Abstract

We report several strategies for the fabrication of porous subwavelength fibers using low density Polyethylene plastic for low-loss terahertz light transmission applications. We also characterize transmission losses of the fabricated fibers in terahertz using a novel non-destructive directional coupler method. Within this method a second fiber is translated along the length of the test fiber to probe the power attenuation of a guided mode. The method is especially suitable for measuring transmission losses through short fiber segments, a situation in which standard cutback method is especially difficult to perform. We demonstrate experimentally that introduction of porosity into a subwavelength rod fiber, further reduces its transmission loss by as much as a factor of 10. The lowest fiber loss measured in this work is 0.01cm-1 and it is exhibited by the 40% porous subwavelength fiber of diameter 380 μm. For comparison, the loss of a rod-in-the-air subwavelength fiber of a similar diameter was measured to be ~ 0.1cm-1, while the bulk loss of a PE plastic used in the fabrication of such fibers is ≳ 1cm-1. Finally, we present theoretical studies of the optical properties of individual subwavelength fibers and a directional coupler. From these studies we conclude that coupler setup studied in this paper also acts as a low pass filter with a cutoff frequency around 0.3THz. Considering that the spectrum of a terahertz source used in this work falls off rapidly below 0.25THz, the reported loss measurements are, thus, the bolometer averages over the ~ 0.25THz –0.3THz region.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 306-308 (2006).
    [CrossRef]
  2. R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000).
    [CrossRef]
  3. A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low Loss Microstructured Polymer THz Fibers," Appl. Phys. Lett. 92, 071101 (2008).
    [CrossRef]
  4. K. Wang and M Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
    [CrossRef] [PubMed]
  5. R. Mendis and D. Grischkowsky, "THz interconnect with low-loss and low-group velocity dispersion," IEEE Micro. Wireless Componen. Lett. 11, 444-446 (2001).
    [CrossRef]
  6. R. W. McGowan, G. Gallot, and D. Grischkowsky, "Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides," Opt. Lett. 24, 1431-1433 (1999).
    [CrossRef]
  7. T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, "Ferroelectric PVDF cladding terahertz waveguide," J. Lightwave Technol. 23, 2469-2473 (2005).
    [CrossRef]
  8. B. Bowden, J. A. Harrington, and O. Mitrofanov, "Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings," J. Appl. Phys. 104, 093110 (2008).
    [CrossRef]
  9. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, "Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation," Opt. Express 12, 5263-5268 (2004).
    [CrossRef] [PubMed]
  10. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, "Flexible terahertz fiber optics with low bend-induced losses," J. Opt. Soc. Am. B 24, 1230-1235 (2007).
    [CrossRef]
  11. J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, "Terahertz air-core microstructure fiber," Appl. Phys. Lett. 92, 064105 (2008).
    [CrossRef]
  12. Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, "Transmission loss and dispersion in plastic terahertz photonic band-gap fibers," Appl. Phys. B 91, 333-336 (2008).
    [CrossRef]
  13. M. Skorobogatiy and A. Dupuis, "Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance," Appl. Phys. Lett. 90, 113514 (2007).
    [CrossRef]
  14. A. Hassani, A. Dupuis, and M. Skorobogatiy, "Porous polymer fibers for low-loss Terahertz guiding," Opt. Express 16, 6340-6351 (2008).
    [CrossRef] [PubMed]
  15. S. Atakaramians, S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, "Porous fibers: a novel approach to low loss THz waveguides," Opt. Express 16, 8845 (2008).
    [CrossRef] [PubMed]
  16. M. Nagel, A. Marchewka, and H. Kurz, "Low-index discontinuity terahertz waveguides," Opt. Express 14, 9944-9954 (2006).
    [CrossRef] [PubMed]
  17. Y.-S. Jin, G.-J. Kim, and S.-Y. Jeon, "Terahertz Dielectric Properties of Polymers," J. Korean Phys. Soc. 49, 513-517 (2006).
  18. A. Boudrioua and J. C. Loulergue, "New approach for loss measurements in optical planar waveguides," Opt. Commun. 137, 37-40 (1997).
    [CrossRef]
  19. J.-Y. Lu, C.-C. Kuo, C.-M. Chiu, H.-W. Chen, Y.-J. Hwang, C.-L. Pan, and C.-K Sun, "THz interferometric imaging using subwavelength plastic fiber based THz endoscopes," Opt. Express 16, 2494-2501 (2008).
    [CrossRef] [PubMed]
  20. H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, "Investigation on spectral loss characteristics of subwavelength terahertz fibers," Opt. Lett. 32, 1017-1019 (2007).
    [CrossRef] [PubMed]
  21. A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, "Characterisation of olefin copolymers using terahertz spectroscopy," Electron. Lett. 42, 25 (2006).
    [CrossRef]
  22. J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, "Terahertz scanning imaging with a subwavelength plastic fiber," Appl. Phys. Lett. 92, 084102 (2008).
    [CrossRef]
  23. L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025 (2004).
    [CrossRef] [PubMed]
  24. M. Skorobogatiy and J. Yang, Fundamentals of Photonic Crystal Guiding (Cambridge University Press, 2009).

