Abstract

A novel scheme, for both baseband and millimeter-wave band gigabit data transmission in radio-over-fiber system, is proposed and experimentally demonstrated by using cascaded injection-locked Fabry-Pérot laser diodes. It was able to improve suppression ratio of carrier suppressed signal using the cascaded injection-locking. The suppression ratio improvement of the optical carrier suppressed signal of 20dB was verified. Applying this mechanism, 60-GHz millimeter-wave carrier of enhanced signal quality could be accomplished. Its peak power and phase noise were obtained as −40dBm and −103.5dBm/Hz respectively, which was suitable for 60-GHz data transmission. In addition, a successful bidirectional transmission of 1.25-Gbps wired and wireless data was achieved by adopting remodulation technique using a gain-saturated reflective semiconductor optical amplifier for uplink.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds, “Microwave Photonics,” IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002).
    [CrossRef]
  2. C. H. Cox III, Analog Optical Links (Cambridge Univ. Press, Cambridge, U.K., 2004).
  3. H. Al-Raweshidy, and S. Komaki, Radio Over Fiber Technologies for Mobile Communications Networks (Artech House, Norwood, MA, 2002).
  4. W. S. C. Chang, RF Photonic Technology in Optical Fiber Links (Cambridge Univ. Press, Cambridge, U.K., 2002).
  5. A. Vilcot, B. Cabon and J. Chazelas, Microwave Photonics from Components to Applications and Systems (Kluwer Academic publisher, Dordrecht, The Netherlands, 2003).
  6. M. Sauer, K. Kojucharow, H. Kaluzni, D. Sommer, W. Nowak, and A. Finger, “Radio-optical system design and transmission experiments for a mobile broadband communications system at 60 GHz,” Wirel. Pers. Commun. 14(2), 147–163 (2000).
    [CrossRef]
  7. H. Harada, K. Sato, and M. Fujise, “A radio-on-fiber based millimeter-wave road-vehicle communication system by a code division multiplexing radio transmission scheme,” IEEE Trans. Intell. Transp. Syst. 2(4), 165–179 (2001).
    [CrossRef]
  8. A. J. Cooper, “Fibre/radio for the provision of cordless/mobile telephony services in the access network,” Electron. Lett. 26(24), 2054–2056 (1990).
    [CrossRef]
  9. L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel technique for high-capacity 60GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
    [CrossRef]
  10. A. Stohr, K. Kitayama, and D. Jager, “Full-duplex fiber-optic RF subcarrier transmission using a dual-function modulator/photodetector,” IEEE Trans. Microw. Theory Tech. 47(7), 1338–1341 (1999).
    [CrossRef]
  11. K. Yonenaga and N. Takachio, “A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems,” IEEE Photon. Technol. Lett. 5(8), 949–951 (1993).
    [CrossRef]
  12. H. Schmuck, “Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion,” Electron. Lett. 31(21), 1848–1849 (1995).
    [CrossRef]
  13. G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
    [CrossRef]
  14. M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(1), 190–192 (2005).
    [CrossRef]
  15. D.-W. Lee, Y.-Y. Won, and S.-K. Han, ““Bidirectional gigabit millimeter-wave wavelength division multiplexed-radio over fiber link using a reflective semiconductor optical amplifier,” IEICE Trans. Commun,” E 91-B, 2418–2421 (2008).
  16. J. J. OReilly, “P. M. Lane, R. Heidemann and R. Hofstetter, “Optical generation of very narrow linewidth millimeter wave signals,” Electron. Lett. 28, 2309–2311 (1992).
  17. A. Martinez, V. Polo, and J. Marti, “Simultaneous baseband and RF optical modulation scheme for feeding wireless and wireline heterogeneous access network,” IEEE Trans. Microw. Theory Tech. 49(10), 2018–2024 (2001).
    [CrossRef]
  18. Z. Xu, X. Zhang, and J. Yu, “Frequency Upconversion of multiple RF signals using optical carrier suppression for radio over fiber downlinks,” Opt. Express 15(25), 16737–16747 (2007).
    [CrossRef] [PubMed]
  19. M. Mohamed, X. Zhang, B. Hraimel, and K. Wu, “Frequency sixupler for millimeter-wave over fiber systems,” Opt. Express 16(14), 10141–10151 (2008).
    [CrossRef] [PubMed]
  20. J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
    [CrossRef]
  21. C.-T. Lin, W.-R. Peng, P.-C. Peng, J. Chen, C.-F. Peng, B.-S. Chiou, and S. Chi, “Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity,” IEEE Photon. Technol. Lett. 18(23), 2481–2483 (2006).
    [CrossRef]
  22. G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. QE-20(10), 1208–1216 (1984).
    [CrossRef]
  23. A. F. Elrefaie, R. E. Wagner, D. A. Atlas, and D. G. Daut, “Chromatic. dispersion limitations in coherent lightwave transmission systems,” J. Lightwave Technol. 6(5), 704–709 (1988).
    [CrossRef]
  24. L. Goldberg, A. M. Yurek, H. F. Taylor, and J. F. Weller, “35 GHz microwave signal generation with an injection-locked laser diode,” Electron. Lett. 21(18), 814–815 (1985).
    [CrossRef]
  25. L. Noel, D. Wake, D. G. Moodie, D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
    [CrossRef]
  26. R.-P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10(5), 728–730 (1998).
    [CrossRef]
  27. M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wireless Compon. Lett. 11(3), 101–103 (2001).
    [CrossRef]
  28. M.-K. Hong, Y.-Y. Won, and S.-K. Han, “Gigabit optical access link for simultaneous wired and wireless signal transmission based on dual parallel injection-locked Fabry-Pérot laser diodes,” J. Lightwave Technol. 26(15), 2725–2731 (2008).
    [CrossRef]
  29. H.-C. Kwon, Y.-Y. Won, and S.-K. Han, “Bidirectional SCM transmission using a noise suppressed Fabry-Perot laser diode and a reflective semiconductor optical amplifier in WDM/SCM-PON link,” IEEE Photon. Technol. Lett. 19(11), 858–860 (2007).
    [CrossRef]
  30. J.-M. Kang and S.-K. Han, “A novel hybrid WDM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(3), 502–504 (2006).
    [CrossRef]
  31. S. Kasapi, S. Lathi, and Y. Yamamoto, “Amplitude-squeezed, frequency-modulated, tunable, diode-laser-based source for sub-shot-noise FM spectroscopy,” Opt. Lett. 22(7), 478–480 (1997).
    [CrossRef] [PubMed]
  32. J. J. O’Reilly, P. M. Lane, and M. H. Capstick, “Optical generation and delivery of modulated mm-waves for mobile communications,” in Analogue Optical Fibre Communications (Inst. of Electrical Engineers, London, U.K. 1995), pp 229–249.
  33. J.-M. Kang, Y.-Y. Won, S.-H. Lee, and S.-K. Han, “Modulation characteristics of RSOA in hybrid WDM/SCM-PON optical link,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2006), paper JThB68. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2006-JThB68
  34. J.-H. Seo, C.-S. Choi, Y.-S. Kang, Y.-D. Chung, J. Kim, and W.-Y. Choi, “SOA-EAM frequency up/down-converters for 60-GHz bi-directional radio-on-fiber systems,” IEEE Trans. Microw. Theory Tech. 54(2), 959–966 (2006).
    [CrossRef]

