Abstract

We propose a refractive-index sensor that operates on the principle of exciting the long-range surface plasmon mode of a metal-coated waveguide with a long-period grating formed in the waveguide, where the wavelength at which the mode excitation occurs serves as a measure of the refractive index of the external medium. We analyze the sensor with a coupled-mode theory and highlight the effects of the waveguide parameters on the loss of the surface plasmon mode and the performance of the sensor. Our results show that the sensor can provide a sharp resonance for high precision measurements and a high sensitivity comparable to that of an optimized bulk prism-based surface plasmon sensor. Our sensor also offers much flexibility in the choice of waveguide parameters for different applications.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
    [CrossRef]
  2. H. K. Patrick, A. D. Kersey, and F. Bucholtz, "Analysis of the response of long period fiber gratings to external index of refraction," J. Lightwave Technol. 16, 1606-1612 (1998).
    [CrossRef]
  3. S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
    [CrossRef]
  4. V. Rastogi and K. S. Chiang, "Long-period gratings in planar optical waveguides," Appl. Opt. 41, 6351-6355 (2002).
    [CrossRef] [PubMed]
  5. M.-S. Kwon and S.-Y. Shin, "Tunable polymer waveguide notch filter using a thermooptic long-period grating," IEEE Photon. Technol. Lett. 17, 145-147 (2005).
    [CrossRef]
  6. K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, "Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide," IEEE Photon. Technol. Lett. 18, 1109-1111 (2006).
    [CrossRef]
  7. Q. Liu, K. S. Chiang, K. P. Lor and C. K. Chow, "Temperature sensitivity of a long-period waveguide grating in a channel waveguide," Appl. Phys. Lett. 86, 241115 (2005).
    [CrossRef]
  8. Y. M. Chu, K. S. Chiang and Q. Liu, "Widely tunable optical bandpass filter by use of polymer long-period waveguide gratings," Appl. Opt. 45, 2755-2760, (2006).
    [CrossRef] [PubMed]
  9. W. Jin, K. S. Chiang, and Q. Liu, "Electro-optic long-period waveguide gratings in lithium niobate," Opt. Express 16,20409-20417 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-25-20409.
    [CrossRef] [PubMed]
  10. Y. Bai, Q. Liu, K. P. Lor, and K. S. Chiang, "Widely tunable long-period waveguide grating couplers," Opt. Express 14, 12644-12654 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-12644.
    [CrossRef] [PubMed]
  11. C. K. Chow, K. S. Chiang, Q. Liu, K. P. Lor, and H. P. Chan, "UV-written long-period waveguide grating coupler for broadband add/drop multiplexing," Opt. Commun. 282, 378-381 (2009).
    [CrossRef]
  12. M. S. Kwon and S. Y. Shin, "Refractive index sensitivity measurement of a long-period waveguide grating," IEEE Photon. Technol. Lett. 17, 1923-1925 (2005).
    [CrossRef]
  13. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
    [CrossRef]
  14. J. Homola, S. Yee, G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
    [CrossRef]
  15. J. Homola, "Present and future of surface plasmon resonance biosensors," Anal. Bioanal. Chem. 377, 528-539 (2003).
    [CrossRef] [PubMed]
  16. K. R. Welford and J. R. Sambles, "Coupled surface plasmons in a symmetric system," J. Mod. Opt. 35,1467-1483 (1988).
    [CrossRef]
  17. K. Matsubara, S. Kawata, and S. Minami, "Multilayer system for a high-precision surface plasmon resonance sensor," Opt. Lett. 15, 75-77 (1990).
    [CrossRef] [PubMed]
  18. R. Slavík and J. Homola, "Optical multilayers for LED-based surface plasmon resonance sensors," Appl. Opt. 45, 3752-3759 (2006).
    [CrossRef] [PubMed]
  19. R. Slavík and J. Homola, "Ultrahigh resolution long range surface plasmon-based sensor," Sens. Actuators B 123, 10-12 (2007).
    [CrossRef]
  20. M. N. Weiss, R. Srivastava, and H. Groger, "Experimental investigation of surface plasmon-based integrated-optic humidity sensor," Electron. Lett. 32, 842-843 (1996).
    [CrossRef]
  21. O. Hugon, P. Benech, and H. Gagnaire, "Surface plasmon chemical/biological sensor in integrated optics," Sens. Actuators B 51, 316-320 (1998).
    [CrossRef]
  22. R. Slavík, J. Homola, J. Ctyroky, E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Actuators B 74, 106-111 (2001).
    [CrossRef]
  23. Rajan, A. K. Sharma, and B. D. Gupta, "Fibre optic sensor based on long-range surface plasmon resonance: a theoretical analysis," J. Opt. A: Pure Appl. Opt. 9, 682-687 (2007).
    [CrossRef]
  24. G. Nemova and R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation with a long period grating," J. Opt. Soc. Am. B 24, 2696-2701 (2007).
    [CrossRef]
  25. M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, "Tunable waveguide transmission gratings based on active gain control," IEEE J. Quantum Electron. 40, 1715-1724 (2004).
    [CrossRef]
  26. E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  27. E. Anemogiannis and E. N. Glytsis, "Multilayer waveguide: efficient numerical analysis of general structure," J. Lightwave Technol. 10, 1344-1351 (1992).
    [CrossRef]
  28. N. M. Lyndin, I. F. Salakhutdinov, V. A. Sychugov, B. A. Usievich, F. A. Pudonin, and O. Parriaux, "Long-range surface plasmons in asymmetric layered metal-dielectric structures," Sens. Actuators B 54,37-42 (1999).
    [CrossRef]
  29. Q. Liu, K. S. Chiang, and V. Rastogi, "Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence," J. Lightwave Technol. 21, 3399-3405 (2003).
    [CrossRef]
  30. J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006).
    [CrossRef]
  31. A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Lüth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguide," Thin Solid Films 276, 143-146 (1996).
    [CrossRef]
  32. MY Polymers Ltd., http://www.mypolymers.com.

