Abstract

Diamond nanocrystals containing NV color centers are positioned with 100-nanometer-scale accuracy in the near-field of a high-Q SiO2 microdisk cavity using a fiber taper. The cavity modified nanocrystal photoluminescence is studied, with Fano-like quantum interference features observed in the far-field emission spectrum. A quantum optical model of the system is proposed and fit to the measured spectra, from which the NV-zero phonon line coherent coupling rate to the microdisk is estimated to be 28 MHz for a nearly optimally placed nanocrystal.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Fano, "Effects of Configuration Interaction on Intensities and Phase Shifts," Phys. Rev. 124, 1866-1878 (1961).
    [CrossRef]
  2. R. W. Wood, "On the remarkable case of uneven distribution of a light in a diffractived grating spectrum," Philos. Mag. 4, 396-402 (1902).
  3. S. Fan, W. Suh, and J. D. Joannopoulos, "Temporal coupled-mode theory for the Fano resonance in optical resonators," J. Opt. Soc. Am. A 20, 569-572 (2003).
    [CrossRef]
  4. C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003).
    [CrossRef]
  5. A. R. Cowan and J. F. Young, "Optical bistability involving photonic crystal microcavities and Fano line shapes," Phys. Rev. E 68, 046 606 (2003).
    [CrossRef]
  6. J. P. Mondia, H. M. van Driel, W. Jiang, A. R. Cowan, and J. F. Young, "Enhanced second-harmonic generation from planar photonic crystals," Opt. Lett. 28, 2500-2502 (2003).
    [CrossRef] [PubMed]
  7. H. Mabuchi and A. C. Doherty, "Cavity Quantum Electrodynamics: Coherence in Context," Science 298, 1372-1377 (2002).
    [CrossRef] [PubMed]
  8. H. J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Springer, 1999), 1st edn.
  9. R. Harbers, S. Jochim, N. Moll, R. F. Mahrt, D. Erni, J. A. Hoffnagle, and W. D. Hinsberg, "Control of Fano line shapes by means of photonic crystal structures in a dye-doped polymer," Appl. Phys. Lett. 90, 201 105 (2007).
    [CrossRef]
  10. J. Knight, G. Cheung, F. Jacques, and T. Birks, "Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper," Opt. Lett. 22, 1129-1131 (1997).
    [CrossRef] [PubMed]
  11. A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wratchtrup, and C. v. Borczyskowski, "Scanning confocal optical microscopy and magnetic resonance on single defect centers," Science 276, 2012-2014 (1997).
    [CrossRef]
  12. C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, "Coherent Population Trapping of Single Spins in Diamond under Optical Excitation," Phys. Rev. Lett. 97, 247 401 (2006).
    [CrossRef]
  13. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, "Observation of Coherent Oscillation of a Single Nuclear Spin and Realization of a Two-Qubit Conditional Quantum Gate," Phys. Rev. Lett. 93, 130 501 (2004).
    [CrossRef]
  14. M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, "Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond," Science 316, 1312-1316 (2007).
    [CrossRef] [PubMed]
  15. L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, "Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond," Science 314, 281-285 (2006).
    [CrossRef] [PubMed]
  16. A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, "Nonclassical radiation from diamond nanocrystals," Phys. Rev. A 64, 061 802 (2001).
    [CrossRef]
  17. S. K¨uhn and C. Hettich and C. Schmitt, and J-PH. Poizat and V. Sandoghdar, "Diamond colour centres as a nanoscopic light source for scanning near field microscopy," J. Microsc. 202, 2-6 (2001).
    [CrossRef] [PubMed]
  18. Y.-S. Park, A. Cook, and H. Wang, "Cavity QED with Diamond Nanocrystals and Silica Microspheres," Nano Lett. 6, 2075-2079 (2006).
    [CrossRef] [PubMed]
  19. C. F. Wang, Y.-S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J. E. Butler, "Observation of whispering gallery modes in nanocrystalline diamond microdisks," Appl. Phys. Lett.  90, 081 110 (2007).
    [CrossRef]
  20. C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, "Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond," Appl. Phys. Lett. 91, 201 112 (2007).
  21. S. Schietinger, T. Schroder, and O. Benson, "One-by-One Coupling of Single Defect Centers in Nanodiamonds to High-Q Modes of an Optical Microresonator," Nano Lett. 8, 3911-3915 (2008).
    [CrossRef] [PubMed]
  22. M. W. McCutcheon and M. Loncar, "Design of an ultrahigh Quality factor silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal," Opt. Express 16, 19 136-145 (2008).
    [CrossRef]
  23. Y. Shen, T. M. Sweeney, and H. Wang, "Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals," Phys. Rev. B 77, 033 201 (2008).
    [CrossRef]
  24. M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Expr. 13, 1515-1530 (2005).
    [CrossRef]
  25. P. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, "Stark Shift Control of Single Optical Centers in Diamond," Phys. Rev. Lett. 97, 083 002 (2006).
    [CrossRef]
  26. N. B. Manson, J. P. Harrison, and M. J. Sellars, "Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics," Phys. Rev. B 74, 104 303 (2006).
    [CrossRef]
  27. G. Davies, "Vibronic spectra in diamond," J. Phys. C: Solid State Phys. 7, 3797-3809 (1974).
    [CrossRef]
  28. V. V. Klimov and M. Ducloy, "Spontaneous emission rate of an excited atom placed near a nanofiber," Phys. Rev. A 69, 013812 (2004).
    [CrossRef]
  29. F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, "Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes," Phys. Rev. A 72, 032 509 (2005).
  30. D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevreseguin, J. M. Raimond, and S. Haroche, "Splitting of high-Q mie modes induceds by light backscattering in silica microspheres," Opt. Lett. 20, 1835-1837 (1995).
    [CrossRef] [PubMed]
  31. A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, "Controlled Coupling of Counterpropagating Whispering-Gallery Modes by a Single Rayleigh Scatterer: A Classical Problem in a Quantum Optical Light," Phys. Rev. Lett. 99, 173 603 (2007).
    [CrossRef]
  32. L. M. Duan and H. J. Kimble, "Scalable Photonic Quantum Computation through Cavity-Assisted Interactions," Phys. Rev. Lett.12, 127 902 (2004).
  33. B. E. Little and S. T. Chu, "Estimating surface-roughness loss and output coupling in microdisk resonators," Opt. Lett. 21, 1390-1392 (1996).
    [CrossRef] [PubMed]
  34. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Modal coupling in traveling-wave resonators," Opt. Lett. 27, 1669-1671 (2002).
    [CrossRef]
  35. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, "Ultimate Q of optical microsphere resonators," Opt. Lett. 21, 453-455 (1996).
    [CrossRef] [PubMed]
  36. M. Kuznetsov and H. A. Haus, "Radiation Loss in Dielectric Waveguide Structures by the Volume Current Method," IEEE J. Quantum Electron. 19, 1505-1514 (1983).
    [CrossRef]
  37. H. J. Carmichael, R. J. Brecha, M. G. Raizen, H. J. Kimble, and P. R. Rice, "Subnatural linewidth averaging for coupled atomic and cavity-mode oscillators," Phys. Rev. A 40, 5516-5519 (1989).
    [CrossRef] [PubMed]

