Abstract

We experimentally demonstrate transmission of 6 × 86 Gb/s DQPSK signals over 2 km of OM2 grade multimode fiber. The successful transmission of 86 Gb/s per wavelength over multimode fiber is the highest speed per wavelength ever reported to our knowledge. The transmission performance over OM2 grade multimode fiber is also compared with OM3 grade multimode fiber and conventional single mode fiber.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. McDonough, “Moving standards to 100 GbE and beyond,” IEEE Applications & Practice 45, 6–9 (2007).
  2. S. C. J. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. P. A. van den Boom, A. M. J. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” in Proceeding of Optical Fiber Communication Conference (Anaheim,USA,2007), paper PDP6.
  3. Z. Tong, Q. Yang, Y. Ma, and W. Shieh, “21.4 Gb/s coherent optical OFDM transmission over multimode fiber,” in Proceeding of Optoelectronics and Communications Conference/Australian Conference on Optical Fiber Technology (Sydney, Austrlia, 2008), paper PDP5.
    [PubMed]
  4. J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett 18, 205–207 (2006).
    [CrossRef]
  5. N. M. Kim, M. R. Kim, E. J. Kim, S. J. Shin, H. I. Yu, and S. B. Yun, “Robust cognitive-radio-based OFDM architecture with adaptive traffic allocation in time and frequency,” ETRI J. 30, 21–32, (2008).
    [CrossRef]
  6. E. J. Tyler, P. Kourtessis, M. Webster, E. Rochart, T. Quinlan, S. E. M. Dudley, S. D. Walker, R. V. Penty, and I. H. White, “Toward terabit-per-second capacities over multimode fiber links using SCM/WDM technique,” J. Lightwave Technol. 21, 3237–3243(2003).
    [CrossRef]
  7. R. A. Paniker, J. P. Wilde, J. M. Kahn, D. F. Welch, and I. Lyubomirsky, “10 × 10 Gb/s DWDM transmission trough 2.2 km multimode fiber using adaptive optics,” IEEE Photon. Technol. Lett 19, 1154–1156(2007).
  8. L. Raddatz, I. H. White, D. G. Cunningham, and M. C. Nowell, “An experimental and theoretical study of the offset launch technique for the enhancement of the bandwidth of multimode fiber links,” J. Lightwave Technol. 16, 324–331(1998).
    [CrossRef]
  9. Z. Hass and M. A. Santoro, “A mode filtering scheme for improvement of the bandwidth-distance product in multimode fiber systems,” J. Lightwave Technol. 11,1125–1131(1993).
    [CrossRef]
  10. M. Duser and P. Bayvel, “2.5 Gb/s transmission over 4.5 km of 62.5 μm multimode fiber using center launch technique,” Electron. Lett. 36, 57–58 (2000).
    [CrossRef]
  11. D. H. Sim, Y. Takushima, and Y. C. Chung, “Transmission of 10 Gb/s and 40 Gb/s signals over 3.7 km of multimode fiber using mode-field matched center launching technique,” in Proceeding of Optical Fiber Communication Conference (Anaheim, USA, 2007), paper OTuL3.
  12. D. H. Sim, Y. Takushima, and Y. C. Chung, “MMF transmission of directly-modulated 40 Gb/s signal using mode-field matched center-launching technique,” in Proceeding of Optical Fiber Communication Conference (San Diego, USA, 2009), paper JThA37.
  13. S. S. -H. Yam and F. Achten, “Single wavelength 40 Gb/s transmission over 3.4 km broadband wavelength window multimode fiber,” Electron. Lett. 42, 592–594 (2006).
    [CrossRef]
  14. P. Matthijsse, G Kuyt, F. Gooijer, F. Achten, R. Freund, L. Molle, C. Casper, T. Rosin, D. Schmodt, A. Beling, and T. Eckhardt, “Multimode fiber enabling 40 Gb/s multimode transmission over distances > 400 m,” in Proceeding of Optical Fiber Communication Conference (Anaheim,USA,2005) ,OTuL3.
  15. I. Gasulla and J. Capmany, “1 Tb/s.km multimode fiber link combining WDM transmission and low-link width lasers,” Opt. Express 16, 8033–8038 (2008)
    [CrossRef] [PubMed]
  16. A. Flatman, “In-premises optical fiber installed base analysis to 2007,” presented at the IEEE802.3 10GbE over FDDI-grade fiber study group, Orlando, FL, (2004).http://www.ieee802.org/3/10GMMFSG/public/mar04/flatman_1_0304.pdf
  17. D. H. Sim, Y. Takushima, and Y. C. Chung, “Increased transmission bandwidth of multimode fiber by using mode-field matched center launching technique,” in Proceeding of Optoelectronics and Communications Conference (Yokohama, Japan,2007), paper 10B2-4.

