Abstract

We report in this communication the two-photon absorption (TPA)-induced room-temperature lasing performance of ZnO nanowires. Under femtosecond pulse-excitation at λ = 700 nm in the infrared regime, a remarkably low threshold of 160μJ/cm2 was observed for the TPA-induced lasing action, which is of the same order of magnitude as that measured for the linear lasing process. Time-resolved photoluminescence characterization of two-photon pumped ZnO nanowires reveals the presence of a fast decay (3–4 ps) in the stimulated emission as compared to the slow decay (50–70 ps) for the spontaneous emission. The TPA process in ZnO nanowires was characterized with the nonlinear transmission measurement, which uncovers an enhanced TPA coefficient, about 14.7 times larger than that of bulk ZnO samples. The observed TPA enhancement in ZnO nanowires accounts for the low threshold lasing behavior, and has been attributed to the intensified optical field confined within the nanowire waveguides.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
    [CrossRef] [PubMed]
  2. C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, "Metal Oxide nanocrystals for gas sensing," Sens. Actuators B 109, 2-6 (2005).
    [CrossRef]
  3. D. Sirdhar, J. N. Xie, J. K. Abraham, and V. K. Varadan, "Synthesis and photonic property study of ZnO nanowires for a real time photodynamic therapy monitoring probe," Proc. SPIE 6528, 6528L (2007).
  4. Y. F. Zhang and R. E. Russo, "Quantum efficiency of ZnO nanowire nanolasers," Appl. Phys. Lett. 87, 043106-043108 (2005).
    [CrossRef]
  5. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, "High temperature excitonic stimulated emission from ZnO epitaxial layers," Appl. Phys. Lett. 73, 1038-1040 (1998)
    [CrossRef]
  6. H. J. Zhou, M. Wissinger, J. Fallert, R. Hauschild, R. Stelzl, C. Klingshirn, and H. Kalt, "Ordered, uniform-sized ZnO nanolaser arrays," Appl. Phys. Lett. 91, 181112-181114 (2007).
    [CrossRef]
  7. C. F. Zhang, Z. W. Dong, G. J. You, S. X. Qian, and H. Deng, "Multiphoton route to ZnO nanowire lasers," Opt. Lett. 31, 3345-3347 (2006).
    [CrossRef] [PubMed]
  8. C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, H. Cheng, and J. C. Wang, "Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires," Appl. Phys. Lett. 89, 042117-042119 (2006).
    [CrossRef]
  9. E. V. Chelnokov, N. Bityurin, I. Ozerov, and W. Marine, "Two-photon pumped random laser in nanocrystalline ZnO," Appl. Phys. Lett. 89, 171119-171121 (2006).
    [CrossRef]
  10. Q1. E. L. Portnoi, G. B. Venus, A. A. Khazan, I. M. Gadjiev, A. Y. Shmarcev, J. Frahm, and D. Kuhl, "Superhigh-power picosecond optical pulses from Q-switched diode laser," IEEE J. Sel. Top. Quant. Electron. 3, 256-260 (1997).
    [CrossRef]
  11. S. Vainshtein, J. Kostamovaara, M. Sverdlov, L. Shestak, and V. Tretyakov, "Laser diode structure for the generation of high-power picosecond optical pulses," Appl. Phys. Lett. 80, 4483-4485 (2002).
    [CrossRef]
  12. N. Kumar, A. Dorfman, and J. Hahm, "Fabrication of optically enhanced ZnO nanorods and microrods using novel biocatalysts," J. Nanosci. Nanotech. 5, 1-4 (2005).
    [CrossRef]
  13. C. Rullière, Femtosecond Laser Pulses—Principles and Experiments (Springer-Verlag, Berlin, 1998).
  14. G. P. Banfi, V. Degiorgio, D. Fortusini, and M. Bellini, "Measurement of the two-photon absorption coefficient of semiconductor nanocrystals by using tunable femtosecond pulses," Opt. Lett. 21, 1490-1492 (1996).
    [CrossRef] [PubMed]
  15. J. C. Johnson, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang, and R. J. Saykally, "Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers," Nano. Lett. 4, 197-204 (2004).
    [CrossRef]
  16. W. M. Kwok, A. B. Djurisic, Y. H. Leung, W. K. Chan, D. L. Philips, H. Y. Chen, C. L. Wu, S. Gwo, and M. H. Xie, "Study of excitonic emission in highly faceted ZnO rods," Chem. Phys. Lett. 412, 141-144 (2005).
    [CrossRef]
  17. J. Bolger, A. K. Kar, B. S. Wherrett, R. DeSalvo, and D. J. Hagan, "Nondegenerate two-photon absorption spectra of ZnSe, ZnS, and ZnO," Opt. Commun. 97, 203-209 (1993).
    [CrossRef]
  18. Z. W. Dong, C. F. Zhang, G. J. You, X. Q. Qiu, K. J. Liu, Y. L. Yan, and S. X. Qian, "Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal," J. Phys. Condens. Matter 19, 216202-216208 (2007).
    [CrossRef]
  19. X. J. Zhang, W. Ji, and S. H. Tang, "Determinatin of optical nonlinearities and carrier lifetime in ZnO," J. Opt. Soc. Am. B 14, 1951-1955 (1997).
    [CrossRef]
  20. J. He, Y. L. Qu, H. P. Li, J. Mi, and W. Ji, "Three-photon absorption in ZnO and ZnS crystals," Opt. Express 13, 9235-9247 (2005).
    [CrossRef] [PubMed]
  21. X. H. Yang, J. M. Hays, W. Shan, and J. J. Song, "Two-photon pumped blue lasing in bulk ZnSe and ZnSSe," Appl. Phys. Lett. 62, 1071-1073 (1993).
    [CrossRef]
  22. W. Wuenstel and C. Klingshirn, "Tunable laser-emission from wurtzite-type II-VI compounds," Opt. Commun. 32, 269-273 (1980).
    [CrossRef]
  23. L. W. Tutt and T. F. Boggess, "A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials," Prog. Quantum Electron. 17, 299-338 (1993).
    [CrossRef]
  24. J.C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
    [CrossRef] [PubMed]
  25. G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, and D. N. Christodoulides, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express,  14, 9377-9384 (2006).
    [CrossRef] [PubMed]
  26. A. V. Maslova, M. I. Bakunov, and C. Z. Ning, "Distribution of optical emission between guided modes and free space in a semiconductor nanowire," J. Appl. Phys. 99, 024314-024323 (2006).
    [CrossRef]
  27. H. Yoshikawa and S. Adachi, "Optical constants of ZnO," Jpn. J. Appl. Phys. 36, 6237-6243 (1997).
    [CrossRef]