2008 (1)

S. Schietinger, T. Schroder, and O. Benson, "One-by-One Coupling of Single Defect Centers in Nanodiamonds to High-Q Modes of an Optical Microresonator," Nano Lett. 8, 3911-3915 (2008).
[CrossRef] [PubMed]

2007 (1)

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, "Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond," Science 316, 1312-1316 (2007).
[CrossRef] [PubMed]

2006 (2)

L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, "Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond," Science 314, 281-285 (2006).
[CrossRef] [PubMed]

Y.-S. Park, A. Cook, and H. Wang, "Cavity QED with Diamond Nanocrystals and Silica Microspheres," Nano Lett. 6, 2075-2079 (2006).
[CrossRef] [PubMed]

2005 (1)

M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Expr. 13, 1515-1530 (2005).
[CrossRef]

2003 (3)

2002 (2)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Modal coupling in traveling-wave resonators," Opt. Lett. 27, 1669-1671 (2002).
[CrossRef]

H. Mabuchi and A. C. Doherty, "Cavity Quantum Electrodynamics: Coherence in Context," Science 298, 1372-1377 (2002).
[CrossRef] [PubMed]

2001 (1)

S. K¨uhn and C. Hettich and C. Schmitt, and J-PH. Poizat and V. Sandoghdar, "Diamond colour centres as a nanoscopic light source for scanning near field microscopy," J. Microsc. 202, 2-6 (2001).
[CrossRef] [PubMed]

1997 (2)