2008 (2)

N. M. Kim, M. R. Kim, E. J. Kim, S. J. Shin, H. I. Yu, and S. B. Yun, “Robust cognitive-radio-based OFDM architecture with adaptive traffic allocation in time and frequency,” ETRI J. 30, 21–32, (2008).
[CrossRef]

I. Gasulla and J. Capmany, “1 Tb/s.km multimode fiber link combining WDM transmission and low-link width lasers,” Opt. Express 16, 8033–8038 (2008)
[CrossRef] [PubMed]

2007 (2)

J. McDonough, “Moving standards to 100 GbE and beyond,” IEEE Applications & Practice 45, 6–9 (2007).

R. A. Paniker, J. P. Wilde, J. M. Kahn, D. F. Welch, and I. Lyubomirsky, “10 × 10 Gb/s DWDM transmission trough 2.2 km multimode fiber using adaptive optics,” IEEE Photon. Technol. Lett 19, 1154–1156(2007).

2006 (2)

S. S. -H. Yam and F. Achten, “Single wavelength 40 Gb/s transmission over 3.4 km broadband wavelength window multimode fiber,” Electron. Lett. 42, 592–594 (2006).
[CrossRef]

J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett 18, 205–207 (2006).
[CrossRef]

2004 (1)

A. Flatman, “In-premises optical fiber installed base analysis to 2007,” presented at the IEEE802.3 10GbE over FDDI-grade fiber study group, Orlando, FL, (2004).http://www.ieee802.org/3/10GMMFSG/public/mar04/flatman_1_0304.pdf

2003 (1)

2000 (1)

M. Duser and P. Bayvel, “2.5 Gb/s transmission over 4.5 km of 62.5 μm multimode fiber using center launch technique,” Electron. Lett. 36, 57–58 (2000).
[CrossRef]

1998 (1)

Achten, F.

S. S. -H. Yam and F. Achten, “Single wavelength 40 Gb/s transmission over 3.4 km broadband wavelength window multimode fiber,” Electron. Lett. 42, 592–594 (2006).
[CrossRef]

P. Matthijsse, G Kuyt, F. Gooijer, F. Achten, R. Freund, L. Molle, C. Casper, T. Rosin, D. Schmodt, A. Beling, and T. Eckhardt, “Multimode fiber enabling 40 Gb/s multimode transmission over distances > 400 m,” in Proceeding of Optical Fiber Communication Conference (Anaheim,USA,2005) ,OTuL3.

Bayvel, P.

M. Duser and P. Bayvel, “2.5 Gb/s transmission over 4.5 km of 62.5 μm multimode fiber using center launch technique,” Electron. Lett. 36, 57–58 (2000).
[CrossRef]

Beling, A.

P. Matthijsse, G Kuyt, F. Gooijer, F. Achten, R. Freund, L. Molle, C. Casper, T. Rosin, D. Schmodt, A. Beling, and T. Eckhardt, “Multimode fiber enabling 40 Gb/s multimode transmission over distances > 400 m,” in Proceeding of Optical Fiber Communication Conference (Anaheim,USA,2005) ,OTuL3.

Boom, H. P. A. van den

S. C. J. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. P. A. van den Boom, A. M. J. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” in Proceeding of Optical Fiber Communication Conference (Anaheim,USA,2007), paper PDP6.

Breyer, F.

S. C. J. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. P. A. van den Boom, A. M. J. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” in Proceeding of Optical Fiber Communication Conference (Anaheim,USA,2007), paper PDP6.

Capmany, J.

Casper, C.

P. Matthijsse, G Kuyt, F. Gooijer, F. Achten, R. Freund, L. Molle, C. Casper, T. Rosin, D. Schmodt, A. Beling, and T. Eckhardt, “Multimode fiber enabling 40 Gb/s multimode transmission over distances > 400 m,” in Proceeding of Optical Fiber Communication Conference (Anaheim,USA,2005) ,OTuL3.

Chung, Y. C.

D. H. Sim, Y. Takushima, and Y. C. Chung, “Increased transmission bandwidth of multimode fiber by using mode-field matched center launching technique,” in Proceeding of Optoelectronics and Communications Conference (Yokohama, Japan,2007), paper 10B2-4.