2008 (8)

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low Loss Microstructured Polymer THz Fibers," Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, "Terahertz air-core microstructure fiber," Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, "Transmission loss and dispersion in plastic terahertz photonic band-gap fibers," Appl. Phys. B 91, 333-336 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, "Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings," J. Appl. Phys. 104, 093110 (2008).
[CrossRef]

J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, "Terahertz scanning imaging with a subwavelength plastic fiber," Appl. Phys. Lett. 92, 084102 (2008).
[CrossRef]

J.-Y. Lu, C.-C. Kuo, C.-M. Chiu, H.-W. Chen, Y.-J. Hwang, C.-L. Pan, and C.-K Sun, "THz interferometric imaging using subwavelength plastic fiber based THz endoscopes," Opt. Express 16, 2494-2501 (2008).
[CrossRef] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Porous polymer fibers for low-loss Terahertz guiding," Opt. Express 16, 6340-6351 (2008).
[CrossRef] [PubMed]

S. Atakaramians, S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, "Porous fibers: a novel approach to low loss THz waveguides," Opt. Express 16, 8845 (2008).
[CrossRef] [PubMed]

2007 (3)

2006 (4)

Y.-S. Jin, G.-J. Kim, and S.-Y. Jeon, "Terahertz Dielectric Properties of Polymers," J. Korean Phys. Soc. 49, 513-517 (2006).

L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 306-308 (2006).
[CrossRef]

A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, "Characterisation of olefin copolymers using terahertz spectroscopy," Electron. Lett. 42, 25 (2006).
[CrossRef]

M. Nagel, A. Marchewka, and H. Kurz, "Low-index discontinuity terahertz waveguides," Opt. Express 14, 9944-9954 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (3)

2001 (1)

R. Mendis and D. Grischkowsky, "THz interconnect with low-loss and low-group velocity dispersion," IEEE Micro. Wireless Componen. Lett. 11, 444-446 (2001).
[CrossRef]

2000 (1)

R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000).
[CrossRef]

1999 (1)

1997 (1)

A. Boudrioua and J. C. Loulergue, "New approach for loss measurements in optical planar waveguides," Opt. Commun. 137, 37-40 (1997).
[CrossRef]

Abbott, D.

Afshar, S.

Atakaramians, S.

Bandyopadhyay, A.

A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, "Characterisation of olefin copolymers using terahertz spectroscopy," Electron. Lett. 42, 25 (2006).
[CrossRef]

Boudrioua, A.

A. Boudrioua and J. C. Loulergue, "New approach for loss measurements in optical planar waveguides," Opt. Commun. 137, 37-40 (1997).
[CrossRef]

Bowden, B.

B. Bowden, J. A. Harrington, and O. Mitrofanov, "Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings," J. Appl. Phys. 104, 093110 (2008).
[CrossRef]

Bowden, B. F.

A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, "Characterisation of olefin copolymers using terahertz spectroscopy," Electron. Lett. 42, 25 (2006).
[CrossRef]

Chang, H.-C.