A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wratchtrup, and C. v. Borczyskowski, "Scanning confocal optical microscopy and magnetic resonance on single defect centers," Science 276, 2012-2014 (1997).
[CrossRef]

J. Knight, G. Cheung, F. Jacques, and T. Birks, "Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper," Opt. Lett. 22, 1129-1131 (1997).
[CrossRef] [PubMed]

1996 (2)

1995 (1)

D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevreseguin, J. M. Raimond, and S. Haroche, "Splitting of high-Q mie modes induceds by light backscattering in silica microspheres," Opt. Lett. 20, 1835-1837 (1995).
[CrossRef] [PubMed]

1989 (1)

H. J. Carmichael, R. J. Brecha, M. G. Raizen, H. J. Kimble, and P. R. Rice, "Subnatural linewidth averaging for coupled atomic and cavity-mode oscillators," Phys. Rev. A 40, 5516-5519 (1989).
[CrossRef] [PubMed]

1983 (1)

M. Kuznetsov and H. A. Haus, "Radiation Loss in Dielectric Waveguide Structures by the Volume Current Method," IEEE J. Quantum Electron. 19, 1505-1514 (1983).
[CrossRef]

1974 (1)

G. Davies, "Vibronic spectra in diamond," J. Phys. C: Solid State Phys. 7, 3797-3809 (1974).
[CrossRef]

1961 (1)

U. Fano, "Effects of Configuration Interaction on Intensities and Phase Shifts," Phys. Rev. 124, 1866-1878 (1961).
[CrossRef]

1902 (1)

R. W. Wood, "On the remarkable case of uneven distribution of a light in a diffractived grating spectrum," Philos. Mag. 4, 396-402 (1902).

Benson, O.

S. Schietinger, T. Schroder, and O. Benson, "One-by-One Coupling of Single Defect Centers in Nanodiamonds to High-Q Modes of an Optical Microresonator," Nano Lett. 8, 3911-3915 (2008).
[CrossRef] [PubMed]

Birks, T.

Borselli, M.

M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Expr. 13, 1515-1530 (2005).
[CrossRef]

Brecha, R. J.

H. J. Carmichael, R. J. Brecha, M. G. Raizen, H. J. Kimble, and P. R. Rice, "Subnatural linewidth averaging for coupled atomic and cavity-mode oscillators," Phys. Rev. A 40, 5516-5519 (1989).
[CrossRef] [PubMed]

Carmichael, H. J.

H. J. Carmichael, R. J. Brecha, M. G. Raizen, H. J. Kimble, and P. R. Rice, "Subnatural linewidth averaging for coupled atomic and cavity-mode oscillators," Phys. Rev. A 40, 5516-5519 (1989).
[CrossRef] [PubMed]

Chao, C.-Y.

C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

Cheung, G.

Childress, L.

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, "Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond," Science 316, 1312-1316 (2007).
[CrossRef] [PubMed]

L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, "Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond," Science 314, 281-285 (2006).
[CrossRef] [PubMed]

Chu, S. T.

Cook, A.

Y.-S. Park, A. Cook, and H. Wang, "Cavity QED with Diamond Nanocrystals and Silica Microspheres," Nano Lett. 6, 2075-2079 (2006).
[CrossRef] [PubMed]

Cowan, A. R.

Davies, G.

G. Davies, "Vibronic spectra in diamond," J. Phys. C: Solid State Phys. 7, 3797-3809 (1974).
[CrossRef]

Doherty, A. C.

H. Mabuchi and A. C. Doherty, "Cavity Quantum Electrodynamics: Coherence in Context," Science 298, 1372-1377 (2002).
[CrossRef] [PubMed]

Dräbenstedt, A.

A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wratchtrup, and C. v. Borczyskowski, "Scanning confocal optical microscopy and magnetic resonance on single defect centers," Science 276, 2012-2014 (1997).
[CrossRef]

Dutt, M. V. G.

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, "Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond," Science 316, 1312-1316 (2007).
[CrossRef] [PubMed]

Fan, S.

Fano, U.

U. Fano, "Effects of Configuration Interaction on Intensities and Phase Shifts," Phys. Rev. 124, 1866-1878 (1961).
[CrossRef]

Fleury, L.

A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wratchtrup, and C. v. Borczyskowski, "Scanning confocal optical microscopy and magnetic resonance on single defect centers," Science 276, 2012-2014 (1997).
[CrossRef]

Gorodetsky, M. L.

