Z. He, Y. Li, Y. Li, Y. Zhang, L. Liu, and L. Xu, “Low-loss channel waveguides and Y-splitter formed by ion-exchange in silica-on-silicon,” Opt. Express 16(5), 3172–3177 (2008).
[Crossref]
[PubMed]
A. D’Alessandro, D. Donisi, L. De Sio, R. Beccherelli, R. Asquini, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16(13), 9254–9260 (2008).
[Crossref]
[PubMed]
W. Jin, K. S. Chiang, and Q. Liu, “Electro-optic long-period waveguide gratings in lithium niobate,” Opt. Express 16(25), 20409–20417 (2008).
[Crossref]
[PubMed]
A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[Crossref]
[PubMed]
Q. Wang and G. Farrell, “Integrated liquid crystal switch for both TE and TM modes: proposal and design,” J. Opt. Soc. Am. A 24(10), 3303–3308 (2007).
[Crossref]
K. Maru and Y. Abe, “Low-loss, flat-passband and athermal arrayed-waveguide grating multi/demultiplexer,” Opt. Express 15(26), 18351–18356 (2007).
[Crossref]
[PubMed]
A. Szameit, J. Burghoff, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, “Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica,” Opt. Express 14(13), 6055–6062 (2006).
[Crossref]
[PubMed]
A. D’Alessandro, B. D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
[Crossref]
H. Desmet, K. Neyts, and R. Baets, “Modeling nematic liquid crystals in the neighborhood of edges,” J. Appl. Phys. 98(12), 123517 (2005).
[Crossref]
J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulations and experiments on self-focusing conditions in nematic liquid-crystal planar cells,” Opt. Express 12(6), 1011–1018 (2004).
[Crossref]
[PubMed]
C. G. Choi, “Fabrication of optical waveguides in thermosetting polymers using hot embossing,” J. Micromech. Microeng. 14(7), 945–949 (2004).
[Crossref]
J. L. D. Bougrenet and D. B. D. La Tocnaye, “Engineering liquid crystals for optimal uses in optical communication systems,” Liq. Cryst. 31(2), 241–269 (2004).
[Crossref]
H. P. Chan, C. K. Chow, and A. K. Das, “A wide-angle X-junction polymeric thermooptic digital switch with low crosstalk,” IEEE Photon. Technol. Lett. 15(9), 1210–1212 (2003).
[Crossref]
R. Asquini and A. d’Alessandro, “BPM analysis of an integrated optical switch using polymeric optical waveguides and SSFLC at 1.55μm,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 375, 243–251 (2002).
[Crossref]
L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[Crossref]
H. H. Keil, H. H. Yao, and C. Zawadzki, “2×2 digital optical switch realized by low cost polymer waveguide technology,” Electron. Lett. 32(16), 1470–1471 (1996).
[Crossref]
M. Haruna, Y. Segawa, and H. Nishihara, “Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28(17), 1612–1613 (1992).
[Crossref]
S. Muto, T. Nagata, K. Asai, H. Ashizawa, and K. Arii, “Optical stabilizer and directional coupler switch using polymer thin film waveguides with liquid crystal clad,” Jpn. J. Appl. Phys. 29(Part 1, No. 9), 1724–1726 (1990).
[Crossref]
M. Kobayashi, H. Terui, M. Kawachi, and J. Noda, “2×2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. 18(10), 1603–1610 (1982).
[Crossref]
J. R. Winnery, C. Hu, and Y. S. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE J. Quantum Electron. 13(4), 262–267 (1977).
[Crossref]
S. Muto, T. Nagata, K. Asai, H. Ashizawa, and K. Arii, “Optical stabilizer and directional coupler switch using polymer thin film waveguides with liquid crystal clad,” Jpn. J. Appl. Phys. 29(Part 1, No. 9), 1724–1726 (1990).
