Abstract

We investigate polarization mode dispersion (PMD) and polarization dependent loss (PDL) impairments in polarization division multiplexing (PDM) signals with optical polarization demultiplexing and direct detection. We find that the time alignment between the bits in the two polarizations has a significant impact on the PMD impairments, and PMD impairments also depend on the bandwidth of PDM signals, whereas PDL impairments have little dependence on the relative time alignment between the two polarizations and the signal bandwidth. We show that with a proper configuration of the polarization demultiplexing, the PDL-induced crosstalk between the two polarizations can be completely eliminated. The combined effects of PMD and PDL are also studied, and we find that, in the presence of concatenated PMD and PDL, the impairment from one effect does not enhance that from the other.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1 Tb/s transmission experiment,” IEEE Photon. Technol. Lett. 8(9), 1264–1266 (1996).
    [CrossRef]
  2. A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals,” J. Lightwave Technol. 26(1), 79–84 (2008).
    [CrossRef]
  3. G. Charlet, J. Renaudier, M. Salsi, H. Mardoyan, P. Tran, and S. Bigo, “Efficient mitigation of fiber impairments in an ultra-long haul transmission of 40Gbit/s polarization-multiplexed data, by digital processing in a coherent receiver,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP17. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2007-PDP17
  4. H. Sunnerud, M. Karlsson, C. Xie, and P. A. Andrekson, “Polarization mode dispersion in high-speed fiber-optic transmission systems,” J. Lightwave Technol. 20(12), 2204–2219 (2002).
    [CrossRef]
  5. A. Mecozzi and M. Shtaif, “Signal-to-noise-ratio degradation caused by polarization-dependent loss and the effect of dynamic gain equalization,” J. Lightwave Technol. 22(8), 1856–1871 (2004).
    [CrossRef]
  6. M. Shtaif and A. Mecozzi, “Polarization-dependent loss and its effect on the signal-to-noise ratio in fiber-optic systems,” IEEE Photon. Technol. Lett. 16(2), 671–673 (2004).
    [CrossRef]
  7. C. Xie and L. F. Mollenauer, “Performance degradation induced by polarization dependent loss in optical fiber transmission systems with and without polarization mode dispersion,” J. Lightwave Technol. 21(9), 1953–1957 (2003).
    [CrossRef]
  8. O. Vassilieva, T. Hoshida, X. Wang, J. Rasmussen, H. Miyata, and T. Naito, “Impact of polarization dependent loss and cross-phase modulation on polarization multiplexed DQPSK Signals,”in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThU6. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OThU6
  9. J. Renaudier, G. Charlet, M. Salsi, O. B. Pardo, H. Mardoyan, P. Tran, and S. Bigo, “Linear fiber impairments mitigation of 40-Gbit/s polarization-multiplexed QPSK by digital processing in a coherent receiver,” J. Lightwave Technol. 26(1), 36–42 (2008).
    [CrossRef]
  10. L. E. Nelson, S. L. Woodward, S. Foo, X. Zhou, M. D. Feuer, D. Hanson, D. McGhan, H. Sun, M. Moyer, M. O. Sullivan, and P. D. Magill, “Performance of a 46-Gbps dual-polarization QPSK transceiver with real-time coherent equalization over high PMD fiber,” J. Lightwave Technol. 27(3), 158–167 (2009).
    [CrossRef]
  11. C. Laperle, B. Villeneuve, Z. Zhang, D. McGhan, H. Sun, and M. O’Sullivan, “WDM performance and PMD tolerance of a coherent 40-Gbit/s dual-polarization QPSK transceiver,” J. Lightwave Technol. 26(1), 168–175 (2008).
    [CrossRef]
  12. M. Shtaif, “Performance degradation in coherent polarization multiplexed systems as a result of polarization dependent loss,” Opt. Express 16(18), 13918–13932 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-18-13918 .
    [CrossRef] [PubMed]
  13. L. E. Nelson, T. N. Nielsen, and H. Kogelnik, “Observation of PMD induced coherent crosstalk in polarization-multiplexed transmission,” IEEE Photon. Technol. Lett. 13(7), 738–740 (2001).
    [CrossRef]
  14. L. Nelson and H. Kogelnik, “Coherent crosstalk impairments in polarization multiplexed transmission due to polarization mode dispersion,” Opt. Express 7, 350–361 (2000), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-7-10-350 .
    [CrossRef] [PubMed]
  15. D. van den Borne, N. E. Hecker-Denschlag, G. D. Khoe, and H. de Waardt, “PMD-induced transmission penalties in polarization-multiplexed transmission,” J. Lightwave Technol. 23(12), 4004–4015 (2005).
    [CrossRef]
  16. Z. Wang, and C. Xie, “PMD and PDL tolerance of polarization division multiplexed signals with direct detection,” in Proc. ECOC 2008, Brussels, Belguim, 2008, paper We.3.E.2.
  17. S. Hinz, D. Sandel, F. Wuest, and R. Noé, “PMD tolerance of polarization division multiplex transmission using return-to-zero coding,” Opt. Express 9, 136–140 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=oe-9-3-136 .
    [CrossRef] [PubMed]
  18. D. van den Borne, S. L. Jansen, E. Gottwald, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “1.6-b/s/Hz spectrally efficient transmission over 1700 km of SSMF using 40×85.6-Gb/s POLMUX-RZ-DQPSK,” J. Lightwave Technol. 25(1), 222–232 (2007).
    [CrossRef]
  19. H. C. Ji, J. H. Lee, H. Kim, P. K. Park, and Y. C. Chung, “Effect of PDL-induced coherent crosstalk on polarization-division-multiplexed direct-detection systems,” Opt. Express 17(3), 1169–1177 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-3-1169 .
    [CrossRef] [PubMed]
  20. M. Shtaif and O. Rosenberg, “Polarization-dependent loss as a waveform-distorting mechanism and its effect on fiber-optic systems,” J. Lightwave Technol. 23(2), 923–930 (2005).
    [CrossRef]
  21. C. Xie, L. F. Mollenauer, and L. Möller, “Pulse distortion induced by polarization-mode dispersion and polarization-dependent loss in lightwave transmission systems,” IEEE Photon. Technol. Lett. 15(8), 1073–1075 (2003).
    [CrossRef]
  22. L. Chen, Z. Zhang, and X. Bao, “Combined PMD-PDL effects on BERs in simplified optical systems: an analytical approach,” Opt. Express 15(5), 2106–2119 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-5-2106 .
    [CrossRef] [PubMed]
  23. C. R. Menyuk, D. Wang, and A. N. Pilipetskii, “Repolarization of polarization-scrambled optical signals due to polarization dependent loss,” IEEE Photon. Technol. Lett. 9(9), 1247–1249 (1997).
    [CrossRef]
  24. C. Xie, L. Möller, H. Haunstein, and S. Hunsche, “Comparison of system tolerance to polarization-mode dispersion between different modulation formats,” IEEE Photon. Technol. Lett. 15(8), 1168–1170 (2003).
    [CrossRef]
  25. H. Kogelnik, R. M. Jopson, and L. E. Nelson, Optical Fiber Telecommunications IV-B (Academic, 2002), Chap.15.