2007

D. Sirdhar, J. N. Xie, J. K. Abraham, and V. K. Varadan, "Synthesis and photonic property study of ZnO nanowires for a real time photodynamic therapy monitoring probe," Proc. SPIE 6528, 6528L (2007).

H. J. Zhou, M. Wissinger, J. Fallert, R. Hauschild, R. Stelzl, C. Klingshirn, and H. Kalt, "Ordered, uniform-sized ZnO nanolaser arrays," Appl. Phys. Lett. 91, 181112-181114 (2007).
[CrossRef]

Z. W. Dong, C. F. Zhang, G. J. You, X. Q. Qiu, K. J. Liu, Y. L. Yan, and S. X. Qian, "Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal," J. Phys. Condens. Matter 19, 216202-216208 (2007).
[CrossRef]

2006

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, H. Cheng, and J. C. Wang, "Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires," Appl. Phys. Lett. 89, 042117-042119 (2006).
[CrossRef]

E. V. Chelnokov, N. Bityurin, I. Ozerov, and W. Marine, "Two-photon pumped random laser in nanocrystalline ZnO," Appl. Phys. Lett. 89, 171119-171121 (2006).
[CrossRef]

A. V. Maslova, M. I. Bakunov, and C. Z. Ning, "Distribution of optical emission between guided modes and free space in a semiconductor nanowire," J. Appl. Phys. 99, 024314-024323 (2006).
[CrossRef]

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, and D. N. Christodoulides, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express,  14, 9377-9384 (2006).
[CrossRef] [PubMed]

C. F. Zhang, Z. W. Dong, G. J. You, S. X. Qian, and H. Deng, "Multiphoton route to ZnO nanowire lasers," Opt. Lett. 31, 3345-3347 (2006).
[CrossRef] [PubMed]

2005

J. He, Y. L. Qu, H. P. Li, J. Mi, and W. Ji, "Three-photon absorption in ZnO and ZnS crystals," Opt. Express 13, 9235-9247 (2005).
[CrossRef] [PubMed]

Y. F. Zhang and R. E. Russo, "Quantum efficiency of ZnO nanowire nanolasers," Appl. Phys. Lett. 87, 043106-043108 (2005).
[CrossRef]

C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, "Metal Oxide nanocrystals for gas sensing," Sens. Actuators B 109, 2-6 (2005).
[CrossRef]

N. Kumar, A. Dorfman, and J. Hahm, "Fabrication of optically enhanced ZnO nanorods and microrods using novel biocatalysts," J. Nanosci. Nanotech. 5, 1-4 (2005).
[CrossRef]

W. M. Kwok, A. B. Djurisic, Y. H. Leung, W. K. Chan, D. L. Philips, H. Y. Chen, C. L. Wu, S. Gwo, and M. H. Xie, "Study of excitonic emission in highly faceted ZnO rods," Chem. Phys. Lett. 412, 141-144 (2005).
[CrossRef]

2004

J. C. Johnson, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang, and R. J. Saykally, "Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers," Nano. Lett. 4, 197-204 (2004).
[CrossRef]

2003

J.C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

2002

S. Vainshtein, J. Kostamovaara, M. Sverdlov, L. Shestak, and V. Tretyakov, "Laser diode structure for the generation of high-power picosecond optical pulses," Appl. Phys. Lett. 80, 4483-4485 (2002).
[CrossRef]

2001

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

1998

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, "High temperature excitonic stimulated emission from ZnO epitaxial layers," Appl. Phys. Lett. 73, 1038-1040 (1998)
[CrossRef]

1997

Q1. E. L. Portnoi, G. B. Venus, A. A. Khazan, I. M. Gadjiev, A. Y. Shmarcev, J. Frahm, and D. Kuhl, "Superhigh-power picosecond optical pulses from Q-switched diode laser," IEEE J. Sel. Top. Quant. Electron. 3, 256-260 (1997).
[CrossRef]

H. Yoshikawa and S. Adachi, "Optical constants of ZnO," Jpn. J. Appl. Phys. 36, 6237-6243 (1997).
[CrossRef]

X. J. Zhang, W. Ji, and S. H. Tang, "Determinatin of optical nonlinearities and carrier lifetime in ZnO," J. Opt. Soc. Am. B 14, 1951-1955 (1997).
[CrossRef]