Gruber, A.

A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wratchtrup, and C. v. Borczyskowski, "Scanning confocal optical microscopy and magnetic resonance on single defect centers," Science 276, 2012-2014 (1997).
[CrossRef]

Guo, L. J.

C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

Gurudev Dutt, M. V.

L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, "Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond," Science 314, 281-285 (2006).
[CrossRef] [PubMed]

Hare, J.

D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevreseguin, J. M. Raimond, and S. Haroche, "Splitting of high-Q mie modes induceds by light backscattering in silica microspheres," Opt. Lett. 20, 1835-1837 (1995).
[CrossRef] [PubMed]

Haroche, S.

D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevreseguin, J. M. Raimond, and S. Haroche, "Splitting of high-Q mie modes induceds by light backscattering in silica microspheres," Opt. Lett. 20, 1835-1837 (1995).
[CrossRef] [PubMed]

Haus, H. A.

M. Kuznetsov and H. A. Haus, "Radiation Loss in Dielectric Waveguide Structures by the Volume Current Method," IEEE J. Quantum Electron. 19, 1505-1514 (1983).
[CrossRef]

Hemmer, P. R.

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, "Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond," Science 316, 1312-1316 (2007).
[CrossRef] [PubMed]

L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, "Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond," Science 314, 281-285 (2006).
[CrossRef] [PubMed]

Hettich, C.

S. K¨uhn and C. Hettich and C. Schmitt, and J-PH. Poizat and V. Sandoghdar, "Diamond colour centres as a nanoscopic light source for scanning near field microscopy," J. Microsc. 202, 2-6 (2001).
[CrossRef] [PubMed]

Ilchenko, V. S.

Jacques, F.

Jelezko, F.

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, "Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond," Science 316, 1312-1316 (2007).
[CrossRef] [PubMed]

L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, "Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond," Science 314, 281-285 (2006).
[CrossRef] [PubMed]

Jiang, L.

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, "Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond," Science 316, 1312-1316 (2007).
[CrossRef] [PubMed]

Jiang, W.

Joannopoulos, J. D.

Johnson, T. J.

M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Expr. 13, 1515-1530 (2005).
[CrossRef]

K¨uhn, S.

S. K¨uhn and C. Hettich and C. Schmitt, and J-PH. Poizat and V. Sandoghdar, "Diamond colour centres as a nanoscopic light source for scanning near field microscopy," J. Microsc. 202, 2-6 (2001).
[CrossRef] [PubMed]

Kimble, H. J.

H. J. Carmichael, R. J. Brecha, M. G. Raizen, H. J. Kimble, and P. R. Rice, "Subnatural linewidth averaging for coupled atomic and cavity-mode oscillators," Phys. Rev. A 40, 5516-5519 (1989).
[CrossRef] [PubMed]

Kippenberg, T. J.

Knight, J.

Kuznetsov, M.

M. Kuznetsov and H. A. Haus, "Radiation Loss in Dielectric Waveguide Structures by the Volume Current Method," IEEE J. Quantum Electron. 19, 1505-1514 (1983).
[CrossRef]

Lefevreseguin, V.

D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevreseguin, J. M. Raimond, and S. Haroche, "Splitting of high-Q mie modes induceds by light backscattering in silica microspheres," Opt. Lett. 20, 1835-1837 (1995).
[CrossRef] [PubMed]

Little, B. E.

Lukin, M. D.

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, "Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond," Science 316, 1312-1316 (2007).
[CrossRef] [PubMed]

L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, "Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond," Science 314, 281-285 (2006).
[CrossRef] [PubMed]

Mabuchi, H.

H. Mabuchi and A. C. Doherty, "Cavity Quantum Electrodynamics: Coherence in Context," Science 298, 1372-1377 (2002).
[CrossRef] [PubMed]

Maze, J.

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, "Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond," Science 316, 1312-1316 (2007).
[CrossRef] [PubMed]

Mondia, J. P.

Painter, O.

M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Expr. 13, 1515-1530 (2005).
[CrossRef]

Park, Y.-S.

Y.-S. Park, A. Cook, and H. Wang, "Cavity QED with Diamond Nanocrystals and Silica Microspheres," Nano Lett. 6, 2075-2079 (2006).
[CrossRef] [PubMed]

Poizat, J-PH.