2009 (2)

2008 (4)

2007 (2)

2005 (2)

2004 (2)

M. Shtaif and A. Mecozzi, “Polarization-dependent loss and its effect on the signal-to-noise ratio in fiber-optic systems,” IEEE Photon. Technol. Lett. 16(2), 671–673 (2004).
[CrossRef]

A. Mecozzi and M. Shtaif, “Signal-to-noise-ratio degradation caused by polarization-dependent loss and the effect of dynamic gain equalization,” J. Lightwave Technol. 22(8), 1856–1871 (2004).
[CrossRef]

2003 (3)

C. Xie, L. F. Mollenauer, and L. Möller, “Pulse distortion induced by polarization-mode dispersion and polarization-dependent loss in lightwave transmission systems,” IEEE Photon. Technol. Lett. 15(8), 1073–1075 (2003).
[CrossRef]

C. Xie, L. Möller, H. Haunstein, and S. Hunsche, “Comparison of system tolerance to polarization-mode dispersion between different modulation formats,” IEEE Photon. Technol. Lett. 15(8), 1168–1170 (2003).
[CrossRef]

C. Xie and L. F. Mollenauer, “Performance degradation induced by polarization dependent loss in optical fiber transmission systems with and without polarization mode dispersion,” J. Lightwave Technol. 21(9), 1953–1957 (2003).
[CrossRef]