1996

1993

L. W. Tutt and T. F. Boggess, "A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials," Prog. Quantum Electron. 17, 299-338 (1993).
[CrossRef]

X. H. Yang, J. M. Hays, W. Shan, and J. J. Song, "Two-photon pumped blue lasing in bulk ZnSe and ZnSSe," Appl. Phys. Lett. 62, 1071-1073 (1993).
[CrossRef]

J. Bolger, A. K. Kar, B. S. Wherrett, R. DeSalvo, and D. J. Hagan, "Nondegenerate two-photon absorption spectra of ZnSe, ZnS, and ZnO," Opt. Commun. 97, 203-209 (1993).
[CrossRef]

1980

W. Wuenstel and C. Klingshirn, "Tunable laser-emission from wurtzite-type II-VI compounds," Opt. Commun. 32, 269-273 (1980).
[CrossRef]

Abraham, J. K.

D. Sirdhar, J. N. Xie, J. K. Abraham, and V. K. Varadan, "Synthesis and photonic property study of ZnO nanowires for a real time photodynamic therapy monitoring probe," Proc. SPIE 6528, 6528L (2007).

Adachi, S.

H. Yoshikawa and S. Adachi, "Optical constants of ZnO," Jpn. J. Appl. Phys. 36, 6237-6243 (1997).
[CrossRef]

Bagnall, D. M.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, "High temperature excitonic stimulated emission from ZnO epitaxial layers," Appl. Phys. Lett. 73, 1038-1040 (1998)
[CrossRef]

Bakunov, M. I.

A. V. Maslova, M. I. Bakunov, and C. Z. Ning, "Distribution of optical emission between guided modes and free space in a semiconductor nanowire," J. Appl. Phys. 99, 024314-024323 (2006).
[CrossRef]

Banfi, G. P.

Baratto, C.

C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, "Metal Oxide nanocrystals for gas sensing," Sens. Actuators B 109, 2-6 (2005).
[CrossRef]

Bellini, M.

Bityurin, N.

E. V. Chelnokov, N. Bityurin, I. Ozerov, and W. Marine, "Two-photon pumped random laser in nanocrystalline ZnO," Appl. Phys. Lett. 89, 171119-171121 (2006).
[CrossRef]

Boggess, T. F.

L. W. Tutt and T. F. Boggess, "A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials," Prog. Quantum Electron. 17, 299-338 (1993).
[CrossRef]

Bolger, J.

J. Bolger, A. K. Kar, B. S. Wherrett, R. DeSalvo, and D. J. Hagan, "Nondegenerate two-photon absorption spectra of ZnSe, ZnS, and ZnO," Opt. Commun. 97, 203-209 (1993).
[CrossRef]

Chan, W. K.

W. M. Kwok, A. B. Djurisic, Y. H. Leung, W. K. Chan, D. L. Philips, H. Y. Chen, C. L. Wu, S. Gwo, and M. H. Xie, "Study of excitonic emission in highly faceted ZnO rods," Chem. Phys. Lett. 412, 141-144 (2005).
[CrossRef]

Chelnokov, E. V.

E. V. Chelnokov, N. Bityurin, I. Ozerov, and W. Marine, "Two-photon pumped random laser in nanocrystalline ZnO," Appl. Phys. Lett. 89, 171119-171121 (2006).
[CrossRef]

Chen, H. Y.

W. M. Kwok, A. B. Djurisic, Y. H. Leung, W. K. Chan, D. L. Philips, H. Y. Chen, C. L. Wu, S. Gwo, and M. H. Xie, "Study of excitonic emission in highly faceted ZnO rods," Chem. Phys. Lett. 412, 141-144 (2005).
[CrossRef]

Chen, Y. F.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, "High temperature excitonic stimulated emission from ZnO epitaxial layers," Appl. Phys. Lett. 73, 1038-1040 (1998)
[CrossRef]

Cheng, H.

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, H. Cheng, and J. C. Wang, "Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires," Appl. Phys. Lett. 89, 042117-042119 (2006).
[CrossRef]

Christodoulides, D. N.

Comini, E.

C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, "Metal Oxide nanocrystals for gas sensing," Sens. Actuators B 109, 2-6 (2005).
[CrossRef]

Degiorgio, V.

Deng, H.

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, H. Cheng, and J. C. Wang, "Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires," Appl. Phys. Lett. 89, 042117-042119 (2006).
[CrossRef]

C. F. Zhang, Z. W. Dong, G. J. You, S. X. Qian, and H. Deng, "Multiphoton route to ZnO nanowire lasers," Opt. Lett. 31, 3345-3347 (2006).
[CrossRef] [PubMed]

DeSalvo, R.

J. Bolger, A. K. Kar, B. S. Wherrett, R. DeSalvo, and D. J. Hagan, "Nondegenerate two-photon absorption spectra of ZnSe, ZnS, and ZnO," Opt. Commun. 97, 203-209 (1993).
[CrossRef]

Djurisic, A. B.

W. M. Kwok, A. B. Djurisic, Y. H. Leung, W. K. Chan, D. L. Philips, H. Y. Chen, C. L. Wu, S. Gwo, and M. H. Xie, "Study of excitonic emission in highly faceted ZnO rods," Chem. Phys. Lett. 412, 141-144 (2005).
[CrossRef]

Dong, Z. W.