S. K¨uhn and C. Hettich and C. Schmitt, and J-PH. Poizat and V. Sandoghdar, "Diamond colour centres as a nanoscopic light source for scanning near field microscopy," J. Microsc. 202, 2-6 (2001).
[CrossRef] [PubMed]

Raimond, J. M.

D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevreseguin, J. M. Raimond, and S. Haroche, "Splitting of high-Q mie modes induceds by light backscattering in silica microspheres," Opt. Lett. 20, 1835-1837 (1995).
[CrossRef] [PubMed]

Raizen, M. G.

H. J. Carmichael, R. J. Brecha, M. G. Raizen, H. J. Kimble, and P. R. Rice, "Subnatural linewidth averaging for coupled atomic and cavity-mode oscillators," Phys. Rev. A 40, 5516-5519 (1989).
[CrossRef] [PubMed]

Rice, P. R.

H. J. Carmichael, R. J. Brecha, M. G. Raizen, H. J. Kimble, and P. R. Rice, "Subnatural linewidth averaging for coupled atomic and cavity-mode oscillators," Phys. Rev. A 40, 5516-5519 (1989).
[CrossRef] [PubMed]

Sandoghdar, V.

S. K¨uhn and C. Hettich and C. Schmitt, and J-PH. Poizat and V. Sandoghdar, "Diamond colour centres as a nanoscopic light source for scanning near field microscopy," J. Microsc. 202, 2-6 (2001).
[CrossRef] [PubMed]

D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevreseguin, J. M. Raimond, and S. Haroche, "Splitting of high-Q mie modes induceds by light backscattering in silica microspheres," Opt. Lett. 20, 1835-1837 (1995).
[CrossRef] [PubMed]

Savchenkov, A. A.

Schietinger, S.

S. Schietinger, T. Schroder, and O. Benson, "One-by-One Coupling of Single Defect Centers in Nanodiamonds to High-Q Modes of an Optical Microresonator," Nano Lett. 8, 3911-3915 (2008).
[CrossRef] [PubMed]

Schmitt, C.

S. K¨uhn and C. Hettich and C. Schmitt, and J-PH. Poizat and V. Sandoghdar, "Diamond colour centres as a nanoscopic light source for scanning near field microscopy," J. Microsc. 202, 2-6 (2001).
[CrossRef] [PubMed]

Schroder, T.

S. Schietinger, T. Schroder, and O. Benson, "One-by-One Coupling of Single Defect Centers in Nanodiamonds to High-Q Modes of an Optical Microresonator," Nano Lett. 8, 3911-3915 (2008).
[CrossRef] [PubMed]

Spillane, S. M.

Suh, W.

Taylor, J. M.

L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, "Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond," Science 314, 281-285 (2006).
[CrossRef] [PubMed]

Tietz, C.

A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wratchtrup, and C. v. Borczyskowski, "Scanning confocal optical microscopy and magnetic resonance on single defect centers," Science 276, 2012-2014 (1997).
[CrossRef]

Togan, E.

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, "Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond," Science 316, 1312-1316 (2007).
[CrossRef] [PubMed]

v. Borczyskowski, C.

A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wratchtrup, and C. v. Borczyskowski, "Scanning confocal optical microscopy and magnetic resonance on single defect centers," Science 276, 2012-2014 (1997).
[CrossRef]

Vahala, K. J.

van Driel, H. M.

Wang, H.

Y.-S. Park, A. Cook, and H. Wang, "Cavity QED with Diamond Nanocrystals and Silica Microspheres," Nano Lett. 6, 2075-2079 (2006).
[CrossRef] [PubMed]

Weiss, D. S.

D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevreseguin, J. M. Raimond, and S. Haroche, "Splitting of high-Q mie modes induceds by light backscattering in silica microspheres," Opt. Lett. 20, 1835-1837 (1995).
[CrossRef] [PubMed]

Wood, R. W.

R. W. Wood, "On the remarkable case of uneven distribution of a light in a diffractived grating spectrum," Philos. Mag. 4, 396-402 (1902).

Wrachtrup, J.

L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, "Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond," Science 314, 281-285 (2006).
[CrossRef] [PubMed]

Wratchtrup, J.

A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wratchtrup, and C. v. Borczyskowski, "Scanning confocal optical microscopy and magnetic resonance on single defect centers," Science 276, 2012-2014 (1997).
[CrossRef]

Young, J. F.

Zibrov, A. S.