2008 (3)

2007 (2)

H.-C. Kwon, Y.-Y. Won, and S.-K. Han, “Bidirectional SCM transmission using a noise suppressed Fabry-Perot laser diode and a reflective semiconductor optical amplifier in WDM/SCM-PON link,” IEEE Photon. Technol. Lett. 19(11), 858–860 (2007).
[CrossRef]

Z. Xu, X. Zhang, and J. Yu, “Frequency Upconversion of multiple RF signals using optical carrier suppression for radio over fiber downlinks,” Opt. Express 15(25), 16737–16747 (2007).
[CrossRef] [PubMed]

2006 (4)

J.-M. Kang and S.-K. Han, “A novel hybrid WDM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(3), 502–504 (2006).
[CrossRef]

J.-H. Seo, C.-S. Choi, Y.-S. Kang, Y.-D. Chung, J. Kim, and W.-Y. Choi, “SOA-EAM frequency up/down-converters for 60-GHz bi-directional radio-on-fiber systems,” IEEE Trans. Microw. Theory Tech. 54(2), 959–966 (2006).
[CrossRef]

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

C.-T. Lin, W.-R. Peng, P.-C. Peng, J. Chen, C.-F. Peng, B.-S. Chiou, and S. Chi, “Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity,” IEEE Photon. Technol. Lett. 18(23), 2481–2483 (2006).
[CrossRef]

2005 (1)

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(1), 190–192 (2005).
[CrossRef]

2002 (1)

A. J. Seeds, “Microwave Photonics,” IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002).
[CrossRef]

2001 (3)