Z. W. Dong, C. F. Zhang, G. J. You, X. Q. Qiu, K. J. Liu, Y. L. Yan, and S. X. Qian, "Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal," J. Phys. Condens. Matter 19, 216202-216208 (2007).
[CrossRef]

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, H. Cheng, and J. C. Wang, "Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires," Appl. Phys. Lett. 89, 042117-042119 (2006).
[CrossRef]

C. F. Zhang, Z. W. Dong, G. J. You, S. X. Qian, and H. Deng, "Multiphoton route to ZnO nanowire lasers," Opt. Lett. 31, 3345-3347 (2006).
[CrossRef] [PubMed]

Dorfman, A.

N. Kumar, A. Dorfman, and J. Hahm, "Fabrication of optically enhanced ZnO nanorods and microrods using novel biocatalysts," J. Nanosci. Nanotech. 5, 1-4 (2005).
[CrossRef]

El-Ganainy, R.

Faglia, G.

C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, "Metal Oxide nanocrystals for gas sensing," Sens. Actuators B 109, 2-6 (2005).
[CrossRef]

Fallert, J.

H. J. Zhou, M. Wissinger, J. Fallert, R. Hauschild, R. Stelzl, C. Klingshirn, and H. Kalt, "Ordered, uniform-sized ZnO nanolaser arrays," Appl. Phys. Lett. 91, 181112-181114 (2007).
[CrossRef]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Fortusini, D.

Frahm, J.

Q1. E. L. Portnoi, G. B. Venus, A. A. Khazan, I. M. Gadjiev, A. Y. Shmarcev, J. Frahm, and D. Kuhl, "Superhigh-power picosecond optical pulses from Q-switched diode laser," IEEE J. Sel. Top. Quant. Electron. 3, 256-260 (1997).
[CrossRef]

Gadjiev, I. M.

Q1. E. L. Portnoi, G. B. Venus, A. A. Khazan, I. M. Gadjiev, A. Y. Shmarcev, J. Frahm, and D. Kuhl, "Superhigh-power picosecond optical pulses from Q-switched diode laser," IEEE J. Sel. Top. Quant. Electron. 3, 256-260 (1997).
[CrossRef]

Goto, T.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, "High temperature excitonic stimulated emission from ZnO epitaxial layers," Appl. Phys. Lett. 73, 1038-1040 (1998)
[CrossRef]

Gwo, S.

W. M. Kwok, A. B. Djurisic, Y. H. Leung, W. K. Chan, D. L. Philips, H. Y. Chen, C. L. Wu, S. Gwo, and M. H. Xie, "Study of excitonic emission in highly faceted ZnO rods," Chem. Phys. Lett. 412, 141-144 (2005).
[CrossRef]

Hagan, D. J.

J. Bolger, A. K. Kar, B. S. Wherrett, R. DeSalvo, and D. J. Hagan, "Nondegenerate two-photon absorption spectra of ZnSe, ZnS, and ZnO," Opt. Commun. 97, 203-209 (1993).
[CrossRef]

Hahm, J.

N. Kumar, A. Dorfman, and J. Hahm, "Fabrication of optically enhanced ZnO nanorods and microrods using novel biocatalysts," J. Nanosci. Nanotech. 5, 1-4 (2005).
[CrossRef]

Hauschild, R.

H. J. Zhou, M. Wissinger, J. Fallert, R. Hauschild, R. Stelzl, C. Klingshirn, and H. Kalt, "Ordered, uniform-sized ZnO nanolaser arrays," Appl. Phys. Lett. 91, 181112-181114 (2007).
[CrossRef]

Hays, J. M.

X. H. Yang, J. M. Hays, W. Shan, and J. J. Song, "Two-photon pumped blue lasing in bulk ZnSe and ZnSSe," Appl. Phys. Lett. 62, 1071-1073 (1993).
[CrossRef]

He, J.

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Iwanow, R.

Ji, W.

Johnson, J. C.

J. C. Johnson, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang, and R. J. Saykally, "Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers," Nano. Lett. 4, 197-204 (2004).
[CrossRef]

Kalt, H.

H. J. Zhou, M. Wissinger, J. Fallert, R. Hauschild, R. Stelzl, C. Klingshirn, and H. Kalt, "Ordered, uniform-sized ZnO nanolaser arrays," Appl. Phys. Lett. 91, 181112-181114 (2007).
[CrossRef]

Kar, A. K.

J. Bolger, A. K. Kar, B. S. Wherrett, R. DeSalvo, and D. J. Hagan, "Nondegenerate two-photon absorption spectra of ZnSe, ZnS, and ZnO," Opt. Commun. 97, 203-209 (1993).
[CrossRef]

Khazan, A. A.

Q1. E. L. Portnoi, G. B. Venus, A. A. Khazan, I. M. Gadjiev, A. Y. Shmarcev, J. Frahm, and D. Kuhl, "Superhigh-power picosecond optical pulses from Q-switched diode laser," IEEE J. Sel. Top. Quant. Electron. 3, 256-260 (1997).
[CrossRef]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Klingshirn, C.

H. J. Zhou, M. Wissinger, J. Fallert, R. Hauschild, R. Stelzl, C. Klingshirn, and H. Kalt, "Ordered, uniform-sized ZnO nanolaser arrays," Appl. Phys. Lett. 91, 181112-181114 (2007).
[CrossRef]

W. Wuenstel and C. Klingshirn, "Tunable laser-emission from wurtzite-type II-VI compounds," Opt. Commun. 32, 269-273 (1980).
[CrossRef]

Knight, J.C.