2002 (1)

2001 (2)

S. Hinz, D. Sandel, F. Wuest, and R. Noé, “PMD tolerance of polarization division multiplex transmission using return-to-zero coding,” Opt. Express 9, 136–140 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=oe-9-3-136 .
[CrossRef] [PubMed]

L. E. Nelson, T. N. Nielsen, and H. Kogelnik, “Observation of PMD induced coherent crosstalk in polarization-multiplexed transmission,” IEEE Photon. Technol. Lett. 13(7), 738–740 (2001).
[CrossRef]

2000 (1)

1997 (1)

C. R. Menyuk, D. Wang, and A. N. Pilipetskii, “Repolarization of polarization-scrambled optical signals due to polarization dependent loss,” IEEE Photon. Technol. Lett. 9(9), 1247–1249 (1997).
[CrossRef]

1996 (1)

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1 Tb/s transmission experiment,” IEEE Photon. Technol. Lett. 8(9), 1264–1266 (1996).
[CrossRef]

Andrekson, P. A.

Bao, X.

Bigo, S.

Burrows, E. C.

Centanni, J. C.

Charlet, G.

Chen, L.

Chraplyvy, A. R.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1 Tb/s transmission experiment,” IEEE Photon. Technol. Lett. 8(9), 1264–1266 (1996).
[CrossRef]

Chung, Y. C.

de Waardt, H.

Derosier, R. M.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1 Tb/s transmission experiment,” IEEE Photon. Technol. Lett. 8(9), 1264–1266 (1996).
[CrossRef]

Doerr, C. R.

Feuer, M. D.

Foo, S.

Forghieri, F.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1 Tb/s transmission experiment,” IEEE Photon. Technol. Lett. 8(9), 1264–1266 (1996).
[CrossRef]

Gnauck, A. H.

A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals,” J. Lightwave Technol. 26(1), 79–84 (2008).
[CrossRef]

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1 Tb/s transmission experiment,” IEEE Photon. Technol. Lett. 8(9), 1264–1266 (1996).
[CrossRef]

Gottwald, E.

Hanson, D.

Haunstein, H.

C. Xie, L. Möller, H. Haunstein, and S. Hunsche, “Comparison of system tolerance to polarization-mode dispersion between different modulation formats,” IEEE Photon. Technol. Lett. 15(8), 1168–1170 (2003).
[CrossRef]

Hecker-Denschlag, N. E.

Higuma, K.

Hinz, S.

Hunsche, S.

C. Xie, L. Möller, H. Haunstein, and S. Hunsche, “Comparison of system tolerance to polarization-mode dispersion between different modulation formats,” IEEE Photon. Technol. Lett. 15(8), 1168–1170 (2003).
[CrossRef]

Jansen, S. L.

Ji, H. C.

Jopson, R. M.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1 Tb/s transmission experiment,” IEEE Photon. Technol. Lett. 8(9), 1264–1266 (1996).
[CrossRef]

Karlsson, M.

Kawanishi, T.

Khoe, G. D.

Kim, H.

Kogelnik, H.

L. E. Nelson, T. N. Nielsen, and H. Kogelnik, “Observation of PMD induced coherent crosstalk in polarization-multiplexed transmission,” IEEE Photon. Technol. Lett. 13(7), 738–740 (2001).
[CrossRef]

L. Nelson and H. Kogelnik, “Coherent crosstalk impairments in polarization multiplexed transmission due to polarization mode dispersion,” Opt. Express 7, 350–361 (2000), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-7-10-350 .
[CrossRef] [PubMed]

Krummrich, P. M.

Laperle, C.

Lee, J. H.

Lucero, A. J.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1 Tb/s transmission experiment,” IEEE Photon. Technol. Lett. 8(9), 1264–1266 (1996).
[CrossRef]

Magill, P. D.

Mardoyan, H.

McCormick, A. R.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1 Tb/s transmission experiment,” IEEE Photon. Technol. Lett. 8(9), 1264–1266 (1996).
[CrossRef]

McGhan, D.

Mecozzi, A.