D. H. Sim, Y. Takushima, and Y. C. Chung, “Transmission of 10 Gb/s and 40 Gb/s signals over 3.7 km of multimode fiber using mode-field matched center launching technique,” in Proceeding of Optical Fiber Communication Conference (Anaheim, USA, 2007), paper OTuL3.

D. H. Sim, Y. Takushima, and Y. C. Chung, “MMF transmission of directly-modulated 40 Gb/s signal using mode-field matched center-launching technique,” in Proceeding of Optical Fiber Communication Conference (San Diego, USA, 2009), paper JThA37.

Cunningham, D. G.

Dudley, S. E. M.

Duser, M.

M. Duser and P. Bayvel, “2.5 Gb/s transmission over 4.5 km of 62.5 μm multimode fiber using center launch technique,” Electron. Lett. 36, 57–58 (2000).
[CrossRef]

Eckhardt, T.

P. Matthijsse, G Kuyt, F. Gooijer, F. Achten, R. Freund, L. Molle, C. Casper, T. Rosin, D. Schmodt, A. Beling, and T. Eckhardt, “Multimode fiber enabling 40 Gb/s multimode transmission over distances > 400 m,” in Proceeding of Optical Fiber Communication Conference (Anaheim,USA,2005) ,OTuL3.

Flatman, A.

A. Flatman, “In-premises optical fiber installed base analysis to 2007,” presented at the IEEE802.3 10GbE over FDDI-grade fiber study group, Orlando, FL, (2004).http://www.ieee802.org/3/10GMMFSG/public/mar04/flatman_1_0304.pdf

Freund, R.

P. Matthijsse, G Kuyt, F. Gooijer, F. Achten, R. Freund, L. Molle, C. Casper, T. Rosin, D. Schmodt, A. Beling, and T. Eckhardt, “Multimode fiber enabling 40 Gb/s multimode transmission over distances > 400 m,” in Proceeding of Optical Fiber Communication Conference (Anaheim,USA,2005) ,OTuL3.

Gasulla, I.

Gooijer, F.

P. Matthijsse, G Kuyt, F. Gooijer, F. Achten, R. Freund, L. Molle, C. Casper, T. Rosin, D. Schmodt, A. Beling, and T. Eckhardt, “Multimode fiber enabling 40 Gb/s multimode transmission over distances > 400 m,” in Proceeding of Optical Fiber Communication Conference (Anaheim,USA,2005) ,OTuL3.

Hanik, N.

S. C. J. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. P. A. van den Boom, A. M. J. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” in Proceeding of Optical Fiber Communication Conference (Anaheim,USA,2007), paper PDP6.

Hass, Z.

Z. Hass and M. A. Santoro, “A mode filtering scheme for improvement of the bandwidth-distance product in multimode fiber systems,” J. Lightwave Technol. 11,1125–1131(1993).
[CrossRef]

Huijskens, F.

S. C. J. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. P. A. van den Boom, A. M. J. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” in Proceeding of Optical Fiber Communication Conference (Anaheim,USA,2007), paper PDP6.

Kahn, J. M.

R. A. Paniker, J. P. Wilde, J. M. Kahn, D. F. Welch, and I. Lyubomirsky, “10 × 10 Gb/s DWDM transmission trough 2.2 km multimode fiber using adaptive optics,” IEEE Photon. Technol. Lett 19, 1154–1156(2007).

Kim, E. J.

N. M. Kim, M. R. Kim, E. J. Kim, S. J. Shin, H. I. Yu, and S. B. Yun, “Robust cognitive-radio-based OFDM architecture with adaptive traffic allocation in time and frequency,” ETRI J. 30, 21–32, (2008).
[CrossRef]

Kim, M. R.

N. M. Kim, M. R. Kim, E. J. Kim, S. J. Shin, H. I. Yu, and S. B. Yun, “Robust cognitive-radio-based OFDM architecture with adaptive traffic allocation in time and frequency,” ETRI J. 30, 21–32, (2008).
[CrossRef]

Kim, N. M.

N. M. Kim, M. R. Kim, E. J. Kim, S. J. Shin, H. I. Yu, and S. B. Yun, “Robust cognitive-radio-based OFDM architecture with adaptive traffic allocation in time and frequency,” ETRI J. 30, 21–32, (2008).
[CrossRef]

Koonen, A. M. J.

S. C. J. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. P. A. van den Boom, A. M. J. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” in Proceeding of Optical Fiber Communication Conference (Anaheim,USA,2007), paper PDP6.