J.C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

Knutsen, K. P.

J. C. Johnson, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang, and R. J. Saykally, "Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers," Nano. Lett. 4, 197-204 (2004).
[CrossRef]

Kostamovaara, J.

S. Vainshtein, J. Kostamovaara, M. Sverdlov, L. Shestak, and V. Tretyakov, "Laser diode structure for the generation of high-power picosecond optical pulses," Appl. Phys. Lett. 80, 4483-4485 (2002).
[CrossRef]

Kuhl, D.

Q1. E. L. Portnoi, G. B. Venus, A. A. Khazan, I. M. Gadjiev, A. Y. Shmarcev, J. Frahm, and D. Kuhl, "Superhigh-power picosecond optical pulses from Q-switched diode laser," IEEE J. Sel. Top. Quant. Electron. 3, 256-260 (1997).
[CrossRef]

Kumar, N.

N. Kumar, A. Dorfman, and J. Hahm, "Fabrication of optically enhanced ZnO nanorods and microrods using novel biocatalysts," J. Nanosci. Nanotech. 5, 1-4 (2005).
[CrossRef]

Kwok, W. M.

W. M. Kwok, A. B. Djurisic, Y. H. Leung, W. K. Chan, D. L. Philips, H. Y. Chen, C. L. Wu, S. Gwo, and M. H. Xie, "Study of excitonic emission in highly faceted ZnO rods," Chem. Phys. Lett. 412, 141-144 (2005).
[CrossRef]

Law, M.

J. C. Johnson, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang, and R. J. Saykally, "Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers," Nano. Lett. 4, 197-204 (2004).
[CrossRef]

Leung, Y. H.

W. M. Kwok, A. B. Djurisic, Y. H. Leung, W. K. Chan, D. L. Philips, H. Y. Chen, C. L. Wu, S. Gwo, and M. H. Xie, "Study of excitonic emission in highly faceted ZnO rods," Chem. Phys. Lett. 412, 141-144 (2005).
[CrossRef]

Li, H. P.

Liu, K. J.

Z. W. Dong, C. F. Zhang, G. J. You, X. Q. Qiu, K. J. Liu, Y. L. Yan, and S. X. Qian, "Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal," J. Phys. Condens. Matter 19, 216202-216208 (2007).
[CrossRef]

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Marine, W.

E. V. Chelnokov, N. Bityurin, I. Ozerov, and W. Marine, "Two-photon pumped random laser in nanocrystalline ZnO," Appl. Phys. Lett. 89, 171119-171121 (2006).
[CrossRef]

Maslova, A. V.

A. V. Maslova, M. I. Bakunov, and C. Z. Ning, "Distribution of optical emission between guided modes and free space in a semiconductor nanowire," J. Appl. Phys. 99, 024314-024323 (2006).
[CrossRef]

Mi, J.

Ning, C. Z.

A. V. Maslova, M. I. Bakunov, and C. Z. Ning, "Distribution of optical emission between guided modes and free space in a semiconductor nanowire," J. Appl. Phys. 99, 024314-024323 (2006).
[CrossRef]

Ozerov, I.

E. V. Chelnokov, N. Bityurin, I. Ozerov, and W. Marine, "Two-photon pumped random laser in nanocrystalline ZnO," Appl. Phys. Lett. 89, 171119-171121 (2006).
[CrossRef]

Philips, D. L.

W. M. Kwok, A. B. Djurisic, Y. H. Leung, W. K. Chan, D. L. Philips, H. Y. Chen, C. L. Wu, S. Gwo, and M. H. Xie, "Study of excitonic emission in highly faceted ZnO rods," Chem. Phys. Lett. 412, 141-144 (2005).
[CrossRef]

Portnoi, E. L.

Q1. E. L. Portnoi, G. B. Venus, A. A. Khazan, I. M. Gadjiev, A. Y. Shmarcev, J. Frahm, and D. Kuhl, "Superhigh-power picosecond optical pulses from Q-switched diode laser," IEEE J. Sel. Top. Quant. Electron. 3, 256-260 (1997).
[CrossRef]

Qian, S. X.

Z. W. Dong, C. F. Zhang, G. J. You, X. Q. Qiu, K. J. Liu, Y. L. Yan, and S. X. Qian, "Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal," J. Phys. Condens. Matter 19, 216202-216208 (2007).
[CrossRef]

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, H. Cheng, and J. C. Wang, "Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires," Appl. Phys. Lett. 89, 042117-042119 (2006).
[CrossRef]

C. F. Zhang, Z. W. Dong, G. J. You, S. X. Qian, and H. Deng, "Multiphoton route to ZnO nanowire lasers," Opt. Lett. 31, 3345-3347 (2006).
[CrossRef] [PubMed]

Qiu, X. Q.

Z. W. Dong, C. F. Zhang, G. J. You, X. Q. Qiu, K. J. Liu, Y. L. Yan, and S. X. Qian, "Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal," J. Phys. Condens. Matter 19, 216202-216208 (2007).
[CrossRef]

Qu, Y. L.

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Russo, R. E.

Y. F. Zhang and R. E. Russo, "Quantum efficiency of ZnO nanowire nanolasers," Appl. Phys. Lett. 87, 043106-043108 (2005).
[CrossRef]

Saykally, R. J.

J. C. Johnson, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang, and R. J. Saykally, "Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers," Nano. Lett. 4, 197-204 (2004).
[CrossRef]

Sberveglieri, G.