2009 (1)

C. K. Chow, K. S. Chiang, Q. Liu, K. P. Lor, and H. P. Chan, "UV-written long-period waveguide grating coupler for broadband add/drop multiplexing," Opt. Commun. 282, 378-381 (2009).
[CrossRef]

2008 (1)

2007 (3)

G. Nemova and R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation with a long period grating," J. Opt. Soc. Am. B 24, 2696-2701 (2007).
[CrossRef]

R. Slavík and J. Homola, "Ultrahigh resolution long range surface plasmon-based sensor," Sens. Actuators B 123, 10-12 (2007).
[CrossRef]

Rajan, A. K. Sharma, and B. D. Gupta, "Fibre optic sensor based on long-range surface plasmon resonance: a theoretical analysis," J. Opt. A: Pure Appl. Opt. 9, 682-687 (2007).
[CrossRef]

2006 (4)

2005 (3)

Q. Liu, K. S. Chiang, K. P. Lor and C. K. Chow, "Temperature sensitivity of a long-period waveguide grating in a channel waveguide," Appl. Phys. Lett. 86, 241115 (2005).
[CrossRef]

M. S. Kwon and S. Y. Shin, "Refractive index sensitivity measurement of a long-period waveguide grating," IEEE Photon. Technol. Lett. 17, 1923-1925 (2005).
[CrossRef]

M.-S. Kwon and S.-Y. Shin, "Tunable polymer waveguide notch filter using a thermooptic long-period grating," IEEE Photon. Technol. Lett. 17, 145-147 (2005).
[CrossRef]

2004 (1)

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, "Tunable waveguide transmission gratings based on active gain control," IEEE J. Quantum Electron. 40, 1715-1724 (2004).
[CrossRef]

2003 (3)

J. Homola, "Present and future of surface plasmon resonance biosensors," Anal. Bioanal. Chem. 377, 528-539 (2003).
[CrossRef] [PubMed]

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

Q. Liu, K. S. Chiang, and V. Rastogi, "Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence," J. Lightwave Technol. 21, 3399-3405 (2003).
[CrossRef]

2002 (1)

2001 (1)

R. Slavík, J. Homola, J. Ctyroky, E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Actuators B 74, 106-111 (2001).
[CrossRef]

1999 (2)

J. Homola, S. Yee, G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

N. M. Lyndin, I. F. Salakhutdinov, V. A. Sychugov, B. A. Usievich, F. A. Pudonin, and O. Parriaux, "Long-range surface plasmons in asymmetric layered metal-dielectric structures," Sens. Actuators B 54,37-42 (1999).
[CrossRef]

1998 (2)

H. K. Patrick, A. D. Kersey, and F. Bucholtz, "Analysis of the response of long period fiber gratings to external index of refraction," J. Lightwave Technol. 16, 1606-1612 (1998).
[CrossRef]