H. Harada, K. Sato, and M. Fujise, “A radio-on-fiber based millimeter-wave road-vehicle communication system by a code division multiplexing radio transmission scheme,” IEEE Trans. Intell. Transp. Syst. 2(4), 165–179 (2001).
[CrossRef]

M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wireless Compon. Lett. 11(3), 101–103 (2001).
[CrossRef]

A. Martinez, V. Polo, and J. Marti, “Simultaneous baseband and RF optical modulation scheme for feeding wireless and wireline heterogeneous access network,” IEEE Trans. Microw. Theory Tech. 49(10), 2018–2024 (2001).
[CrossRef]

2000 (1)

M. Sauer, K. Kojucharow, H. Kaluzni, D. Sommer, W. Nowak, and A. Finger, “Radio-optical system design and transmission experiments for a mobile broadband communications system at 60 GHz,” Wirel. Pers. Commun. 14(2), 147–163 (2000).
[CrossRef]

1999 (1)

A. Stohr, K. Kitayama, and D. Jager, “Full-duplex fiber-optic RF subcarrier transmission using a dual-function modulator/photodetector,” IEEE Trans. Microw. Theory Tech. 47(7), 1338–1341 (1999).
[CrossRef]

1998 (1)

R.-P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10(5), 728–730 (1998).
[CrossRef]

1997 (4)

L. Noel, D. Wake, D. G. Moodie, D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[CrossRef]

S. Kasapi, S. Lathi, and Y. Yamamoto, “Amplitude-squeezed, frequency-modulated, tunable, diode-laser-based source for sub-shot-noise FM spectroscopy,” Opt. Lett. 22(7), 478–480 (1997).
[CrossRef] [PubMed]

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel technique for high-capacity 60GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[CrossRef]

1995 (1)

H. Schmuck, “Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion,” Electron. Lett. 31(21), 1848–1849 (1995).
[CrossRef]

1993 (1)

K. Yonenaga and N. Takachio, “A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems,” IEEE Photon. Technol. Lett. 5(8), 949–951 (1993).
[CrossRef]

1992 (1)

J. J. OReilly, “P. M. Lane, R. Heidemann and R. Hofstetter, “Optical generation of very narrow linewidth millimeter wave signals,” Electron. Lett. 28, 2309–2311 (1992).

1990 (1)

A. J. Cooper, “Fibre/radio for the provision of cordless/mobile telephony services in the access network,” Electron. Lett. 26(24), 2054–2056 (1990).
[CrossRef]

1988 (1)

A. F. Elrefaie, R. E. Wagner, D. A. Atlas, and D. G. Daut, “Chromatic. dispersion limitations in coherent lightwave transmission systems,” J. Lightwave Technol. 6(5), 704–709 (1988).
[CrossRef]

1985 (1)

L. Goldberg, A. M. Yurek, H. F. Taylor, and J. F. Weller, “35 GHz microwave signal generation with an injection-locked laser diode,” Electron. Lett. 21(18), 814–815 (1985).
[CrossRef]

1984 (1)

G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. QE-20(10), 1208–1216 (1984).
[CrossRef]

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[CrossRef]

Atlas, D. A.

A. F. Elrefaie, R. E. Wagner, D. A. Atlas, and D. G. Daut, “Chromatic. dispersion limitations in coherent lightwave transmission systems,” J. Lightwave Technol. 6(5), 704–709 (1988).
[CrossRef]

Attygalle, M.

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(1), 190–192 (2005).
[CrossRef]

Braun, R.-P.

R.-P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10(5), 728–730 (1998).
[CrossRef]

Chang, G. K.

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

Chen, J.

C.-T. Lin, W.-R. Peng, P.-C. Peng, J. Chen, C.-F. Peng, B.-S. Chiou, and S. Chi, “Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity,” IEEE Photon. Technol. Lett. 18(23), 2481–2483 (2006).
[CrossRef]

Chi, S.

C.-T. Lin, W.-R. Peng, P.-C. Peng, J. Chen, C.-F. Peng, B.-S. Chiou, and S. Chi, “Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity,” IEEE Photon. Technol. Lett. 18(23), 2481–2483 (2006).
[CrossRef]

Chiou, B.-S.

C.-T. Lin, W.-R. Peng, P.-C. Peng, J. Chen, C.-F. Peng, B.-S. Chiou, and S. Chi, “Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity,” IEEE Photon. Technol. Lett. 18(23), 2481–2483 (2006).
[CrossRef]

Choi, C.-S.