C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, "Metal Oxide nanocrystals for gas sensing," Sens. Actuators B 109, 2-6 (2005).
[CrossRef]

Shan, W.

X. H. Yang, J. M. Hays, W. Shan, and J. J. Song, "Two-photon pumped blue lasing in bulk ZnSe and ZnSSe," Appl. Phys. Lett. 62, 1071-1073 (1993).
[CrossRef]

Shen, M. Y.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, "High temperature excitonic stimulated emission from ZnO epitaxial layers," Appl. Phys. Lett. 73, 1038-1040 (1998)
[CrossRef]

Shestak, L.

S. Vainshtein, J. Kostamovaara, M. Sverdlov, L. Shestak, and V. Tretyakov, "Laser diode structure for the generation of high-power picosecond optical pulses," Appl. Phys. Lett. 80, 4483-4485 (2002).
[CrossRef]

Shmarcev, A. Y.

Q1. E. L. Portnoi, G. B. Venus, A. A. Khazan, I. M. Gadjiev, A. Y. Shmarcev, J. Frahm, and D. Kuhl, "Superhigh-power picosecond optical pulses from Q-switched diode laser," IEEE J. Sel. Top. Quant. Electron. 3, 256-260 (1997).
[CrossRef]

Sirdhar, D.

D. Sirdhar, J. N. Xie, J. K. Abraham, and V. K. Varadan, "Synthesis and photonic property study of ZnO nanowires for a real time photodynamic therapy monitoring probe," Proc. SPIE 6528, 6528L (2007).

Siviloglou, G. A.

Song, J. J.

X. H. Yang, J. M. Hays, W. Shan, and J. J. Song, "Two-photon pumped blue lasing in bulk ZnSe and ZnSSe," Appl. Phys. Lett. 62, 1071-1073 (1993).
[CrossRef]

Stegeman, G. I.

Stelzl, R.

H. J. Zhou, M. Wissinger, J. Fallert, R. Hauschild, R. Stelzl, C. Klingshirn, and H. Kalt, "Ordered, uniform-sized ZnO nanolaser arrays," Appl. Phys. Lett. 91, 181112-181114 (2007).
[CrossRef]

Suntsov, S.

Sverdlov, M.

S. Vainshtein, J. Kostamovaara, M. Sverdlov, L. Shestak, and V. Tretyakov, "Laser diode structure for the generation of high-power picosecond optical pulses," Appl. Phys. Lett. 80, 4483-4485 (2002).
[CrossRef]

Tang, S. H.

Tretyakov, V.

S. Vainshtein, J. Kostamovaara, M. Sverdlov, L. Shestak, and V. Tretyakov, "Laser diode structure for the generation of high-power picosecond optical pulses," Appl. Phys. Lett. 80, 4483-4485 (2002).
[CrossRef]

Tutt, L. W.

L. W. Tutt and T. F. Boggess, "A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials," Prog. Quantum Electron. 17, 299-338 (1993).
[CrossRef]

Vainshtein, S.

S. Vainshtein, J. Kostamovaara, M. Sverdlov, L. Shestak, and V. Tretyakov, "Laser diode structure for the generation of high-power picosecond optical pulses," Appl. Phys. Lett. 80, 4483-4485 (2002).
[CrossRef]

Varadan, V. K.

D. Sirdhar, J. N. Xie, J. K. Abraham, and V. K. Varadan, "Synthesis and photonic property study of ZnO nanowires for a real time photodynamic therapy monitoring probe," Proc. SPIE 6528, 6528L (2007).

Venus, G. B.

Q1. E. L. Portnoi, G. B. Venus, A. A. Khazan, I. M. Gadjiev, A. Y. Shmarcev, J. Frahm, and D. Kuhl, "Superhigh-power picosecond optical pulses from Q-switched diode laser," IEEE J. Sel. Top. Quant. Electron. 3, 256-260 (1997).
[CrossRef]

Wang, J. C.

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, H. Cheng, and J. C. Wang, "Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires," Appl. Phys. Lett. 89, 042117-042119 (2006).
[CrossRef]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Wherrett, B. S.

J. Bolger, A. K. Kar, B. S. Wherrett, R. DeSalvo, and D. J. Hagan, "Nondegenerate two-photon absorption spectra of ZnSe, ZnS, and ZnO," Opt. Commun. 97, 203-209 (1993).
[CrossRef]

Wissinger, M.

H. J. Zhou, M. Wissinger, J. Fallert, R. Hauschild, R. Stelzl, C. Klingshirn, and H. Kalt, "Ordered, uniform-sized ZnO nanolaser arrays," Appl. Phys. Lett. 91, 181112-181114 (2007).
[CrossRef]

Wu, C. L.

W. M. Kwok, A. B. Djurisic, Y. H. Leung, W. K. Chan, D. L. Philips, H. Y. Chen, C. L. Wu, S. Gwo, and M. H. Xie, "Study of excitonic emission in highly faceted ZnO rods," Chem. Phys. Lett. 412, 141-144 (2005).
[CrossRef]

Wu, Y. Y.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Wuenstel, W.

W. Wuenstel and C. Klingshirn, "Tunable laser-emission from wurtzite-type II-VI compounds," Opt. Commun. 32, 269-273 (1980).
[CrossRef]

Xie, J. N.