O. Hugon, P. Benech, and H. Gagnaire, "Surface plasmon chemical/biological sensor in integrated optics," Sens. Actuators B 51, 316-320 (1998).
[CrossRef]

1996 (3)

M. N. Weiss, R. Srivastava, and H. Groger, "Experimental investigation of surface plasmon-based integrated-optic humidity sensor," Electron. Lett. 32, 842-843 (1996).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Lüth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguide," Thin Solid Films 276, 143-146 (1996).
[CrossRef]

1992 (1)

E. Anemogiannis and E. N. Glytsis, "Multilayer waveguide: efficient numerical analysis of general structure," J. Lightwave Technol. 10, 1344-1351 (1992).
[CrossRef]

1990 (1)

1988 (1)

K. R. Welford and J. R. Sambles, "Coupled surface plasmons in a symmetric system," J. Mod. Opt. 35,1467-1483 (1988).
[CrossRef]

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

Anemogiannis, E.

E. Anemogiannis and E. N. Glytsis, "Multilayer waveguide: efficient numerical analysis of general structure," J. Lightwave Technol. 10, 1344-1351 (1992).
[CrossRef]

Arens-Fischer, R.

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Lüth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguide," Thin Solid Films 276, 143-146 (1996).
[CrossRef]

Arrand, H. F.

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Lüth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguide," Thin Solid Films 276, 143-146 (1996).
[CrossRef]

Bai, Y.

Benech, P.

O. Hugon, P. Benech, and H. Gagnaire, "Surface plasmon chemical/biological sensor in integrated optics," Sens. Actuators B 51, 316-320 (1998).
[CrossRef]

Benson, T. M.

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Lüth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguide," Thin Solid Films 276, 143-146 (1996).
[CrossRef]

Berger, M. G.

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Lüth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguide," Thin Solid Films 276, 143-146 (1996).
[CrossRef]

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Brynda, E.

R. Slavík, J. Homola, J. Ctyroky, E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Actuators B 74, 106-111 (2001).
[CrossRef]

Bucholtz, F.

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

Canham, L. T.

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Lüth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguide," Thin Solid Films 276, 143-146 (1996).
[CrossRef]

Chan, H. P.

C. K. Chow, K. S. Chiang, Q. Liu, K. P. Lor, and H. P. Chan, "UV-written long-period waveguide grating coupler for broadband add/drop multiplexing," Opt. Commun. 282, 378-381 (2009).
[CrossRef]

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, "Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide," IEEE Photon. Technol. Lett. 18, 1109-1111 (2006).
[CrossRef]

Chiang, K. S.

C. K. Chow, K. S. Chiang, Q. Liu, K. P. Lor, and H. P. Chan, "UV-written long-period waveguide grating coupler for broadband add/drop multiplexing," Opt. Commun. 282, 378-381 (2009).
[CrossRef]

W. Jin, K. S. Chiang, and Q. Liu, "Electro-optic long-period waveguide gratings in lithium niobate," Opt. Express 16,20409-20417 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-25-20409.
[CrossRef] [PubMed]

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, "Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide," IEEE Photon. Technol. Lett. 18, 1109-1111 (2006).
[CrossRef]

Y. Bai, Q. Liu, K. P. Lor, and K. S. Chiang, "Widely tunable long-period waveguide grating couplers," Opt. Express 14, 12644-12654 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-12644.
[CrossRef] [PubMed]

Y. M. Chu, K. S. Chiang and Q. Liu, "Widely tunable optical bandpass filter by use of polymer long-period waveguide gratings," Appl. Opt. 45, 2755-2760, (2006).
[CrossRef] [PubMed]

Q. Liu, K. S. Chiang, K. P. Lor and C. K. Chow, "Temperature sensitivity of a long-period waveguide grating in a channel waveguide," Appl. Phys. Lett. 86, 241115 (2005).
[CrossRef]

Q. Liu, K. S. Chiang, and V. Rastogi, "Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence," J. Lightwave Technol. 21, 3399-3405 (2003).
[CrossRef]

V. Rastogi and K. S. Chiang, "Long-period gratings in planar optical waveguides," Appl. Opt. 41, 6351-6355 (2002).
[CrossRef] [PubMed]

Chow, C. K.