J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, "Terahertz scanning imaging with a subwavelength plastic fiber," Appl. Phys. Lett. 92, 084102 (2008).
[CrossRef]

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, "Terahertz air-core microstructure fiber," Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Chen, H.-W.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, "Terahertz air-core microstructure fiber," Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

J.-Y. Lu, C.-C. Kuo, C.-M. Chiu, H.-W. Chen, Y.-J. Hwang, C.-L. Pan, and C.-K Sun, "THz interferometric imaging using subwavelength plastic fiber based THz endoscopes," Opt. Express 16, 2494-2501 (2008).
[CrossRef] [PubMed]

H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, "Investigation on spectral loss characteristics of subwavelength terahertz fibers," Opt. Lett. 32, 1017-1019 (2007).
[CrossRef] [PubMed]

L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 306-308 (2006).
[CrossRef]

Chen, L.-J.

H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, "Investigation on spectral loss characteristics of subwavelength terahertz fibers," Opt. Lett. 32, 1017-1019 (2007).
[CrossRef] [PubMed]

L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 306-308 (2006).
[CrossRef]

Chiu, C.-M.

J.-Y. Lu, C.-C. Kuo, C.-M. Chiu, H.-W. Chen, Y.-J. Hwang, C.-L. Pan, and C.-K Sun, "THz interferometric imaging using subwavelength plastic fiber based THz endoscopes," Opt. Express 16, 2494-2501 (2008).
[CrossRef] [PubMed]

J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, "Terahertz scanning imaging with a subwavelength plastic fiber," Appl. Phys. Lett. 92, 084102 (2008).
[CrossRef]

Dupuis, A.

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low Loss Microstructured Polymer THz Fibers," Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Porous polymer fibers for low-loss Terahertz guiding," Opt. Express 16, 6340-6351 (2008).
[CrossRef] [PubMed]

M. Skorobogatiy and A. Dupuis, "Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance," Appl. Phys. Lett. 90, 113514 (2007).
[CrossRef]

Federici, J. F.

A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, "Characterisation of olefin copolymers using terahertz spectroscopy," Electron. Lett. 42, 25 (2006).
[CrossRef]

Fischer, B. M.

Gallot, G.

Geng, Y. F.

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, "Transmission loss and dispersion in plastic terahertz photonic band-gap fibers," Appl. Phys. B 91, 333-336 (2008).
[CrossRef]

George, R.

Grischkowsky, D.

R. Mendis and D. Grischkowsky, "THz interconnect with low-loss and low-group velocity dispersion," IEEE Micro. Wireless Componen. Lett. 11, 444-446 (2001).
[CrossRef]

R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000).
[CrossRef]

R. W. McGowan, G. Gallot, and D. Grischkowsky, "Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides," Opt. Lett. 24, 1431-1433 (1999).
[CrossRef]

Harrington, J. A.

B. Bowden, J. A. Harrington, and O. Mitrofanov, "Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings," J. Appl. Phys. 104, 093110 (2008).
[CrossRef]

A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, "Characterisation of olefin copolymers using terahertz spectroscopy," Electron. Lett. 42, 25 (2006).
[CrossRef]

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, "Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation," Opt. Express 12, 5263-5268 (2004).
[CrossRef] [PubMed]

Hassani, A.

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low Loss Microstructured Polymer THz Fibers," Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Porous polymer fibers for low-loss Terahertz guiding," Opt. Express 16, 6340-6351 (2008).
[CrossRef] [PubMed]

Hidaka, T.

Hwang, Y.-J.

J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, "Terahertz scanning imaging with a subwavelength plastic fiber," Appl. Phys. Lett. 92, 084102 (2008).
[CrossRef]

J.-Y. Lu, C.-C. Kuo, C.-M. Chiu, H.-W. Chen, Y.-J. Hwang, C.-L. Pan, and C.-K Sun, "THz interferometric imaging using subwavelength plastic fiber based THz endoscopes," Opt. Express 16, 2494-2501 (2008).
[CrossRef] [PubMed]

Ichikawa, S.

Ito, H.

Ito, T.

Jeon, S.-Y.

Y.-S. Jin, G.-J. Kim, and S.-Y. Jeon, "Terahertz Dielectric Properties of Polymers," J. Korean Phys. Soc. 49, 513-517 (2006).

Jin, Y.-S.

Y.-S. Jin, G.-J. Kim, and S.-Y. Jeon, "Terahertz Dielectric Properties of Polymers," J. Korean Phys. Soc. 49, 513-517 (2006).