D. Sirdhar, J. N. Xie, J. K. Abraham, and V. K. Varadan, "Synthesis and photonic property study of ZnO nanowires for a real time photodynamic therapy monitoring probe," Proc. SPIE 6528, 6528L (2007).

Xie, M. H.

W. M. Kwok, A. B. Djurisic, Y. H. Leung, W. K. Chan, D. L. Philips, H. Y. Chen, C. L. Wu, S. Gwo, and M. H. Xie, "Study of excitonic emission in highly faceted ZnO rods," Chem. Phys. Lett. 412, 141-144 (2005).
[CrossRef]

Yan, H. Q.

J. C. Johnson, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang, and R. J. Saykally, "Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers," Nano. Lett. 4, 197-204 (2004).
[CrossRef]

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Yan, Y. L.

Z. W. Dong, C. F. Zhang, G. J. You, X. Q. Qiu, K. J. Liu, Y. L. Yan, and S. X. Qian, "Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal," J. Phys. Condens. Matter 19, 216202-216208 (2007).
[CrossRef]

Yang, P. D.

J. C. Johnson, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang, and R. J. Saykally, "Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers," Nano. Lett. 4, 197-204 (2004).
[CrossRef]

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Yang, X. H.

X. H. Yang, J. M. Hays, W. Shan, and J. J. Song, "Two-photon pumped blue lasing in bulk ZnSe and ZnSSe," Appl. Phys. Lett. 62, 1071-1073 (1993).
[CrossRef]

Yao, T.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, "High temperature excitonic stimulated emission from ZnO epitaxial layers," Appl. Phys. Lett. 73, 1038-1040 (1998)
[CrossRef]

Yoshikawa, H.

H. Yoshikawa and S. Adachi, "Optical constants of ZnO," Jpn. J. Appl. Phys. 36, 6237-6243 (1997).
[CrossRef]

You, G. J.

Z. W. Dong, C. F. Zhang, G. J. You, X. Q. Qiu, K. J. Liu, Y. L. Yan, and S. X. Qian, "Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal," J. Phys. Condens. Matter 19, 216202-216208 (2007).
[CrossRef]

C. F. Zhang, Z. W. Dong, G. J. You, S. X. Qian, and H. Deng, "Multiphoton route to ZnO nanowire lasers," Opt. Lett. 31, 3345-3347 (2006).
[CrossRef] [PubMed]

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, H. Cheng, and J. C. Wang, "Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires," Appl. Phys. Lett. 89, 042117-042119 (2006).
[CrossRef]

Zappettini, A.

C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, "Metal Oxide nanocrystals for gas sensing," Sens. Actuators B 109, 2-6 (2005).
[CrossRef]

Zha, M.

C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, "Metal Oxide nanocrystals for gas sensing," Sens. Actuators B 109, 2-6 (2005).
[CrossRef]

Zhang, C. F.

Z. W. Dong, C. F. Zhang, G. J. You, X. Q. Qiu, K. J. Liu, Y. L. Yan, and S. X. Qian, "Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal," J. Phys. Condens. Matter 19, 216202-216208 (2007).
[CrossRef]

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, H. Cheng, and J. C. Wang, "Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires," Appl. Phys. Lett. 89, 042117-042119 (2006).
[CrossRef]

C. F. Zhang, Z. W. Dong, G. J. You, S. X. Qian, and H. Deng, "Multiphoton route to ZnO nanowire lasers," Opt. Lett. 31, 3345-3347 (2006).
[CrossRef] [PubMed]

Zhang, X. J.

Zhang, Y. F.

Y. F. Zhang and R. E. Russo, "Quantum efficiency of ZnO nanowire nanolasers," Appl. Phys. Lett. 87, 043106-043108 (2005).
[CrossRef]

J. C. Johnson, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang, and R. J. Saykally, "Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers," Nano. Lett. 4, 197-204 (2004).
[CrossRef]

Zhou, H. J.

H. J. Zhou, M. Wissinger, J. Fallert, R. Hauschild, R. Stelzl, C. Klingshirn, and H. Kalt, "Ordered, uniform-sized ZnO nanolaser arrays," Appl. Phys. Lett. 91, 181112-181114 (2007).
[CrossRef]

Zhu, R. Y.

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, H. Cheng, and J. C. Wang, "Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires," Appl. Phys. Lett. 89, 042117-042119 (2006).
[CrossRef]

Zhu, Z.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, "High temperature excitonic stimulated emission from ZnO epitaxial layers," Appl. Phys. Lett. 73, 1038-1040 (1998)
[CrossRef]

Appl. Phys. Lett.

Y. F. Zhang and R. E. Russo, "Quantum efficiency of ZnO nanowire nanolasers," Appl. Phys. Lett. 87, 043106-043108 (2005).
[CrossRef]

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, "High temperature excitonic stimulated emission from ZnO epitaxial layers," Appl. Phys. Lett. 73, 1038-1040 (1998)
[CrossRef]

H. J. Zhou, M. Wissinger, J. Fallert, R. Hauschild, R. Stelzl, C. Klingshirn, and H. Kalt, "Ordered, uniform-sized ZnO nanolaser arrays," Appl. Phys. Lett. 91, 181112-181114 (2007).
[CrossRef]

C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, H. Cheng, and J. C. Wang, "Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires," Appl. Phys. Lett. 89, 042117-042119 (2006).
[CrossRef]

E. V. Chelnokov, N. Bityurin, I. Ozerov, and W. Marine, "Two-photon pumped random laser in nanocrystalline ZnO," Appl. Phys. Lett. 89, 171119-171121 (2006).
[CrossRef]

S. Vainshtein, J. Kostamovaara, M. Sverdlov, L. Shestak, and V. Tretyakov, "Laser diode structure for the generation of high-power picosecond optical pulses," Appl. Phys. Lett. 80, 4483-4485 (2002).
[CrossRef]

X. H. Yang, J. M. Hays, W. Shan, and J. J. Song, "Two-photon pumped blue lasing in bulk ZnSe and ZnSSe," Appl. Phys. Lett. 62, 1071-1073 (1993).
[CrossRef]

Chem. Phys. Lett.