J.-H. Seo, C.-S. Choi, Y.-S. Kang, Y.-D. Chung, J. Kim, and W.-Y. Choi, “SOA-EAM frequency up/down-converters for 60-GHz bi-directional radio-on-fiber systems,” IEEE Trans. Microw. Theory Tech. 54(2), 959–966 (2006).
[CrossRef]

Choi, W.-Y.

J.-H. Seo, C.-S. Choi, Y.-S. Kang, Y.-D. Chung, J. Kim, and W.-Y. Choi, “SOA-EAM frequency up/down-converters for 60-GHz bi-directional radio-on-fiber systems,” IEEE Trans. Microw. Theory Tech. 54(2), 959–966 (2006).
[CrossRef]

Chung, Y.-D.

J.-H. Seo, C.-S. Choi, Y.-S. Kang, Y.-D. Chung, J. Kim, and W.-Y. Choi, “SOA-EAM frequency up/down-converters for 60-GHz bi-directional radio-on-fiber systems,” IEEE Trans. Microw. Theory Tech. 54(2), 959–966 (2006).
[CrossRef]

Cooper, A. J.

A. J. Cooper, “Fibre/radio for the provision of cordless/mobile telephony services in the access network,” Electron. Lett. 26(24), 2054–2056 (1990).
[CrossRef]

Daut, D. G.

A. F. Elrefaie, R. E. Wagner, D. A. Atlas, and D. G. Daut, “Chromatic. dispersion limitations in coherent lightwave transmission systems,” J. Lightwave Technol. 6(5), 704–709 (1988).
[CrossRef]

Edvell, G.

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(1), 190–192 (2005).
[CrossRef]

Elrefaie, A. F.

A. F. Elrefaie, R. E. Wagner, D. A. Atlas, and D. G. Daut, “Chromatic. dispersion limitations in coherent lightwave transmission systems,” J. Lightwave Technol. 6(5), 704–709 (1988).
[CrossRef]

Finger, A.

M. Sauer, K. Kojucharow, H. Kaluzni, D. Sommer, W. Nowak, and A. Finger, “Radio-optical system design and transmission experiments for a mobile broadband communications system at 60 GHz,” Wirel. Pers. Commun. 14(2), 147–163 (2000).
[CrossRef]

Fujise, M.

H. Harada, K. Sato, and M. Fujise, “A radio-on-fiber based millimeter-wave road-vehicle communication system by a code division multiplexing radio transmission scheme,” IEEE Trans. Intell. Transp. Syst. 2(4), 165–179 (2001).
[CrossRef]

Goldberg, L.

L. Goldberg, A. M. Yurek, H. F. Taylor, and J. F. Weller, “35 GHz microwave signal generation with an injection-locked laser diode,” Electron. Lett. 21(18), 814–815 (1985).
[CrossRef]

Grosskopf, G.

R.-P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10(5), 728–730 (1998).
[CrossRef]

Han, S.-K.

M.-K. Hong, Y.-Y. Won, and S.-K. Han, “Gigabit optical access link for simultaneous wired and wireless signal transmission based on dual parallel injection-locked Fabry-Pérot laser diodes,” J. Lightwave Technol. 26(15), 2725–2731 (2008).
[CrossRef]

D.-W. Lee, Y.-Y. Won, and S.-K. Han, ““Bidirectional gigabit millimeter-wave wavelength division multiplexed-radio over fiber link using a reflective semiconductor optical amplifier,” IEICE Trans. Commun,” E 91-B, 2418–2421 (2008).

H.-C. Kwon, Y.-Y. Won, and S.-K. Han, “Bidirectional SCM transmission using a noise suppressed Fabry-Perot laser diode and a reflective semiconductor optical amplifier in WDM/SCM-PON link,” IEEE Photon. Technol. Lett. 19(11), 858–860 (2007).
[CrossRef]

J.-M. Kang and S.-K. Han, “A novel hybrid WDM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(3), 502–504 (2006).
[CrossRef]

Harada, H.

H. Harada, K. Sato, and M. Fujise, “A radio-on-fiber based millimeter-wave road-vehicle communication system by a code division multiplexing radio transmission scheme,” IEEE Trans. Intell. Transp. Syst. 2(4), 165–179 (2001).
[CrossRef]

Hong, M.-K.

Hraimel, B.

Inagaki, K.

M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wireless Compon. Lett. 11(3), 101–103 (2001).
[CrossRef]

Jager, D.