C. K. Chow, K. S. Chiang, Q. Liu, K. P. Lor, and H. P. Chan, "UV-written long-period waveguide grating coupler for broadband add/drop multiplexing," Opt. Commun. 282, 378-381 (2009).
[CrossRef]

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, "Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide," IEEE Photon. Technol. Lett. 18, 1109-1111 (2006).
[CrossRef]

Q. Liu, K. S. Chiang, K. P. Lor and C. K. Chow, "Temperature sensitivity of a long-period waveguide grating in a channel waveguide," Appl. Phys. Lett. 86, 241115 (2005).
[CrossRef]

Chu, Y. M.

Ctyroky, J.

R. Slavík, J. Homola, J. Ctyroky, E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Actuators B 74, 106-111 (2001).
[CrossRef]

Daxhelet, X.

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, "Tunable waveguide transmission gratings based on active gain control," IEEE J. Quantum Electron. 40, 1715-1724 (2004).
[CrossRef]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Gagnaire, H.

O. Hugon, P. Benech, and H. Gagnaire, "Surface plasmon chemical/biological sensor in integrated optics," Sens. Actuators B 51, 316-320 (1998).
[CrossRef]

Gauglitz, G.

J. Homola, S. Yee, G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Glytsis, E. N.

E. Anemogiannis and E. N. Glytsis, "Multilayer waveguide: efficient numerical analysis of general structure," J. Lightwave Technol. 10, 1344-1351 (1992).
[CrossRef]

Groger, H.

M. N. Weiss, R. Srivastava, and H. Groger, "Experimental investigation of surface plasmon-based integrated-optic humidity sensor," Electron. Lett. 32, 842-843 (1996).
[CrossRef]

Grubsky, V.

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, "Tunable waveguide transmission gratings based on active gain control," IEEE J. Quantum Electron. 40, 1715-1724 (2004).
[CrossRef]

Homola, J.

R. Slavík and J. Homola, "Ultrahigh resolution long range surface plasmon-based sensor," Sens. Actuators B 123, 10-12 (2007).
[CrossRef]

R. Slavík and J. Homola, "Optical multilayers for LED-based surface plasmon resonance sensors," Appl. Opt. 45, 3752-3759 (2006).
[CrossRef] [PubMed]

J. Homola, "Present and future of surface plasmon resonance biosensors," Anal. Bioanal. Chem. 377, 528-539 (2003).
[CrossRef] [PubMed]

R. Slavík, J. Homola, J. Ctyroky, E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Actuators B 74, 106-111 (2001).
[CrossRef]

J. Homola, S. Yee, G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Hugon, O.

O. Hugon, P. Benech, and H. Gagnaire, "Surface plasmon chemical/biological sensor in integrated optics," Sens. Actuators B 51, 316-320 (1998).
[CrossRef]

James, S. W.

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

Jin, W.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Kashyap, R.

Kawata, S.

Kersey, A. D.

Kulishov, M.

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, "Tunable waveguide transmission gratings based on active gain control," IEEE J. Quantum Electron. 40, 1715-1724 (2004).
[CrossRef]

Kwon, M. S.

M. S. Kwon and S. Y. Shin, "Refractive index sensitivity measurement of a long-period waveguide grating," IEEE Photon. Technol. Lett. 17, 1923-1925 (2005).
[CrossRef]

Kwon, M.-S.

M.-S. Kwon and S.-Y. Shin, "Tunable polymer waveguide notch filter using a thermooptic long-period grating," IEEE Photon. Technol. Lett. 17, 145-147 (2005).
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Liu, Q.

C. K. Chow, K. S. Chiang, Q. Liu, K. P. Lor, and H. P. Chan, "UV-written long-period waveguide grating coupler for broadband add/drop multiplexing," Opt. Commun. 282, 378-381 (2009).
[CrossRef]

W. Jin, K. S. Chiang, and Q. Liu, "Electro-optic long-period waveguide gratings in lithium niobate," Opt. Express 16,20409-20417 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-25-20409.
[CrossRef] [PubMed]

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, "Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide," IEEE Photon. Technol. Lett. 18, 1109-1111 (2006).
[CrossRef]

Y. M. Chu, K. S. Chiang and Q. Liu, "Widely tunable optical bandpass filter by use of polymer long-period waveguide gratings," Appl. Opt. 45, 2755-2760, (2006).
[CrossRef] [PubMed]

Y. Bai, Q. Liu, K. P. Lor, and K. S. Chiang, "Widely tunable long-period waveguide grating couplers," Opt. Express 14, 12644-12654 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-12644.
[CrossRef] [PubMed]

Q. Liu, K. S. Chiang, K. P. Lor and C. K. Chow, "Temperature sensitivity of a long-period waveguide grating in a channel waveguide," Appl. Phys. Lett. 86, 241115 (2005).
[CrossRef]

Q. Liu, K. S. Chiang, and V. Rastogi, "Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence," J. Lightwave Technol. 21, 3399-3405 (2003).
[CrossRef]

Loni, A.