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, "Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond," Science 316, 1312-1316 (2007).
[CrossRef] [PubMed]

L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, "Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond," Science 314, 281-285 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Kuznetsov and H. A. Haus, "Radiation Loss in Dielectric Waveguide Structures by the Volume Current Method," IEEE J. Quantum Electron. 19, 1505-1514 (1983).
[CrossRef]

J. Microsc. (1)

S. K¨uhn and C. Hettich and C. Schmitt, and J-PH. Poizat and V. Sandoghdar, "Diamond colour centres as a nanoscopic light source for scanning near field microscopy," J. Microsc. 202, 2-6 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. C: Solid State Phys. (1)

G. Davies, "Vibronic spectra in diamond," J. Phys. C: Solid State Phys. 7, 3797-3809 (1974).
[CrossRef]

Nano Lett. (2)

S. Schietinger, T. Schroder, and O. Benson, "One-by-One Coupling of Single Defect Centers in Nanodiamonds to High-Q Modes of an Optical Microresonator," Nano Lett. 8, 3911-3915 (2008).
[CrossRef] [PubMed]

Y.-S. Park, A. Cook, and H. Wang, "Cavity QED with Diamond Nanocrystals and Silica Microspheres," Nano Lett. 6, 2075-2079 (2006).
[CrossRef] [PubMed]

Opt. Expr. (1)

M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Expr. 13, 1515-1530 (2005).
[CrossRef]

Opt. Lett. (6)

Philos. Mag. (1)

R. W. Wood, "On the remarkable case of uneven distribution of a light in a diffractived grating spectrum," Philos. Mag. 4, 396-402 (1902).

Phys. Rev. (1)

U. Fano, "Effects of Configuration Interaction on Intensities and Phase Shifts," Phys. Rev. 124, 1866-1878 (1961).
[CrossRef]

Phys. Rev. A (1)

H. J. Carmichael, R. J. Brecha, M. G. Raizen, H. J. Kimble, and P. R. Rice, "Subnatural linewidth averaging for coupled atomic and cavity-mode oscillators," Phys. Rev. A 40, 5516-5519 (1989).
[CrossRef] [PubMed]

Science (4)

H. Mabuchi and A. C. Doherty, "Cavity Quantum Electrodynamics: Coherence in Context," Science 298, 1372-1377 (2002).
[CrossRef] [PubMed]

A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wratchtrup, and C. v. Borczyskowski, "Scanning confocal optical microscopy and magnetic resonance on single defect centers," Science 276, 2012-2014 (1997).
[CrossRef]

M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, "Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond," Science 316, 1312-1316 (2007).
[CrossRef] [PubMed]

L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, "Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond," Science 314, 281-285 (2006).
[CrossRef] [PubMed]

Other (16)

A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, "Nonclassical radiation from diamond nanocrystals," Phys. Rev. A 64, 061 802 (2001).
[CrossRef]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, "Coherent Population Trapping of Single Spins in Diamond under Optical Excitation," Phys. Rev. Lett. 97, 247 401 (2006).
[CrossRef]

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, "Observation of Coherent Oscillation of a Single Nuclear Spin and Realization of a Two-Qubit Conditional Quantum Gate," Phys. Rev. Lett. 93, 130 501 (2004).
[CrossRef]

C. F. Wang, Y.-S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J. E. Butler, "Observation of whispering gallery modes in nanocrystalline diamond microdisks," Appl. Phys. Lett.  90, 081 110 (2007).
[CrossRef]

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, "Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond," Appl. Phys. Lett. 91, 201 112 (2007).

A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, "Controlled Coupling of Counterpropagating Whispering-Gallery Modes by a Single Rayleigh Scatterer: A Classical Problem in a Quantum Optical Light," Phys. Rev. Lett. 99, 173 603 (2007).
[CrossRef]

L. M. Duan and H. J. Kimble, "Scalable Photonic Quantum Computation through Cavity-Assisted Interactions," Phys. Rev. Lett.12, 127 902 (2004).

V. V. Klimov and M. Ducloy, "Spontaneous emission rate of an excited atom placed near a nanofiber," Phys. Rev. A 69, 013812 (2004).
[CrossRef]

F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, "Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes," Phys. Rev. A 72, 032 509 (2005).

P. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, "Stark Shift Control of Single Optical Centers in Diamond," Phys. Rev. Lett. 97, 083 002 (2006).
[CrossRef]

N. B. Manson, J. P. Harrison, and M. J. Sellars, "Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics," Phys. Rev. B 74, 104 303 (2006).
[CrossRef]

M. W. McCutcheon and M. Loncar, "Design of an ultrahigh Quality factor silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal," Opt. Express 16, 19 136-145 (2008).
[CrossRef]

Y. Shen, T. M. Sweeney, and H. Wang, "Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals," Phys. Rev. B 77, 033 201 (2008).
[CrossRef]

H. J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Springer, 1999), 1st edn.

R. Harbers, S. Jochim, N. Moll, R. F. Mahrt, D. Erni, J. A. Hoffnagle, and W. D. Hinsberg, "Control of Fano line shapes by means of photonic crystal structures in a dye-doped polymer," Appl. Phys. Lett. 90, 201 105 (2007).
[CrossRef]

A. R. Cowan and J. F. Young, "Optical bistability involving photonic crystal microcavities and Fano line shapes," Phys. Rev. E 68, 046 606 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic of the nanocrystal fiber-to-microcavity positioning technique. (b) SEM image of a diamond nanocrystal positioned on the edge of a SiO2 microdisk. Illustration of the interference between direct dipole and indirect dipole-cavity radiation, (c) for a generic Fabry-Perot single-sided cavity and (d) for a microdisk cavity with nanocrystal-scattering radiation loss.

Fig. 2.
Fig. 2.

Scanning confocal microscope (SCM) images (details in [12]) of a mesa before (a) and after (b) a nanocrystal has been picked up with a fiber taper. Optical images of (c) fiber taper and attached nanocrystal aligned with microdisk edge, and (d) after nanocrystal placement. Nanocrystal imaging is aided by a white light source coupled into the fiber taper and the microdisk. (e) SCM image of microdisk after nanocrystal placement.

Fig. 3.
Fig. 3.

(a) Emission from a diamond nanocrystal attached to a fiber taper, collected through the high-NA lens in the far-field and through the fiber taper in the near-field. The fiber taper data was scaled by a factor of 1.6 to take measured fiber insertion loss into account. Peaks near λ = 690 nm are due to fluorescence in the Ge doped fiber core. (b) Measured emission when the taper interacts with a microdisk, for varying nanocrystal position relative to the microdisk and spectrometer, as indicated by the illustrations.

Fig. 4.
Fig. 4.

(a) Microdisk mode lineshapes measured by monitoring the fiber taper transmission spectrum with the taper positioned in the microdisk near-field, before (blue) and after (red) nanocrystal placement. A 850nm band tunable diode laser source (New Focus Velocity) was used to measure the taper transmission; a 630nm tunable source was not readily available at the time of the measurements. The dashed lines are fits [24] to the resonant line-shapes. Cross-sectional view of the 630 nm wavelength band (b) TM p=1 and (c) TM p=3 whispering-gallery mode profiles near the disk edge as calculated using the finite-element-method (FEM). The white outline indicates the periphery of the microdisk, with the shape of the disk profile estimated from SEM images. Only the dominant, vertical component of the electric field is plotted for clarity. The position of the nanocrystal, as placed on the disk, is indicated by the red diamond.

Fig. 5.
Fig. 5.

(a) PL from the diamond nanocrystal placed on the microdisk in Fig. 1(b), collected at room temperature through the near-field fiber taper (green) and far-field lens (blue). (b) High resolution (δλ = 20 pm) PL spectrum of the lens-collected emission around λ = 680 nm. The red curve is a fit using S lens from the text, generalized to include multiple decoupled cavity modes.

Tables (2)

Tables Icon

Table 1. Calculated mode parameters in the λ ~ 600 nm band.

Tables Icon

Table 2. Calculated mode parameters in the λ ~ 850 nm band.

Equations (52)

Equations on this page are rendered with MathJax. Learn more.