W. M. Kwok, A. B. Djurisic, Y. H. Leung, W. K. Chan, D. L. Philips, H. Y. Chen, C. L. Wu, S. Gwo, and M. H. Xie, "Study of excitonic emission in highly faceted ZnO rods," Chem. Phys. Lett. 412, 141-144 (2005).
[CrossRef]

IEEE J. Sel. Top. Quant. Electron.

Q1. E. L. Portnoi, G. B. Venus, A. A. Khazan, I. M. Gadjiev, A. Y. Shmarcev, J. Frahm, and D. Kuhl, "Superhigh-power picosecond optical pulses from Q-switched diode laser," IEEE J. Sel. Top. Quant. Electron. 3, 256-260 (1997).
[CrossRef]

J. Appl. Phys.

A. V. Maslova, M. I. Bakunov, and C. Z. Ning, "Distribution of optical emission between guided modes and free space in a semiconductor nanowire," J. Appl. Phys. 99, 024314-024323 (2006).
[CrossRef]

J. Nanosci. Nanotech.

N. Kumar, A. Dorfman, and J. Hahm, "Fabrication of optically enhanced ZnO nanorods and microrods using novel biocatalysts," J. Nanosci. Nanotech. 5, 1-4 (2005).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

Z. W. Dong, C. F. Zhang, G. J. You, X. Q. Qiu, K. J. Liu, Y. L. Yan, and S. X. Qian, "Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal," J. Phys. Condens. Matter 19, 216202-216208 (2007).
[CrossRef]

Jpn. J. Appl. Phys.

H. Yoshikawa and S. Adachi, "Optical constants of ZnO," Jpn. J. Appl. Phys. 36, 6237-6243 (1997).
[CrossRef]

Nano. Lett.

J. C. Johnson, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang, and R. J. Saykally, "Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers," Nano. Lett. 4, 197-204 (2004).
[CrossRef]

Nature

J.C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

Opt. Commun.

W. Wuenstel and C. Klingshirn, "Tunable laser-emission from wurtzite-type II-VI compounds," Opt. Commun. 32, 269-273 (1980).
[CrossRef]

J. Bolger, A. K. Kar, B. S. Wherrett, R. DeSalvo, and D. J. Hagan, "Nondegenerate two-photon absorption spectra of ZnSe, ZnS, and ZnO," Opt. Commun. 97, 203-209 (1993).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

D. Sirdhar, J. N. Xie, J. K. Abraham, and V. K. Varadan, "Synthesis and photonic property study of ZnO nanowires for a real time photodynamic therapy monitoring probe," Proc. SPIE 6528, 6528L (2007).

Prog. Quantum Electron.

L. W. Tutt and T. F. Boggess, "A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials," Prog. Quantum Electron. 17, 299-338 (1993).
[CrossRef]

Science

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, "Room temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Sens. Actuators B

C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, and A. Zappettini, "Metal Oxide nanocrystals for gas sensing," Sens. Actuators B 109, 2-6 (2005).
[CrossRef]

Other

C. Rullière, Femtosecond Laser Pulses—Principles and Experiments (Springer-Verlag, Berlin, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) The 1.2 × 3 μm SEM micrograph displays as-grown structures of the gas-phase synthesized ZnO nanowires used in the lasing experiments. The average diameter and length of ZnO nanowires are 180 nm and 10 μm, respectively. ZnO nanowires, preferentially grown along the c-axis, exhibit wurtzite structures with hexagonal end facets. The end and side facets of an individual ZnO nanowire are clearly shown in the SEM panels (b) (200 × 200 nm) and (c) (420 × 1000 nm), respectively. (d) Typical X-ray diffraction pattern of the synthesized ZnO nanowires.

Fig. 2.
Fig. 2.

(a) Two-photon pumped emission spectra from ZnO nanowires for difference excitation fluence. The inset of (a) is the photomicrograph of a lasing ZnO nanowire pumped in the TPA regime. (b) Integrated emission intensity from ZnO nanorods pumped by single-photon and two-photon processes versus excitation fluence. The inset of (b) shows the one-photon pumped lasing spectrum of ZnO nanowires.

Fig. 3.
Fig. 3.

TRPL traces of two-photon pumped emission from ZnO nanowires with the excitation fluence below and above the lasing threshold.

Fig. 4.
Fig. 4.

(a) Nonlinear transmission curves of a ZnO nanowire film and a bulk ZnO crystal, respectively, at λ=700nm, with a peak excitation intensity of ~50 GW/cm2. The inset shows the SEM image of the nanowire film sample. (b) Calculated E-field distribution (∣E∣4) in sections of nanowire and bulk ZnO samples. (The dashed lines indicate the section boundaries.)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

TNL(I)=In(1+βIL)βIL ,
(dINW(r,z)dz)TPA=βeffIinc2(r,z)=βintINW2(r,z)

Metrics