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Lüth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguide," Thin Solid Films 276, 143-146 (1996).
[CrossRef]

Lor, K. P.

C. K. Chow, K. S. Chiang, Q. Liu, K. P. Lor, and H. P. Chan, "UV-written long-period waveguide grating coupler for broadband add/drop multiplexing," Opt. Commun. 282, 378-381 (2009).
[CrossRef]

Y. Bai, Q. Liu, K. P. Lor, and K. S. Chiang, "Widely tunable long-period waveguide grating couplers," Opt. Express 14, 12644-12654 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-12644.
[CrossRef] [PubMed]

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, "Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide," IEEE Photon. Technol. Lett. 18, 1109-1111 (2006).
[CrossRef]

Q. Liu, K. S. Chiang, K. P. Lor and C. K. Chow, "Temperature sensitivity of a long-period waveguide grating in a channel waveguide," Appl. Phys. Lett. 86, 241115 (2005).
[CrossRef]

Lüth, H.

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Lüth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguide," Thin Solid Films 276, 143-146 (1996).
[CrossRef]

Lyndin, N. M.

N. M. Lyndin, I. F. Salakhutdinov, V. A. Sychugov, B. A. Usievich, F. A. Pudonin, and O. Parriaux, "Long-range surface plasmons in asymmetric layered metal-dielectric structures," Sens. Actuators B 54,37-42 (1999).
[CrossRef]

Matsubara, K.

Minami, S.

Munder, H.

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Lüth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguide," Thin Solid Films 276, 143-146 (1996).
[CrossRef]

Nemova, G.

Parriaux, O.

N. M. Lyndin, I. F. Salakhutdinov, V. A. Sychugov, B. A. Usievich, F. A. Pudonin, and O. Parriaux, "Long-range surface plasmons in asymmetric layered metal-dielectric structures," Sens. Actuators B 54,37-42 (1999).
[CrossRef]

Patrick, H. K.

Plant, D. V.

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, "Tunable waveguide transmission gratings based on active gain control," IEEE J. Quantum Electron. 40, 1715-1724 (2004).
[CrossRef]

Pudonin, F. A.

N. M. Lyndin, I. F. Salakhutdinov, V. A. Sychugov, B. A. Usievich, F. A. Pudonin, and O. Parriaux, "Long-range surface plasmons in asymmetric layered metal-dielectric structures," Sens. Actuators B 54,37-42 (1999).
[CrossRef]

Rajan,

Rajan, A. K. Sharma, and B. D. Gupta, "Fibre optic sensor based on long-range surface plasmon resonance: a theoretical analysis," J. Opt. A: Pure Appl. Opt. 9, 682-687 (2007).
[CrossRef]

Rastogi, V.

Salakhutdinov, I. F.

N. M. Lyndin, I. F. Salakhutdinov, V. A. Sychugov, B. A. Usievich, F. A. Pudonin, and O. Parriaux, "Long-range surface plasmons in asymmetric layered metal-dielectric structures," Sens. Actuators B 54,37-42 (1999).
[CrossRef]

Sambles, J. R.

K. R. Welford and J. R. Sambles, "Coupled surface plasmons in a symmetric system," J. Mod. Opt. 35,1467-1483 (1988).
[CrossRef]

Schwartz, J.

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, "Tunable waveguide transmission gratings based on active gain control," IEEE J. Quantum Electron. 40, 1715-1724 (2004).
[CrossRef]

Shin, S. Y.

M. S. Kwon and S. Y. Shin, "Refractive index sensitivity measurement of a long-period waveguide grating," IEEE Photon. Technol. Lett. 17, 1923-1925 (2005).
[CrossRef]

Shin, S.-Y.

M.-S. Kwon and S.-Y. Shin, "Tunable polymer waveguide notch filter using a thermooptic long-period grating," IEEE Photon. Technol. Lett. 17, 145-147 (2005).
[CrossRef]

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Slavík, R.