Ê(r,t)=ed(r)e−iϕdγs σ̂ (t)+ec(r) eiϕc 2κ â (t)+h.c.,
S(ω)=1γpdeiϕd+ceiϕc2g2κγs11+iΔω/κ2,
Slens(ω)1γp 1+i2g2κγs11+iΔω/κ2 .
Slens(ω)=Re[0dt0dteiω(tt)Eo(r,t)ωÊo(r,t)]
ĤS=h_ωcââ+h_ωdσ̂+σ̂+ih_g(âσ̂âσ̂+),
dρ̂dt=1ih¯ [ĤS,ρ̂]+(L̂d+L̂c+L̂p)ρ̂
L̂dρ̂=γs2(2σ̂ρ̂σ̂+σ̂+σ̂ρ̂ρ̂σ̂+σ̂)
L̂cρ̂=κ(2âρ̂âââρ̂ρ̂ââ)
L̂pρ̂=γp2 (σ̂zρ̂σ̂zρ̂)
ddtâ=(iωc+κ) â+gσ̂
ddtσ̂=(iωd+γs2+γp)σ̂+gâσ̂z.
ddt' â(t)â(t)=(iωc+κ) â(t)â(t)+gâ(t)σ̂(t)
ddtâ(t)σ̂(t)=(iωd+γs2+γp) â(t)σ̂(t)gâ(t)â(t)
ddtσ̂+(t)â(t)=(c+κ) σ̂+(t)â(t) +gâ+(t)σ̂(t)
ddtσ̂+(t)σ̂(t)=(iωd+γs2+γp)σ̂+(t)σ̂(t)gσ̂+(t)â(t).
Ccd(ω)=F[â(t)σ̂(t)]=0
Ccc(ω)=F[â(t)â(t)] =g2γpγsκ1iΔω+κ
Cdd(ω)=F[σ̂+(t)σ̂(t)] =1γpγs
Cdc(ω)=F[σ̂+(t)â(t)]=gγpγs1iΔω+κ
Veff =n2(r)Ec(r)2d3rmax[n2(r)Ec(r)2],
Ec,photon (ro) =h¯ω2εon2(ro)η(ro)Veff,
μ2=3π2h_εoc3γnncω3 .
2Eμ0(ε0+δε)2Et2=0,
E(r,t)=eiω0t jaj (t)Ej0(r).
dakdt+iΔωkak(t)=ijβjkaj(t)
βjk=ω02δε(Ek0(r))*·Ej0(r)drε0Ek0(r)2dr,
dacwdt=iΔωacw(t)+iβeaccw(t)
daccwdt=iΔωaccw(t) +iβeacw(t),
β=ω02 (e+i2δε(φ,ρ,z))(Ecw0(ρ,z))2ρdρdzε0Ecw0(r)2dr .
δε=ε0(nnc21) δ(3) (rrnc)Vnc,
1QB=2βω0 =(nnc21)Vncη(rnc)Vtw,eff,
J=−iωδεE.
Arad(r)=μo4π (eik0rr) J (r) eik0r̂·r d r ,
Srad=r̂ωk02μ0r̂×Arad2=r̂ωk03(nnc21)2Vnc2ε0Ec(rnc)232π2 r̂×ê(rnc)2r2 ,
Prad=(S·r̂)r2dΩ=ωk03(nnc21)2Vnc2ε0Ec(rnc)232π2r̂×ê(rnc)2 d Ω .
Qs=3λo3η(rnc)Veff4π2(nnc21)2Vnc2 .
××E(r,t)+2t2εc(r)E(r,t)=2t2Δεn(r)E(r,t)tJs(r,t) .
E(r,t)=c(t)ec(r)eiωct+jrj(t)ej(r)eiωjt,
××ec,j(r)ωc,j2εc(r)ec,j(r)=0,
cεc(r)j=drεc(r)ec*(r)·ej(r)=0,
iεc(r)j=drεc(r)ei*(r)·ej(r)=δij,
cεc(r)c=drεc(r)ec*(r)·ej(r)=1.
ddtc(t)=jiωj22ωcKcjrj(t)ei(ωjωc)t+ωs2ωcscei(ωsωc)t,
ddtrj(t)=iωc22ωjKjcc(t)ei(ωcωj)t+ωs2ωjsjei(ωsωj)t,
Kcj=Kjc* = cΔεnj,
sc,j=c,j|Jo.
ddtc˜(t)=(κ+i(ωsωc))c˜(t)+ωs2ωcsc,
ddtr˜s(t)=ss2+sc4iωcKc*i(ωcωs)+κ ,
κc=ec*(ro)·es(ro)δεn=ei(ϕcϕS)ec*(ro)·es(ro)δεn,
sc=ec*(ro)·jo=ei(ϕcϕJ+π)ec*(ro)·jo,
ss=es*(ro)·jo=ei(ϕsϕJ+π)es*(ro)·jo,
ddtr˜s(t)=ei(ϕJϕs+π)[ss2+sc4iωcKc*i(ωcωs)+κ].

Metrics