A. Stohr, K. Kitayama, and D. Jager, “Full-duplex fiber-optic RF subcarrier transmission using a dual-function modulator/photodetector,” IEEE Trans. Microw. Theory Tech. 47(7), 1338–1341 (1999).
[CrossRef]

Jia, Z.

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

Kaluzni, H.

M. Sauer, K. Kojucharow, H. Kaluzni, D. Sommer, W. Nowak, and A. Finger, “Radio-optical system design and transmission experiments for a mobile broadband communications system at 60 GHz,” Wirel. Pers. Commun. 14(2), 147–163 (2000).
[CrossRef]

Kang, J.-M.

J.-M. Kang and S.-K. Han, “A novel hybrid WDM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(3), 502–504 (2006).
[CrossRef]

Kang, Y.-S.

J.-H. Seo, C.-S. Choi, Y.-S. Kang, Y.-D. Chung, J. Kim, and W.-Y. Choi, “SOA-EAM frequency up/down-converters for 60-GHz bi-directional radio-on-fiber systems,” IEEE Trans. Microw. Theory Tech. 54(2), 959–966 (2006).
[CrossRef]

Kasapi, S.

Kim, J.

J.-H. Seo, C.-S. Choi, Y.-S. Kang, Y.-D. Chung, J. Kim, and W.-Y. Choi, “SOA-EAM frequency up/down-converters for 60-GHz bi-directional radio-on-fiber systems,” IEEE Trans. Microw. Theory Tech. 54(2), 959–966 (2006).
[CrossRef]

Kitayama, K.

A. Stohr, K. Kitayama, and D. Jager, “Full-duplex fiber-optic RF subcarrier transmission using a dual-function modulator/photodetector,” IEEE Trans. Microw. Theory Tech. 47(7), 1338–1341 (1999).
[CrossRef]

Kojucharow, K.

M. Sauer, K. Kojucharow, H. Kaluzni, D. Sommer, W. Nowak, and A. Finger, “Radio-optical system design and transmission experiments for a mobile broadband communications system at 60 GHz,” Wirel. Pers. Commun. 14(2), 147–163 (2000).
[CrossRef]

Kwon, H.-C.

H.-C. Kwon, Y.-Y. Won, and S.-K. Han, “Bidirectional SCM transmission using a noise suppressed Fabry-Perot laser diode and a reflective semiconductor optical amplifier in WDM/SCM-PON link,” IEEE Photon. Technol. Lett. 19(11), 858–860 (2007).
[CrossRef]

Lathi, S.

Lee, D.-W.

D.-W. Lee, Y.-Y. Won, and S.-K. Han, ““Bidirectional gigabit millimeter-wave wavelength division multiplexed-radio over fiber link using a reflective semiconductor optical amplifier,” IEICE Trans. Commun,” E 91-B, 2418–2421 (2008).

Lim, C.

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(1), 190–192 (2005).
[CrossRef]

Lin, C.-T.

C.-T. Lin, W.-R. Peng, P.-C. Peng, J. Chen, C.-F. Peng, B.-S. Chiou, and S. Chi, “Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity,” IEEE Photon. Technol. Lett. 18(23), 2481–2483 (2006).
[CrossRef]

Marcenac, D.

L. Noel, D. Wake, D. G. Moodie, D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[CrossRef]

Marcenac, D. D.

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel technique for high-capacity 60GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[CrossRef]

Marti, J.

A. Martinez, V. Polo, and J. Marti, “Simultaneous baseband and RF optical modulation scheme for feeding wireless and wireline heterogeneous access network,” IEEE Trans. Microw. Theory Tech. 49(10), 2018–2024 (2001).
[CrossRef]

Martinez, A.

A. Martinez, V. Polo, and J. Marti, “Simultaneous baseband and RF optical modulation scheme for feeding wireless and wireline heterogeneous access network,” IEEE Trans. Microw. Theory Tech. 49(10), 2018–2024 (2001).
[CrossRef]

Meslener, G. J.

G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. QE-20(10), 1208–1216 (1984).
[CrossRef]

Mizuguchi, Y.

M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wireless Compon. Lett. 11(3), 101–103 (2001).
[CrossRef]

Mohamed, M.

Moodie, D. G.

L. Noel, D. Wake, D. G. Moodie, D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[CrossRef]

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel technique for high-capacity 60GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[CrossRef]

Nesset, D.

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel technique for high-capacity 60GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[CrossRef]

L. Noel, D. Wake, D. G. Moodie, D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[CrossRef]

Nirmalathas, A.