R. Slavík and J. Homola, "Ultrahigh resolution long range surface plasmon-based sensor," Sens. Actuators B 123, 10-12 (2007).
[CrossRef]

R. Slavík and J. Homola, "Optical multilayers for LED-based surface plasmon resonance sensors," Appl. Opt. 45, 3752-3759 (2006).
[CrossRef] [PubMed]

R. Slavík, J. Homola, J. Ctyroky, E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Actuators B 74, 106-111 (2001).
[CrossRef]

Srivastava, R.

M. N. Weiss, R. Srivastava, and H. Groger, "Experimental investigation of surface plasmon-based integrated-optic humidity sensor," Electron. Lett. 32, 842-843 (1996).
[CrossRef]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

Sychugov, V. A.

N. M. Lyndin, I. F. Salakhutdinov, V. A. Sychugov, B. A. Usievich, F. A. Pudonin, and O. Parriaux, "Long-range surface plasmons in asymmetric layered metal-dielectric structures," Sens. Actuators B 54,37-42 (1999).
[CrossRef]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

Tatam, R. P.

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

Usievich, B. A.

N. M. Lyndin, I. F. Salakhutdinov, V. A. Sychugov, B. A. Usievich, F. A. Pudonin, and O. Parriaux, "Long-range surface plasmons in asymmetric layered metal-dielectric structures," Sens. Actuators B 54,37-42 (1999).
[CrossRef]

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Weiss, M. N.

M. N. Weiss, R. Srivastava, and H. Groger, "Experimental investigation of surface plasmon-based integrated-optic humidity sensor," Electron. Lett. 32, 842-843 (1996).
[CrossRef]

Welford, K. R.

K. R. Welford and J. R. Sambles, "Coupled surface plasmons in a symmetric system," J. Mod. Opt. 35,1467-1483 (1988).
[CrossRef]

Yee, S.

J. Homola, S. Yee, G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Anal. Bioanal. Chem. (1)

J. Homola, "Present and future of surface plasmon resonance biosensors," Anal. Bioanal. Chem. 377, 528-539 (2003).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

Q. Liu, K. S. Chiang, K. P. Lor and C. K. Chow, "Temperature sensitivity of a long-period waveguide grating in a channel waveguide," Appl. Phys. Lett. 86, 241115 (2005).
[CrossRef]

Electron. Lett. (1)

M. N. Weiss, R. Srivastava, and H. Groger, "Experimental investigation of surface plasmon-based integrated-optic humidity sensor," Electron. Lett. 32, 842-843 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant, "Tunable waveguide transmission gratings based on active gain control," IEEE J. Quantum Electron. 40, 1715-1724 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. S. Kwon and S. Y. Shin, "Refractive index sensitivity measurement of a long-period waveguide grating," IEEE Photon. Technol. Lett. 17, 1923-1925 (2005).
[CrossRef]

M.-S. Kwon and S.-Y. Shin, "Tunable polymer waveguide notch filter using a thermooptic long-period grating," IEEE Photon. Technol. Lett. 17, 145-147 (2005).
[CrossRef]

K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, "Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide," IEEE Photon. Technol. Lett. 18, 1109-1111 (2006).
[CrossRef]

J. Lightwave Technol. (4)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

E. Anemogiannis and E. N. Glytsis, "Multilayer waveguide: efficient numerical analysis of general structure," J. Lightwave Technol. 10, 1344-1351 (1992).
[CrossRef]

Q. Liu, K. S. Chiang, and V. Rastogi, "Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence," J. Lightwave Technol. 21, 3399-3405 (2003).
[CrossRef]

H. K. Patrick, A. D. Kersey, and F. Bucholtz, "Analysis of the response of long period fiber gratings to external index of refraction," J. Lightwave Technol. 16, 1606-1612 (1998).
[CrossRef]

J. Mod. Opt. (1)

K. R. Welford and J. R. Sambles, "Coupled surface plasmons in a symmetric system," J. Mod. Opt. 35,1467-1483 (1988).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

Rajan, A. K. Sharma, and B. D. Gupta, "Fibre optic sensor based on long-range surface plasmon resonance: a theoretical analysis," J. Opt. A: Pure Appl. Opt. 9, 682-687 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

Opt. Commun. (1)

C. K. Chow, K. S. Chiang, Q. Liu, K. P. Lor, and H. P. Chan, "UV-written long-period waveguide grating coupler for broadband add/drop multiplexing," Opt. Commun. 282, 378-381 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