A. Mecozzi and M. Shtaif, “Signal-to-noise-ratio degradation caused by polarization-dependent loss and the effect of dynamic gain equalization,” J. Lightwave Technol. 22(8), 1856–1871 (2004).
[CrossRef]

M. Shtaif and A. Mecozzi, “Polarization-dependent loss and its effect on the signal-to-noise ratio in fiber-optic systems,” IEEE Photon. Technol. Lett. 16(2), 671–673 (2004).
[CrossRef]

Menyuk, C. R.

C. R. Menyuk, D. Wang, and A. N. Pilipetskii, “Repolarization of polarization-scrambled optical signals due to polarization dependent loss,” IEEE Photon. Technol. Lett. 9(9), 1247–1249 (1997).
[CrossRef]

Mollenauer, L. F.

C. Xie, L. F. Mollenauer, and L. Möller, “Pulse distortion induced by polarization-mode dispersion and polarization-dependent loss in lightwave transmission systems,” IEEE Photon. Technol. Lett. 15(8), 1073–1075 (2003).
[CrossRef]

C. Xie and L. F. Mollenauer, “Performance degradation induced by polarization dependent loss in optical fiber transmission systems with and without polarization mode dispersion,” J. Lightwave Technol. 21(9), 1953–1957 (2003).
[CrossRef]

Möller, L.

C. Xie, L. F. Mollenauer, and L. Möller, “Pulse distortion induced by polarization-mode dispersion and polarization-dependent loss in lightwave transmission systems,” IEEE Photon. Technol. Lett. 15(8), 1073–1075 (2003).
[CrossRef]

C. Xie, L. Möller, H. Haunstein, and S. Hunsche, “Comparison of system tolerance to polarization-mode dispersion between different modulation formats,” IEEE Photon. Technol. Lett. 15(8), 1168–1170 (2003).
[CrossRef]

Moyer, M.

Nelson, L.

Nelson, L. E.

Nielsen, T. N.

L. E. Nelson, T. N. Nielsen, and H. Kogelnik, “Observation of PMD induced coherent crosstalk in polarization-multiplexed transmission,” IEEE Photon. Technol. Lett. 13(7), 738–740 (2001).
[CrossRef]

Noé, R.

O’Sullivan, M.

Pardo, O. B.

Park, P. K.

Pilipetskii, A. N.

C. R. Menyuk, D. Wang, and A. N. Pilipetskii, “Repolarization of polarization-scrambled optical signals due to polarization dependent loss,” IEEE Photon. Technol. Lett. 9(9), 1247–1249 (1997).
[CrossRef]

Renaudier, J.

Rosenberg, O.

Sakamoto, T.

Salsi, M.

Sandel, D.

Shtaif, M.

Sulhoff, J. W.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1 Tb/s transmission experiment,” IEEE Photon. Technol. Lett. 8(9), 1264–1266 (1996).
[CrossRef]

Sullivan, M. O.

Sun, H.

Sun, Y.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1 Tb/s transmission experiment,” IEEE Photon. Technol. Lett. 8(9), 1264–1266 (1996).
[CrossRef]

Sunnerud, H.

Tkach, R. W.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1 Tb/s transmission experiment,” IEEE Photon. Technol. Lett. 8(9), 1264–1266 (1996).
[CrossRef]

Tran, P.

van den Borne, D.

Villeneuve, B.

Wang, D.

C. R. Menyuk, D. Wang, and A. N. Pilipetskii, “Repolarization of polarization-scrambled optical signals due to polarization dependent loss,” IEEE Photon. Technol. Lett. 9(9), 1247–1249 (1997).
[CrossRef]

Winzer, P. J.

Wolf, C.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1 Tb/s transmission experiment,” IEEE Photon. Technol. Lett. 8(9), 1264–1266 (1996).
[CrossRef]

Woodward, S. L.

Wuest, F.

Xie, C.