Kourtessis, P.

Kuyt, G

P. Matthijsse, G Kuyt, F. Gooijer, F. Achten, R. Freund, L. Molle, C. Casper, T. Rosin, D. Schmodt, A. Beling, and T. Eckhardt, “Multimode fiber enabling 40 Gb/s multimode transmission over distances > 400 m,” in Proceeding of Optical Fiber Communication Conference (Anaheim,USA,2005) ,OTuL3.

Lane, P. M.

J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett 18, 205–207 (2006).
[CrossRef]

Lee, S. C. J.

S. C. J. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. P. A. van den Boom, A. M. J. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” in Proceeding of Optical Fiber Communication Conference (Anaheim,USA,2007), paper PDP6.

Lyubomirsky, I.

R. A. Paniker, J. P. Wilde, J. M. Kahn, D. F. Welch, and I. Lyubomirsky, “10 × 10 Gb/s DWDM transmission trough 2.2 km multimode fiber using adaptive optics,” IEEE Photon. Technol. Lett 19, 1154–1156(2007).

Ma, Y.

Z. Tong, Q. Yang, Y. Ma, and W. Shieh, “21.4 Gb/s coherent optical OFDM transmission over multimode fiber,” in Proceeding of Optoelectronics and Communications Conference/Australian Conference on Optical Fiber Technology (Sydney, Austrlia, 2008), paper PDP5.
[PubMed]

Matthijsse, P.

P. Matthijsse, G Kuyt, F. Gooijer, F. Achten, R. Freund, L. Molle, C. Casper, T. Rosin, D. Schmodt, A. Beling, and T. Eckhardt, “Multimode fiber enabling 40 Gb/s multimode transmission over distances > 400 m,” in Proceeding of Optical Fiber Communication Conference (Anaheim,USA,2005) ,OTuL3.

McDonough, J.

J. McDonough, “Moving standards to 100 GbE and beyond,” IEEE Applications & Practice 45, 6–9 (2007).

Molle, L.

P. Matthijsse, G Kuyt, F. Gooijer, F. Achten, R. Freund, L. Molle, C. Casper, T. Rosin, D. Schmodt, A. Beling, and T. Eckhardt, “Multimode fiber enabling 40 Gb/s multimode transmission over distances > 400 m,” in Proceeding of Optical Fiber Communication Conference (Anaheim,USA,2005) ,OTuL3.

Nowell, M. C.

Paniker, R. A.

R. A. Paniker, J. P. Wilde, J. M. Kahn, D. F. Welch, and I. Lyubomirsky, “10 × 10 Gb/s DWDM transmission trough 2.2 km multimode fiber using adaptive optics,” IEEE Photon. Technol. Lett 19, 1154–1156(2007).

Penty, R. V.

Quinlan, T.

Raddatz, L.

Randel, S.

S. C. J. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. P. A. van den Boom, A. M. J. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” in Proceeding of Optical Fiber Communication Conference (Anaheim,USA,2007), paper PDP6.

Rochart, E.

Rosin, T.

P. Matthijsse, G Kuyt, F. Gooijer, F. Achten, R. Freund, L. Molle, C. Casper, T. Rosin, D. Schmodt, A. Beling, and T. Eckhardt, “Multimode fiber enabling 40 Gb/s multimode transmission over distances > 400 m,” in Proceeding of Optical Fiber Communication Conference (Anaheim,USA,2005) ,OTuL3.

Santoro, M. A.

Z. Hass and M. A. Santoro, “A mode filtering scheme for improvement of the bandwidth-distance product in multimode fiber systems,” J. Lightwave Technol. 11,1125–1131(1993).
[CrossRef]

Schmodt, D.

P. Matthijsse, G Kuyt, F. Gooijer, F. Achten, R. Freund, L. Molle, C. Casper, T. Rosin, D. Schmodt, A. Beling, and T. Eckhardt, “Multimode fiber enabling 40 Gb/s multimode transmission over distances > 400 m,” in Proceeding of Optical Fiber Communication Conference (Anaheim,USA,2005) ,OTuL3.

Schuster, M.

S. C. J. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. P. A. van den Boom, A. M. J. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” in Proceeding of Optical Fiber Communication Conference (Anaheim,USA,2007), paper PDP6.

Shieh, W.