Sens. Actuators B (5)

J. Homola, S. Yee, G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

R. Slavík and J. Homola, "Ultrahigh resolution long range surface plasmon-based sensor," Sens. Actuators B 123, 10-12 (2007).
[CrossRef]

O. Hugon, P. Benech, and H. Gagnaire, "Surface plasmon chemical/biological sensor in integrated optics," Sens. Actuators B 51, 316-320 (1998).
[CrossRef]

R. Slavík, J. Homola, J. Ctyroky, E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Actuators B 74, 106-111 (2001).
[CrossRef]

N. M. Lyndin, I. F. Salakhutdinov, V. A. Sychugov, B. A. Usievich, F. A. Pudonin, and O. Parriaux, "Long-range surface plasmons in asymmetric layered metal-dielectric structures," Sens. Actuators B 54,37-42 (1999).
[CrossRef]

Thin Solid Films (1)

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Lüth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguide," Thin Solid Films 276, 143-146 (1996).
[CrossRef]

Other (3)

MY Polymers Ltd., http://www.mypolymers.com.

J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006).
[CrossRef]

E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Refractive-index profile n(x) of a metal-coated planar waveguide, where (b) a corrugated long-period grating is introduced on the surface of the guiding layer (see the text for the definitions of the symbols).

Fig. 2.
Fig. 2.

(a) Magnetic-field (Hy ) distributions of the A-SP, TM0, and TM1 modes of a metal-coated slab waveguide with n s = 1.444, n f = 1.535, n cl = 1.51, n ex = 1.51, d f = 2.0 μm, d cl = 5.0 μm, and d m = 15 nm at 1550 nm. (b) Magnetic-field distributions of the TM1 mode at different values of n ex.

Fig. 3.
Fig. 3.

(a) Normalized transmission spectra at different values of the loss coefficient Im(N sp) for a 10 mm long grating with κL = 0.571 and (b) the contrast at λ 0 as a function of the loss coefficient Im(N sp), showing how the contrast decreases with an increase in the loss of the SP mode.

Fig. 4.
Fig. 4.

(a) Dependence of Re(N) and Im(N) of the TM0 and TM1 modes on the external refractive index n ex for a metal-coated slab waveguide with n s = 1.444, n f = 1.535, n cl = 1.51, d f = 2.0 μm, d cl = 5.0 μm, d m = 15 nm, and λ = 1550 nm. (b) Dependence of the sensitivity and the contrast at λ 0 on the external refractive index n ex.

Fig. 5.
Fig. 5.

(a) Variations of Re(N) and Im(N) of the TM0 and TM1 modes with the metal film thickness d m for a waveguide with n s = 1.444, n f = 1.535, n cl = 1.51, d f = 2.0 μm, d cl = 5.0 μm, n ex = 1.51, operating at λ = 1550 nm. (b) Variations of the sensitivity and the grating contrast with the metal film thickness d m.

Fig. 6.
Fig. 6.

(a) Variations of Re(N) and Im(N) of the TM0 and TM1 modes with the cladding thickness d cl for a waveguide with n s = 1.444, n f = 1.535, n cl = 1.51, d f = 2.0 μm, d m = 15 nm, n ex = 1.51, operating at λ = 1550 nm. (b) Variations of the sensitivity and the grating contrast with the cladding thickness d cl.

Fig. 7.
Fig. 7.

(a) Transmission spectra of an LPWG-assisted waveguide LRSP sensor with n s = 1.444, n f = 1.535, n cl = 1.51, d f = 2.0 μm, d cl = 5.0 μm, d m = 15 nm, Λ = 221 μm, Δh = 100 nm, and L = 8 mm, calculated at different values of external index n ex. (b) Variation of the SPR wavelength with the external index n ex.

Fig. 8.
Fig. 8.

(a) Transmission spectra of an LPWG-assisted waveguide LRSP sensor with n s = 1.29, n f = 1.35, n cl = 1.33, d f = 2.0 μm, d cl = 2.0 μm, d m = 15 nm, Λ = 95 μm, Δh = 100 nm, and L = 6 mm, calculated at different values of external index n ex. (b) Variation of the SPR wavelength with the external index n ex.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Λ=λ0Re(Nco)Re(Nsp) ,
T=[cos(ζL)+jσζsin(ζL)]exp[j(βcoσ)L]2 ,
dλ0dnex=(η0exη1ex)γΛ,

Metrics