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(1), 190–192 (2005).
[CrossRef]

Noel, L.

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel technique for high-capacity 60GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[CrossRef]

L. Noel, D. Wake, D. G. Moodie, D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[CrossRef]

Novak, D.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[CrossRef]

Nowak, W.

M. Sauer, K. Kojucharow, H. Kaluzni, D. Sommer, W. Nowak, and A. Finger, “Radio-optical system design and transmission experiments for a mobile broadband communications system at 60 GHz,” Wirel. Pers. Commun. 14(2), 147–163 (2000).
[CrossRef]

Ogusu, M.

M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wireless Compon. Lett. 11(3), 101–103 (2001).
[CrossRef]

Pendock, G. J.

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(1), 190–192 (2005).
[CrossRef]

Peng, C.-F.

C.-T. Lin, W.-R. Peng, P.-C. Peng, J. Chen, C.-F. Peng, B.-S. Chiou, and S. Chi, “Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity,” IEEE Photon. Technol. Lett. 18(23), 2481–2483 (2006).
[CrossRef]

Peng, P.-C.

C.-T. Lin, W.-R. Peng, P.-C. Peng, J. Chen, C.-F. Peng, B.-S. Chiou, and S. Chi, “Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity,” IEEE Photon. Technol. Lett. 18(23), 2481–2483 (2006).
[CrossRef]

Peng, W.-R.

C.-T. Lin, W.-R. Peng, P.-C. Peng, J. Chen, C.-F. Peng, B.-S. Chiou, and S. Chi, “Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity,” IEEE Photon. Technol. Lett. 18(23), 2481–2483 (2006).
[CrossRef]

Polo, V.

A. Martinez, V. Polo, and J. Marti, “Simultaneous baseband and RF optical modulation scheme for feeding wireless and wireline heterogeneous access network,” IEEE Trans. Microw. Theory Tech. 49(10), 2018–2024 (2001).
[CrossRef]

Rohde, D.

R.-P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10(5), 728–730 (1998).
[CrossRef]

Sato, K.

H. Harada, K. Sato, and M. Fujise, “A radio-on-fiber based millimeter-wave road-vehicle communication system by a code division multiplexing radio transmission scheme,” IEEE Trans. Intell. Transp. Syst. 2(4), 165–179 (2001).
[CrossRef]

Sauer, M.

M. Sauer, K. Kojucharow, H. Kaluzni, D. Sommer, W. Nowak, and A. Finger, “Radio-optical system design and transmission experiments for a mobile broadband communications system at 60 GHz,” Wirel. Pers. Commun. 14(2), 147–163 (2000).
[CrossRef]

Schmidt, F.

R.-P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10(5), 728–730 (1998).
[CrossRef]

Schmuck, H.

H. Schmuck, “Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion,” Electron. Lett. 31(21), 1848–1849 (1995).
[CrossRef]

Seeds, A. J.

A. J. Seeds, “Microwave Photonics,” IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002).
[CrossRef]

Seo, J.-H.

J.-H. Seo, C.-S. Choi, Y.-S. Kang, Y.-D. Chung, J. Kim, and W.-Y. Choi, “SOA-EAM frequency up/down-converters for 60-GHz bi-directional radio-on-fiber systems,” IEEE Trans. Microw. Theory Tech. 54(2), 959–966 (2006).
[CrossRef]

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[CrossRef]

Sommer, D.

M. Sauer, K. Kojucharow, H. Kaluzni, D. Sommer, W. Nowak, and A. Finger, “Radio-optical system design and transmission experiments for a mobile broadband communications system at 60 GHz,” Wirel. Pers. Commun. 14(2), 147–163 (2000).
[CrossRef]

Stohr, A.

A. Stohr, K. Kitayama, and D. Jager, “Full-duplex fiber-optic RF subcarrier transmission using a dual-function modulator/photodetector,” IEEE Trans. Microw. Theory Tech. 47(7), 1338–1341 (1999).
[CrossRef]

Takachio, N.

K. Yonenaga and N. Takachio, “A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems,” IEEE Photon. Technol. Lett. 5(8), 949–951 (1993).
[CrossRef]

Taylor, H. F.

L. Goldberg, A. M. Yurek, H. F. Taylor, and J. F. Weller, “35 GHz microwave signal generation with an injection-locked laser diode,” Electron. Lett. 21(18), 814–815 (1985).
[CrossRef]

Wagner, R. E.