Kao, T.-F.

L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 306-308 (2006).
[CrossRef]

Kim, G.-J.

Y.-S. Jin, G.-J. Kim, and S.-Y. Jeon, "Terahertz Dielectric Properties of Polymers," J. Korean Phys. Soc. 49, 513-517 (2006).

Kuo, C.-C.

J.-Y. Lu, C.-C. Kuo, C.-M. Chiu, H.-W. Chen, Y.-J. Hwang, C.-L. Pan, and C.-K Sun, "THz interferometric imaging using subwavelength plastic fiber based THz endoscopes," Opt. Express 16, 2494-2501 (2008).
[CrossRef] [PubMed]

J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, "Terahertz scanning imaging with a subwavelength plastic fiber," Appl. Phys. Lett. 92, 084102 (2008).
[CrossRef]

Kuo, J.-L.

Kurz, H.

Lai, C.-H.

J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, "Terahertz scanning imaging with a subwavelength plastic fiber," Appl. Phys. Lett. 92, 084102 (2008).
[CrossRef]

Li, Y.-T.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, "Terahertz air-core microstructure fiber," Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, "Investigation on spectral loss characteristics of subwavelength terahertz fibers," Opt. Lett. 32, 1017-1019 (2007).
[CrossRef] [PubMed]

Lou, J.

Loulergue, J. C.

A. Boudrioua and J. C. Loulergue, "New approach for loss measurements in optical planar waveguides," Opt. Commun. 137, 37-40 (1997).
[CrossRef]

Lu, J.-Y.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, "Terahertz air-core microstructure fiber," Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, "Terahertz scanning imaging with a subwavelength plastic fiber," Appl. Phys. Lett. 92, 084102 (2008).
[CrossRef]

J.-Y. Lu, C.-C. Kuo, C.-M. Chiu, H.-W. Chen, Y.-J. Hwang, C.-L. Pan, and C.-K Sun, "THz interferometric imaging using subwavelength plastic fiber based THz endoscopes," Opt. Express 16, 2494-2501 (2008).
[CrossRef] [PubMed]

H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, "Investigation on spectral loss characteristics of subwavelength terahertz fibers," Opt. Lett. 32, 1017-1019 (2007).
[CrossRef] [PubMed]

L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 306-308 (2006).
[CrossRef]

Marchewka, A.

Matsuura, Y.

Mazur, E.

McGowan, R. W.

Mendis, R.

R. Mendis and D. Grischkowsky, "THz interconnect with low-loss and low-group velocity dispersion," IEEE Micro. Wireless Componen. Lett. 11, 444-446 (2001).
[CrossRef]

R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000).
[CrossRef]

Minamide, H.

Mitrofanov, O.

B. Bowden, J. A. Harrington, and O. Mitrofanov, "Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings," J. Appl. Phys. 104, 093110 (2008).
[CrossRef]

Mittleman, M

K. Wang and M Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Miyagi, M.

Monro, T. M.

Mueller, E.

Nagel, M.

Nishizawa, J.

Pan, C.-L.

J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, "Terahertz scanning imaging with a subwavelength plastic fiber," Appl. Phys. Lett. 92, 084102 (2008).
[CrossRef]

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, "Terahertz air-core microstructure fiber," Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

J.-Y. Lu, C.-C. Kuo, C.-M. Chiu, H.-W. Chen, Y.-J. Hwang, C.-L. Pan, and C.-K Sun, "THz interferometric imaging using subwavelength plastic fiber based THz endoscopes," Opt. Express 16, 2494-2501 (2008).
[CrossRef] [PubMed]

H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, "Investigation on spectral loss characteristics of subwavelength terahertz fibers," Opt. Lett. 32, 1017-1019 (2007).
[CrossRef] [PubMed]

Pedersen, P.

Sengupta, A.

A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, "Characterisation of olefin copolymers using terahertz spectroscopy," Electron. Lett. 42, 25 (2006).
[CrossRef]

Skorobogatiy, M.

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Porous polymer fibers for low-loss Terahertz guiding," Opt. Express 16, 6340-6351 (2008).
[CrossRef] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low Loss Microstructured Polymer THz Fibers," Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

M. Skorobogatiy and A. Dupuis, "Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance," Appl. Phys. Lett. 90, 113514 (2007).
[CrossRef]

Sun, C.-K

Sun, C.-K.