C. Xie, L. F. Mollenauer, and L. Möller, “Pulse distortion induced by polarization-mode dispersion and polarization-dependent loss in lightwave transmission systems,” IEEE Photon. Technol. Lett. 15(8), 1073–1075 (2003).
[CrossRef]

C. Xie, L. Möller, H. Haunstein, and S. Hunsche, “Comparison of system tolerance to polarization-mode dispersion between different modulation formats,” IEEE Photon. Technol. Lett. 15(8), 1168–1170 (2003).
[CrossRef]

C. Xie and L. F. Mollenauer, “Performance degradation induced by polarization dependent loss in optical fiber transmission systems with and without polarization mode dispersion,” J. Lightwave Technol. 21(9), 1953–1957 (2003).
[CrossRef]

H. Sunnerud, M. Karlsson, C. Xie, and P. A. Andrekson, “Polarization mode dispersion in high-speed fiber-optic transmission systems,” J. Lightwave Technol. 20(12), 2204–2219 (2002).
[CrossRef]

Zhang, Z.

Zhou, X.

Zyskind, J. L.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1 Tb/s transmission experiment,” IEEE Photon. Technol. Lett. 8(9), 1264–1266 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1 Tb/s transmission experiment,” IEEE Photon. Technol. Lett. 8(9), 1264–1266 (1996).
[CrossRef]

M. Shtaif and A. Mecozzi, “Polarization-dependent loss and its effect on the signal-to-noise ratio in fiber-optic systems,” IEEE Photon. Technol. Lett. 16(2), 671–673 (2004).
[CrossRef]

C. Xie, L. F. Mollenauer, and L. Möller, “Pulse distortion induced by polarization-mode dispersion and polarization-dependent loss in lightwave transmission systems,” IEEE Photon. Technol. Lett. 15(8), 1073–1075 (2003).
[CrossRef]

C. R. Menyuk, D. Wang, and A. N. Pilipetskii, “Repolarization of polarization-scrambled optical signals due to polarization dependent loss,” IEEE Photon. Technol. Lett. 9(9), 1247–1249 (1997).
[CrossRef]

C. Xie, L. Möller, H. Haunstein, and S. Hunsche, “Comparison of system tolerance to polarization-mode dispersion between different modulation formats,” IEEE Photon. Technol. Lett. 15(8), 1168–1170 (2003).
[CrossRef]

L. E. Nelson, T. N. Nielsen, and H. Kogelnik, “Observation of PMD induced coherent crosstalk in polarization-multiplexed transmission,” IEEE Photon. Technol. Lett. 13(7), 738–740 (2001).
[CrossRef]

J. Lightwave Technol. (10)

H. Sunnerud, M. Karlsson, C. Xie, and P. A. Andrekson, “Polarization mode dispersion in high-speed fiber-optic transmission systems,” J. Lightwave Technol. 20(12), 2204–2219 (2002).
[CrossRef]

C. Xie and L. F. Mollenauer, “Performance degradation induced by polarization dependent loss in optical fiber transmission systems with and without polarization mode dispersion,” J. Lightwave Technol. 21(9), 1953–1957 (2003).
[CrossRef]

A. Mecozzi and M. Shtaif, “Signal-to-noise-ratio degradation caused by polarization-dependent loss and the effect of dynamic gain equalization,” J. Lightwave Technol. 22(8), 1856–1871 (2004).
[CrossRef]

M. Shtaif and O. Rosenberg, “Polarization-dependent loss as a waveform-distorting mechanism and its effect on fiber-optic systems,” J. Lightwave Technol. 23(2), 923–930 (2005).
[CrossRef]

D. van den Borne, N. E. Hecker-Denschlag, G. D. Khoe, and H. de Waardt, “PMD-induced transmission penalties in polarization-multiplexed transmission,” J. Lightwave Technol. 23(12), 4004–4015 (2005).
[CrossRef]

D. van den Borne, S. L. Jansen, E. Gottwald, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “1.6-b/s/Hz spectrally efficient transmission over 1700 km of SSMF using 40×85.6-Gb/s POLMUX-RZ-DQPSK,” J. Lightwave Technol. 25(1), 222–232 (2007).
[CrossRef]

C. Laperle, B. Villeneuve, Z. Zhang, D. McGhan, H. Sun, and M. O’Sullivan, “WDM performance and PMD tolerance of a coherent 40-Gbit/s dual-polarization QPSK transceiver,” J. Lightwave Technol. 26(1), 168–175 (2008).
[CrossRef]

J. Renaudier, G. Charlet, M. Salsi, O. B. Pardo, H. Mardoyan, P. Tran, and S. Bigo, “Linear fiber impairments mitigation of 40-Gbit/s polarization-multiplexed QPSK by digital processing in a coherent receiver,” J. Lightwave Technol. 26(1), 36–42 (2008).
[CrossRef]