Z. Tong, Q. Yang, Y. Ma, and W. Shieh, “21.4 Gb/s coherent optical OFDM transmission over multimode fiber,” in Proceeding of Optoelectronics and Communications Conference/Australian Conference on Optical Fiber Technology (Sydney, Austrlia, 2008), paper PDP5.
[PubMed]

Shin, S. J.

N. M. Kim, M. R. Kim, E. J. Kim, S. J. Shin, H. I. Yu, and S. B. Yun, “Robust cognitive-radio-based OFDM architecture with adaptive traffic allocation in time and frequency,” ETRI J. 30, 21–32, (2008).
[CrossRef]

Shore, K. A.

J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett 18, 205–207 (2006).
[CrossRef]

Sim, D. H.

D. H. Sim, Y. Takushima, and Y. C. Chung, “MMF transmission of directly-modulated 40 Gb/s signal using mode-field matched center-launching technique,” in Proceeding of Optical Fiber Communication Conference (San Diego, USA, 2009), paper JThA37.

D. H. Sim, Y. Takushima, and Y. C. Chung, “Transmission of 10 Gb/s and 40 Gb/s signals over 3.7 km of multimode fiber using mode-field matched center launching technique,” in Proceeding of Optical Fiber Communication Conference (Anaheim, USA, 2007), paper OTuL3.

D. H. Sim, Y. Takushima, and Y. C. Chung, “Increased transmission bandwidth of multimode fiber by using mode-field matched center launching technique,” in Proceeding of Optoelectronics and Communications Conference (Yokohama, Japan,2007), paper 10B2-4.

Takushima, Y.

D. H. Sim, Y. Takushima, and Y. C. Chung, “Increased transmission bandwidth of multimode fiber by using mode-field matched center launching technique,” in Proceeding of Optoelectronics and Communications Conference (Yokohama, Japan,2007), paper 10B2-4.

D. H. Sim, Y. Takushima, and Y. C. Chung, “Transmission of 10 Gb/s and 40 Gb/s signals over 3.7 km of multimode fiber using mode-field matched center launching technique,” in Proceeding of Optical Fiber Communication Conference (Anaheim, USA, 2007), paper OTuL3.

D. H. Sim, Y. Takushima, and Y. C. Chung, “MMF transmission of directly-modulated 40 Gb/s signal using mode-field matched center-launching technique,” in Proceeding of Optical Fiber Communication Conference (San Diego, USA, 2009), paper JThA37.

Tang, J. M.

J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett 18, 205–207 (2006).
[CrossRef]

Tong, Z.

Z. Tong, Q. Yang, Y. Ma, and W. Shieh, “21.4 Gb/s coherent optical OFDM transmission over multimode fiber,” in Proceeding of Optoelectronics and Communications Conference/Australian Conference on Optical Fiber Technology (Sydney, Austrlia, 2008), paper PDP5.
[PubMed]

Tyler, E. J.

Walker, S. D.

Webster, M.

Welch, D. F.

R. A. Paniker, J. P. Wilde, J. M. Kahn, D. F. Welch, and I. Lyubomirsky, “10 × 10 Gb/s DWDM transmission trough 2.2 km multimode fiber using adaptive optics,” IEEE Photon. Technol. Lett 19, 1154–1156(2007).

White, I. H.

Wilde, J. P.

R. A. Paniker, J. P. Wilde, J. M. Kahn, D. F. Welch, and I. Lyubomirsky, “10 × 10 Gb/s DWDM transmission trough 2.2 km multimode fiber using adaptive optics,” IEEE Photon. Technol. Lett 19, 1154–1156(2007).

Yam, S. S. -H.

S. S. -H. Yam and F. Achten, “Single wavelength 40 Gb/s transmission over 3.4 km broadband wavelength window multimode fiber,” Electron. Lett. 42, 592–594 (2006).
[CrossRef]

Yang, Q.

Z. Tong, Q. Yang, Y. Ma, and W. Shieh, “21.4 Gb/s coherent optical OFDM transmission over multimode fiber,” in Proceeding of Optoelectronics and Communications Conference/Australian Conference on Optical Fiber Technology (Sydney, Austrlia, 2008), paper PDP5.
[PubMed]

Yu, H. I.

N. M. Kim, M. R. Kim, E. J. Kim, S. J. Shin, H. I. Yu, and S. B. Yun, “Robust cognitive-radio-based OFDM architecture with adaptive traffic allocation in time and frequency,” ETRI J. 30, 21–32, (2008).
[CrossRef]

Yun, S. B.