J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, "Terahertz scanning imaging with a subwavelength plastic fiber," Appl. Phys. Lett. 92, 084102 (2008).
[CrossRef]

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, "Terahertz air-core microstructure fiber," Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, "Investigation on spectral loss characteristics of subwavelength terahertz fibers," Opt. Lett. 32, 1017-1019 (2007).
[CrossRef] [PubMed]

L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 306-308 (2006).
[CrossRef]

Tamura, K.

Tan, X. L.

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, "Transmission loss and dispersion in plastic terahertz photonic band-gap fibers," Appl. Phys. B 91, 333-336 (2008).
[CrossRef]

Tong, L.

Wang, K.

K. Wang and M Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Wang, P.

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, "Transmission loss and dispersion in plastic terahertz photonic band-gap fibers," Appl. Phys. B 91, 333-336 (2008).
[CrossRef]

Yao, J. Q.

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, "Transmission loss and dispersion in plastic terahertz photonic band-gap fibers," Appl. Phys. B 91, 333-336 (2008).
[CrossRef]

Yu, C.-P.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, "Terahertz air-core microstructure fiber," Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Appl. Phys. B (1)

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, "Transmission loss and dispersion in plastic terahertz photonic band-gap fibers," Appl. Phys. B 91, 333-336 (2008).
[CrossRef]

Appl. Phys. Lett. (4)

M. Skorobogatiy and A. Dupuis, "Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance," Appl. Phys. Lett. 90, 113514 (2007).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low Loss Microstructured Polymer THz Fibers," Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, "Terahertz air-core microstructure fiber," Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, "Terahertz scanning imaging with a subwavelength plastic fiber," Appl. Phys. Lett. 92, 084102 (2008).
[CrossRef]

Electron. Lett. (1)

A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, "Characterisation of olefin copolymers using terahertz spectroscopy," Electron. Lett. 42, 25 (2006).
[CrossRef]

IEEE Micro. Wireless Componen. Lett. (1)

R. Mendis and D. Grischkowsky, "THz interconnect with low-loss and low-group velocity dispersion," IEEE Micro. Wireless Componen. Lett. 11, 444-446 (2001).
[CrossRef]

J. Appl. Phys. (2)

B. Bowden, J. A. Harrington, and O. Mitrofanov, "Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings," J. Appl. Phys. 104, 093110 (2008).
[CrossRef]

R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000).
[CrossRef]

J. Korean Phys. Soc. (1)

Y.-S. Jin, G.-J. Kim, and S.-Y. Jeon, "Terahertz Dielectric Properties of Polymers," J. Korean Phys. Soc. 49, 513-517 (2006).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nature (1)

K. Wang and M Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. Boudrioua and J. C. Loulergue, "New approach for loss measurements in optical planar waveguides," Opt. Commun. 137, 37-40 (1997).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Other (1)

M. Skorobogatiy and J. Yang, Fundamentals of Photonic Crystal Guiding (Cambridge University Press, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Top: images of the three preform crossections. PE Tubes is a preform made by stacking 7 PE straws, which are then wrapped into several layers of PE film. Straw ends were sealed with epoxy resin for further drawing. PE/PMMA preform is made by densifi-cation of PE granules around 7 PMMA rods fixed inside a large PTFE tube. Finally, Non Porous preforms are made by densification of PE granules into a rod shape inside of a PTFE tube. Bottom: optical microscope images of the fiber cross-sections. a)-c) Porous PE fibers with average diameters of 180, 240, and 325 μm made by stacking PE tubes. d)-f) Porous PE/PMMA fibers with average diameters of 285, 310, 380 μm made by dissolving PMMA rods after drawing. g)-i) Non Porous rod-in-the-air PE fibers, with average diameters of 220, 245, 410 μm.

Fig. 2.
Fig. 2.

