wang and W. Zhou, "Subwavelength beaming using depth-tuned annular nanostructures," J. Mod. Opt. (DOI: 10.1080/09500340902812094, in press) (2009).

Y. Fu, W. Zhou, L. E. N. Lennie, C. Du, and X. Luo, "Plasmonic microzone plate: superfocusing at visible regime," Appl. Phys. Lett. 87, 061124 (2007).
[CrossRef]

Ann. Rev. Phys. Chem. (1)

W. Knoll, "Interfaces and thin films as seen by bound electromagnetic waves," Ann. Rev. Phys. Chem. 49, 569-638 (1998).
[CrossRef]

Appl. Phys. Lett. (3)

Z. W. Liu, J. M. Steele, H. Lee, and X. Zhang, "Tuning the focus of a plasmonic lens by the incident angle," Appl. Phys. Lett. 88, 171108 (2006).
[CrossRef]

Z. Sun and H. K. Kim, "Refractive transmission of light and beam shaping with metallic nano-optic lenses," Appl. Phys. Lett. 85, 642-644 (2004).
[CrossRef]

Y. Fu, W. Zhou, L. E. N. Lennie, C. Du, and X. Luo, "Plasmonic microzone plate: superfocusing at visible regime," Appl. Phys. Lett. 87, 061124 (2007).
[CrossRef]

J. Mod. Opt. (1)

J. Wang and W. Zhou, "Subwavelength beaming using depth-tuned annular nanostructures," J. Mod. Opt. (DOI: 10.1080/09500340902812094, in press) (2009).

J. Vac. Sci. Technol. B (2)

H. Ko, H. C. Kim, and M. Cheng, "Light transmission through a metallic/dielectric nano-optic lens," J. Vac. Sci. Technol. B 26, 62188-2191 (2008).
[CrossRef]

H. C. Kim, H. Ko, and M. Cheng, "Optical focusing of plasmonic Fresnel zone plate-based metallic structure covered with a dielectric layer," J. Vac. Sci. Technol. B 26, 2197-2203 (2008).
[CrossRef]

Nano. Lett. (2)

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, H. Hua, U. Welp, E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano. Lett. 5, 1399-1402 (2005).
[CrossRef] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano. Lett. 5, 1726-1729 (2005).
[CrossRef] [PubMed]

Opt. Commun. (2)

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).
[CrossRef]

D. F. V. James and E. Wolf, "Determination of the degree of coherence of light from spectroscopic measurements," Opt. Commun. 145, 1-4 (1998).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Science (1)

E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Other (5)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).
[PubMed]

S. Kawata, Near-field Optics and Surface Plasmon Polaritons (Springer, Berlin, 2001).
[CrossRef]

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

FDTD Solutions, from Lumerical Solutions Inc., http://www.lumerical.com.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a). An annular plasmonic lens having a depth-tuned structure (groove depths, t1 = 130 nm, t2 = 80 nm and t3 = 30 nm) milled in the output side of a Ag thin film (thickness, h = 200 nm). Other structure parameters are: central hole diameter = 200 nm, groove width = 200 nm, and groove period = 420 nm. The structure is incident with TM-polarized light having electric vector along the x direction. (b). Total electric-field intensity ∣E2 of the collimated beam spot at z = 1.35 μm. (c). Plot of ∣E2 as a function of distance (normalized with respect to wavelength) measured along 4 different directions. It shows asymmetry of focal spot.

Fig. 2.
Fig. 2.

Plasmonic modes supported by the structure incident with a polarized plane wave, showing that the plasmonic modes have no shift with different polarization states including CP, EP and RP, compared with those of TM-polarization. Herein corresponding phase difference θ = π/2, π/3, and 0 in the CP, EP and RP cases.

Fig. 3.
Fig. 3.

Total electric field (left) transmitted through the structure under illumination using different polarization states, including (a) CP, (b) EP, and (c) RP, showing the phase modulation effect on the beam profile (right) along the transverse direction in x and y and diagonal directions along 45° and 135° with respect to the x. Refer to Fig. 1 for the directions.

Tables (1)

Tables Icon

Table 1. Measured FWHM (×λ) in the x-y plane at z = 1.35 μm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E2=Ex2+Ey2=cos2 φ E2+sin2φE2+sin2φRe[exp(iθ)(Ex*E,x+E,y*+E,y)].
S(ω)=E*(ω)E(ω)=E*(ω)E(ω)+E*(ω)E(ω),
C=2cosθRe[E,x*E,x+E,y*E,y]/(E2+E2),

Metrics