A. F. Elrefaie, R. E. Wagner, D. A. Atlas, and D. G. Daut, “Chromatic. dispersion limitations in coherent lightwave transmission systems,” J. Lightwave Technol. 6(5), 704–709 (1988).
[CrossRef]

Wake, D.

L. Noel, D. Wake, D. G. Moodie, D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[CrossRef]

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel technique for high-capacity 60GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[CrossRef]

Wang, T.

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

Weller, J. F.

L. Goldberg, A. M. Yurek, H. F. Taylor, and J. F. Weller, “35 GHz microwave signal generation with an injection-locked laser diode,” Electron. Lett. 21(18), 814–815 (1985).
[CrossRef]

Westbrook, L. D.

L. Noel, D. Wake, D. G. Moodie, D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[CrossRef]

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel technique for high-capacity 60GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[CrossRef]

Won, Y.-Y.

D.-W. Lee, Y.-Y. Won, and S.-K. Han, ““Bidirectional gigabit millimeter-wave wavelength division multiplexed-radio over fiber link using a reflective semiconductor optical amplifier,” IEICE Trans. Commun,” E 91-B, 2418–2421 (2008).

M.-K. Hong, Y.-Y. Won, and S.-K. Han, “Gigabit optical access link for simultaneous wired and wireless signal transmission based on dual parallel injection-locked Fabry-Pérot laser diodes,” J. Lightwave Technol. 26(15), 2725–2731 (2008).
[CrossRef]

H.-C. Kwon, Y.-Y. Won, and S.-K. Han, “Bidirectional SCM transmission using a noise suppressed Fabry-Perot laser diode and a reflective semiconductor optical amplifier in WDM/SCM-PON link,” IEEE Photon. Technol. Lett. 19(11), 858–860 (2007).
[CrossRef]

Wu, K.

Xu, Z.

Yamamoto, Y.

Yi, L.

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

Yonenaga, K.

K. Yonenaga and N. Takachio, “A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems,” IEEE Photon. Technol. Lett. 5(8), 949–951 (1993).
[CrossRef]

Yu, J.

Z. Xu, X. Zhang, and J. Yu, “Frequency Upconversion of multiple RF signals using optical carrier suppression for radio over fiber downlinks,” Opt. Express 15(25), 16737–16747 (2007).
[CrossRef] [PubMed]

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

Yurek, A. M.

L. Goldberg, A. M. Yurek, H. F. Taylor, and J. F. Weller, “35 GHz microwave signal generation with an injection-locked laser diode,” Electron. Lett. 21(18), 814–815 (1985).
[CrossRef]

Zhang, X.

E (1)

D.-W. Lee, Y.-Y. Won, and S.-K. Han, ““Bidirectional gigabit millimeter-wave wavelength division multiplexed-radio over fiber link using a reflective semiconductor optical amplifier,” IEICE Trans. Commun,” E 91-B, 2418–2421 (2008).

Electron. Lett. (4)

J. J. OReilly, “P. M. Lane, R. Heidemann and R. Hofstetter, “Optical generation of very narrow linewidth millimeter wave signals,” Electron. Lett. 28, 2309–2311 (1992).

H. Schmuck, “Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion,” Electron. Lett. 31(21), 1848–1849 (1995).
[CrossRef]

A. J. Cooper, “Fibre/radio for the provision of cordless/mobile telephony services in the access network,” Electron. Lett. 26(24), 2054–2056 (1990).
[CrossRef]

L. Goldberg, A. M. Yurek, H. F. Taylor, and J. F. Weller, “35 GHz microwave signal generation with an injection-locked laser diode,” Electron. Lett. 21(18), 814–815 (1985).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. QE-20(10), 1208–1216 (1984).
[CrossRef]

IEEE Microw. Wireless Compon. Lett. (1)

M. Ogusu, K. Inagaki, and Y. Mizuguchi, “60GHz millimeter-wave source using two-mode injection-locking of a Fabry-Perot slave laser,” IEEE Microw. Wireless Compon. Lett. 11(3), 101–103 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (7)

H.-C. Kwon, Y.-Y. Won, and S.-K. Han, “Bidirectional SCM transmission using a noise suppressed Fabry-Perot laser diode and a reflective semiconductor optical amplifier in WDM/SCM-PON link,” IEEE Photon. Technol. Lett. 19(11), 858–860 (2007).
[CrossRef]

J.-M. Kang and S.-K. Han, “A novel hybrid WDM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(3), 502–504 (2006).
[CrossRef]

R.-P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10(5), 728–730 (1998).
[CrossRef]