Experimental setup for measuring fiber transmission losses using the directional coupler method. a) Sketch of a setup. The directional coupler (COUP) assembly, consisting of a coupling fiber (CF) and a bolometer (BOL), is translated along the length of a test fiber (TF). Test fiber is placed at a θTF angle with respect to the axes of a focusing parabolic mirror (PM2), while coupling fiber is placed at θCF angle with respect to the test fiber. Such placement of the fibers is done to reduce background noise by insuring that the bolometer is placed outside of the THz light cone generated by the PM2 parabolic mirror. Also in the sketch - E: emitter, L: lens, M: mirror, BS: beam splitter. b) Photo of an experimental setup. Images of fibers are enhanced for visibility. Inset: THz source spectrum. c) Close-up view of a directional coupler and a Fisherman’s knot used to space the two subwavelength fibers in a coupler.

Fig. 3.
Fig. 3.

Example of the fiber attenuation measurement for a 220 μm average diameter rod-in-the-air fiber using the directional coupler method. a) Variation of power as a function of a relative displacement (Δz) along the test fiber. Total and reference signals are measured with and without the test fiber, respectively. b) Fit of the fiber attenuation data (P Fiber = P Total - P Ref).

Fig. 4.
Fig. 4.

Fiber loss measurements using the directional coupler method. Data is presented for all the porous and rod-in-the-air fibers of different diameters shown in Fig. 1. Plots on the left show the Total and Reference signals measured with and without the test fiber. Plots on the right show fits of the fiber attenuation data (P Fiber = P Total -P Ref). a) Non Porous PE fibers. b) Porous PE/Tube fibers produced by straw stacking. c) Porous PE/PMMA fibers produced by dissolving the PMMA rods.

Fig. 5.
Fig. 5.

Fiber attenuation coefficient as a function of the fiber diameter for various porous and non-porous PE subwavelength THz fibers.

Fig. 6.
Fig. 6.

Fundamental properties of a directional coupler made of two subwavelength fibers (porous and rod-in-the-air) of 380jUm diameter separated by 380μm air gap. Both porous and rod-in-the air fibers are single moded at ω < 0.53THz. a) Refractive indices of the individual fiber modes and corresponding coupler supermodes. Two of the four coupler su-permodes have a cut-off frequency of ω = 036THz, therefore below this frequency all the individual fibers and a coupler are single moded. b) Modal losses, assuming fiber material bulk absorption loss of 1cm -1. At any frequency losses of a porous fiber are significantly lower than these of a rod-in-the-air fiber. In a) and b), dotted lines show the theoretical fits of the fiber refractive indices and losses derived using asymptotic formula (2). c) Field distributions in the fundamental modes of porous and rod-in-the-air fibers, as well as field distributions in the coupler supermodes at various frequencies. Observe strong coupling regime for ω ≲ 0.35THz, and weak coupling regime at higher frequencies. Only linearly polarized modes of X polarization are shown (dominant Ex component).

Fig. 7.
Fig. 7.

a) Fiber dispersion (solid lines) of the fundamental modes of a porous fiber and a rod-in-the-air fiber. Dispersion of a porous fiber is much smaller than that of a rod-in-the-air fiber for all frequencies. In dotted lines we show theoretical fit of the dispersion derived using asymptotic formula (2). b) Coupling efficiency of an evanescent coupler. We assume all the incoming power in the fundamental mode of a porous fiber, while coupling efficiency is then defined as a power in the fundamental mode of an outgoing rod-in-the-air fiber.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

PCF(z1)=η·PTE0·exp(αTE·z1αCF·zCF)
PCF(z2)=η·PTF0·exp(αTE·z2αCF·zCF)
α=1z2z1 ln (PCF(z1)PCF(z2)) ,
neffncl=2ncl(rk0)2 exp(nc2+ncl2ncl2(nc2ncl2)2(rk0)2).
Inputend:Por++RPor=Asrod++Bsrcd
Out put end : Aexp(iβsrodL)srod++Bexp(iβsrodL)srod=TRod+
ψβψβ=1/4dxdy[E(x,y)t,β×H(x,y)t,βE(x,y)t,β×H(x,y)t,β].
T=exp(iβsrodL)η++exp(iβsrodL)η
η+=srod+Por+Rod+srod+srod+srod+Rod+Rod+;=η=srodPor+Rod+srodsrodsrodRod+Rod+.
T2exp(2Im(βsrod)L)·n+2.

Metrics