N. M. Kim, M. R. Kim, E. J. Kim, S. J. Shin, H. I. Yu, and S. B. Yun, “Robust cognitive-radio-based OFDM architecture with adaptive traffic allocation in time and frequency,” ETRI J. 30, 21–32, (2008).
[CrossRef]

Zeng, J.

S. C. J. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. P. A. van den Boom, A. M. J. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” in Proceeding of Optical Fiber Communication Conference (Anaheim,USA,2007), paper PDP6.

Electron. Lett. (2)

M. Duser and P. Bayvel, “2.5 Gb/s transmission over 4.5 km of 62.5 μm multimode fiber using center launch technique,” Electron. Lett. 36, 57–58 (2000).
[CrossRef]

S. S. -H. Yam and F. Achten, “Single wavelength 40 Gb/s transmission over 3.4 km broadband wavelength window multimode fiber,” Electron. Lett. 42, 592–594 (2006).
[CrossRef]

ETRI J. (1)

N. M. Kim, M. R. Kim, E. J. Kim, S. J. Shin, H. I. Yu, and S. B. Yun, “Robust cognitive-radio-based OFDM architecture with adaptive traffic allocation in time and frequency,” ETRI J. 30, 21–32, (2008).
[CrossRef]

IEEE Applications & Practice (1)

J. McDonough, “Moving standards to 100 GbE and beyond,” IEEE Applications & Practice 45, 6–9 (2007).

IEEE Photon. Technol. Lett (2)

R. A. Paniker, J. P. Wilde, J. M. Kahn, D. F. Welch, and I. Lyubomirsky, “10 × 10 Gb/s DWDM transmission trough 2.2 km multimode fiber using adaptive optics,” IEEE Photon. Technol. Lett 19, 1154–1156(2007).

J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett 18, 205–207 (2006).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (1)

Other (7)

A. Flatman, “In-premises optical fiber installed base analysis to 2007,” presented at the IEEE802.3 10GbE over FDDI-grade fiber study group, Orlando, FL, (2004).http://www.ieee802.org/3/10GMMFSG/public/mar04/flatman_1_0304.pdf

D. H. Sim, Y. Takushima, and Y. C. Chung, “Increased transmission bandwidth of multimode fiber by using mode-field matched center launching technique,” in Proceeding of Optoelectronics and Communications Conference (Yokohama, Japan,2007), paper 10B2-4.

P. Matthijsse, G Kuyt, F. Gooijer, F. Achten, R. Freund, L. Molle, C. Casper, T. Rosin, D. Schmodt, A. Beling, and T. Eckhardt, “Multimode fiber enabling 40 Gb/s multimode transmission over distances > 400 m,” in Proceeding of Optical Fiber Communication Conference (Anaheim,USA,2005) ,OTuL3.

S. C. J. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. P. A. van den Boom, A. M. J. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multi-tone modulation,” in Proceeding of Optical Fiber Communication Conference (Anaheim,USA,2007), paper PDP6.

Z. Tong, Q. Yang, Y. Ma, and W. Shieh, “21.4 Gb/s coherent optical OFDM transmission over multimode fiber,” in Proceeding of Optoelectronics and Communications Conference/Australian Conference on Optical Fiber Technology (Sydney, Austrlia, 2008), paper PDP5.
[PubMed]

D. H. Sim, Y. Takushima, and Y. C. Chung, “Transmission of 10 Gb/s and 40 Gb/s signals over 3.7 km of multimode fiber using mode-field matched center launching technique,” in Proceeding of Optical Fiber Communication Conference (Anaheim, USA, 2007), paper OTuL3.

D. H. Sim, Y. Takushima, and Y. C. Chung, “MMF transmission of directly-modulated 40 Gb/s signal using mode-field matched center-launching technique,” in Proceeding of Optical Fiber Communication Conference (San Diego, USA, 2009), paper JThA37.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental setup for the feasibility demonstration of 86 Gb/s × 6 WDM channels over 2 km of MMF link (DFB-LD: distributed feedback-laser diode, AWG: arrayed waveguide grating, SM: single mode, MM: Multimode, EDFA: Erbium doped fiber amplifier, DR: data recovery circuit, CR: clock recovery circuit)

Fig. 2.
Fig. 2.

Measured BER curves and eye-diagrams in case of a single channel transmission (a) OSNR vs. BER curves (b) eye-diagrams

Fig. 3.
Fig. 3.

Measured optical spectra and BER curves for WDM transmission when OM2 grade fiber was utilized (a) optical spectra (b) OSNR vs. BER curves

Metrics