K. Yonenaga and N. Takachio, “A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems,” IEEE Photon. Technol. Lett. 5(8), 949–951 (1993).
[CrossRef]

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(1), 190–192 (2005).
[CrossRef]

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

C.-T. Lin, W.-R. Peng, P.-C. Peng, J. Chen, C.-F. Peng, B.-S. Chiou, and S. Chi, “Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity,” IEEE Photon. Technol. Lett. 18(23), 2481–2483 (2006).
[CrossRef]

IEEE Trans. Intell. Transp. Syst. (1)

H. Harada, K. Sato, and M. Fujise, “A radio-on-fiber based millimeter-wave road-vehicle communication system by a code division multiplexing radio transmission scheme,” IEEE Trans. Intell. Transp. Syst. 2(4), 165–179 (2001).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (7)

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel technique for high-capacity 60GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[CrossRef]

A. Stohr, K. Kitayama, and D. Jager, “Full-duplex fiber-optic RF subcarrier transmission using a dual-function modulator/photodetector,” IEEE Trans. Microw. Theory Tech. 47(7), 1338–1341 (1999).
[CrossRef]

A. J. Seeds, “Microwave Photonics,” IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002).
[CrossRef]

A. Martinez, V. Polo, and J. Marti, “Simultaneous baseband and RF optical modulation scheme for feeding wireless and wireline heterogeneous access network,” IEEE Trans. Microw. Theory Tech. 49(10), 2018–2024 (2001).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[CrossRef]

J.-H. Seo, C.-S. Choi, Y.-S. Kang, Y.-D. Chung, J. Kim, and W.-Y. Choi, “SOA-EAM frequency up/down-converters for 60-GHz bi-directional radio-on-fiber systems,” IEEE Trans. Microw. Theory Tech. 54(2), 959–966 (2006).
[CrossRef]

L. Noel, D. Wake, D. G. Moodie, D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[CrossRef]

J. Lightwave Technol. (2)

A. F. Elrefaie, R. E. Wagner, D. A. Atlas, and D. G. Daut, “Chromatic. dispersion limitations in coherent lightwave transmission systems,” J. Lightwave Technol. 6(5), 704–709 (1988).
[CrossRef]

M.-K. Hong, Y.-Y. Won, and S.-K. Han, “Gigabit optical access link for simultaneous wired and wireless signal transmission based on dual parallel injection-locked Fabry-Pérot laser diodes,” J. Lightwave Technol. 26(15), 2725–2731 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Wirel. Pers. Commun. (1)

M. Sauer, K. Kojucharow, H. Kaluzni, D. Sommer, W. Nowak, and A. Finger, “Radio-optical system design and transmission experiments for a mobile broadband communications system at 60 GHz,” Wirel. Pers. Commun. 14(2), 147–163 (2000).
[CrossRef]

Other (6)

C. H. Cox III, Analog Optical Links (Cambridge Univ. Press, Cambridge, U.K., 2004).

H. Al-Raweshidy, and S. Komaki, Radio Over Fiber Technologies for Mobile Communications Networks (Artech House, Norwood, MA, 2002).

W. S. C. Chang, RF Photonic Technology in Optical Fiber Links (Cambridge Univ. Press, Cambridge, U.K., 2002).

A. Vilcot, B. Cabon and J. Chazelas, Microwave Photonics from Components to Applications and Systems (Kluwer Academic publisher, Dordrecht, The Netherlands, 2003).

J. J. O’Reilly, P. M. Lane, and M. H. Capstick, “Optical generation and delivery of modulated mm-waves for mobile communications,” in Analogue Optical Fibre Communications (Inst. of Electrical Engineers, London, U.K. 1995), pp 229–249.

J.-M. Kang, Y.-Y. Won, S.-H. Lee, and S.-K. Han, “Modulation characteristics of RSOA in hybrid WDM/SCM-PON optical link,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2006), paper JThB68. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2006-JThB68

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Operation outline of the proposed scheme.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

Optical spectra of the carrier suppressed optical signal for given points (A~E).

Fig. 4
Fig. 4

Low frequency noise analysis.

Fig. 5
Fig. 5

(a) RF spectrum of generated mm-wave carrier (b) phase noise analysis.

Fig. 6
Fig. 6

Phase noise sensitivity analysis for the injection locking parameters. (a) wavelength detuning (b) external total injection power of FP-LD.

Fig. 7
Fig. 7

BER characteristics of the bidirectional transmission of the proposed scheme. (a) downlink (b) uplink.

Metrics