A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals,” J. Lightwave Technol. 26(1), 79–84 (2008).
[CrossRef]

L. E. Nelson, S. L. Woodward, S. Foo, X. Zhou, M. D. Feuer, D. Hanson, D. McGhan, H. Sun, M. Moyer, M. O. Sullivan, and P. D. Magill, “Performance of a 46-Gbps dual-polarization QPSK transceiver with real-time coherent equalization over high PMD fiber,” J. Lightwave Technol. 27(3), 158–167 (2009).
[CrossRef]

Opt. Express (5)

Other (4)

Z. Wang, and C. Xie, “PMD and PDL tolerance of polarization division multiplexed signals with direct detection,” in Proc. ECOC 2008, Brussels, Belguim, 2008, paper We.3.E.2.

H. Kogelnik, R. M. Jopson, and L. E. Nelson, Optical Fiber Telecommunications IV-B (Academic, 2002), Chap.15.

O. Vassilieva, T. Hoshida, X. Wang, J. Rasmussen, H. Miyata, and T. Naito, “Impact of polarization dependent loss and cross-phase modulation on polarization multiplexed DQPSK Signals,”in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThU6. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OThU6

G. Charlet, J. Renaudier, M. Salsi, H. Mardoyan, P. Tran, and S. Bigo, “Efficient mitigation of fiber impairments in an ultra-long haul transmission of 40Gbit/s polarization-multiplexed data, by digital processing in a coherent receiver,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP17. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2007-PDP17

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

The effect of PDL on the output angle between the two originally orthogonal PDM channels. (a) Schematic diagram. (b) Evolution of output angle versus input polarization with different PDL values.

Fig. 2
Fig. 2

The SOP transformation induced by PDL.

Fig. 3
Fig. 3

The angles between the SOPs of the center frequency components of the two channels and the PMD vector in the Stokes space. The angles in the Stokes space are twice as large as those in the Jones space (e. g., two perpendicular vectors in the Stokes space are 45o to each other if transferred to the Jones space). Ω1 and Ω1 : the only pair of PMD vectors which have the smallest angle 2(γ45o) with channel B while perpendicular to channel A ; Ω2 and Ω2 : the only pair of PMD vectors perpendicular to both channels A and B . For all the other vectors with their tips on the circle labeled with arrows, they are perpendicular to channel A and with a angle between 2(γ45o) and 90o relative to channel B .

Fig. 4
Fig. 4

Experimental setup of the PDM system. CW: Continuous wave; MOD: Modulator; PC: Polarization controller; VOA: Variable optical attenuator; PBC(S): Polarization beam combiner (splitter); ASE: Amplified spontaneous emission; OSA: Optical spectrum analyzer.

Fig. 5
Fig. 5

Measured OSNR penalties at BER = 10−3 vs. DGD. (a) NRZ-OOK signals. (b) RZ-OOK signals.

Fig. 6
Fig. 6

Measured PDM NRZ-OOK signal OSNR penalties at BER = 10−3 vs. PDL.

Fig. 7
Fig. 7

The evolution of the SOPs of the signals in the PMD-PDL regime.

Fig. 8
Fig. 8

Measured PDM NRZ-OOK signal OSNR penalties at BER = 10−3 with the PMD-PDL regime.

Fig. 9
Fig. 9

Measured output DOP of one PMD-degraded channel passing through the PDLE versus PDL with different launch angles. Single polarization is used in this measurement.

Fig. 10
Fig. 10

Measured PDM NRZ-OOK signal OSNR penalties at BER = 10−3 with the PDL-PMD regime.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Eout(ω)=UpolUpmdEin(ω)
Aout(ω)=Ain(ω)[cos(ωΔτ2)jcos(2θ)sin(ωΔτ2)]+jBin(ω)sin(2θ)sin(ωΔτ2)
{Ain=sinθx^+cosθy^Bin=cosθx^+sinθy^
{Aout=sinθ1αx^+cosθ1+αy^Bout=cosθ1αx^+sinθ1+αy^
Γ=10log101+α1α
γ=arctan(10Γ20tanθ)+arctan(10Γ20cotθ)

Metrics