[Crossref]
S. Muto, T. Nagata, K. Asai, H. Ashizawa, and K. Arii, “Optical stabilizer and directional coupler switch using polymer thin film waveguides with liquid crystal clad,” Jpn. J. Appl. Phys. 29(Part 1, No. 9), 1724–1726 (1990).
[Crossref]
S. Muto, T. Nagata, K. Asai, H. Ashizawa, and K. Arii, “Optical stabilizer and directional coupler switch using polymer thin film waveguides with liquid crystal clad,” Jpn. J. Appl. Phys. 29(Part 1, No. 9), 1724–1726 (1990).
[Crossref]
A. D’Alessandro, D. Donisi, L. De Sio, R. Beccherelli, R. Asquini, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16(13), 9254–9260 (2008).
[Crossref]
[PubMed]
A. D’Alessandro, B. D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
[Crossref]
R. Asquini and A. d’Alessandro, “BPM analysis of an integrated optical switch using polymeric optical waveguides and SSFLC at 1.55μm,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 375, 243–251 (2002).
[Crossref]
H. Desmet, K. Neyts, and R. Baets, “Modeling nematic liquid crystals in the neighborhood of edges,” J. Appl. Phys. 98(12), 123517 (2005).
[Crossref]
A. D’Alessandro, D. Donisi, L. De Sio, R. Beccherelli, R. Asquini, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16(13), 9254–9260 (2008).
[Crossref]
[PubMed]
A. D’Alessandro, B. D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
[Crossref]
J. L. D. Bougrenet and D. B. D. La Tocnaye, “Engineering liquid crystals for optimal uses in optical communication systems,” Liq. Cryst. 31(2), 241–269 (2004).
[Crossref]
H. P. Chan, C. K. Chow, and A. K. Das, “A wide-angle X-junction polymeric thermooptic digital switch with low crosstalk,” IEEE Photon. Technol. Lett. 15(9), 1210–1212 (2003).
[Crossref]
A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[Crossref]
[PubMed]
C. G. Choi, “Fabrication of optical waveguides in thermosetting polymers using hot embossing,” J. Micromech. Microeng. 14(7), 945–949 (2004).
[Crossref]
H. P. Chan, C. K. Chow, and A. K. Das, “A wide-angle X-junction polymeric thermooptic digital switch with low crosstalk,” IEEE Photon. Technol. Lett. 15(9), 1210–1212 (2003).
[Crossref]
A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[Crossref]
[PubMed]
A. D’Alessandro, D. Donisi, L. De Sio, R. Beccherelli, R. Asquini, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16(13), 9254–9260 (2008).
[Crossref]
[PubMed]
A. D’Alessandro, B. D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
[Crossref]
R. Asquini and A. d’Alessandro, “BPM analysis of an integrated optical switch using polymeric optical waveguides and SSFLC at 1.55μm,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 375, 243–251 (2002).
[Crossref]
H. P. Chan, C. K. Chow, and A. K. Das, “A wide-angle X-junction polymeric thermooptic digital switch with low crosstalk,” IEEE Photon. Technol. Lett. 15(9), 1210–1212 (2003).
[Crossref]
H. Desmet, K. Neyts, and R. Baets, “Modeling nematic liquid crystals in the neighborhood of edges,” J. Appl. Phys. 98(12), 123517 (2005).
[Crossref]
A. D’Alessandro, B. D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
[Crossref]
L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[Crossref]
M. Haruna, Y. Segawa, and H. Nishihara, “Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28(17), 1612–1613 (1992).
[Crossref]
J. R. Winnery, C. Hu, and Y. S. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE J. Quantum Electron. 13(4), 262–267 (1977).
[Crossref]
A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[Crossref]
[PubMed]
M. Kobayashi, H. Terui, M. Kawachi, and J. Noda, “2×2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. 18(10), 1603–1610 (1982).
[Crossref]
H. H. Keil, H. H. Yao, and C. Zawadzki, “2×2 digital optical switch realized by low cost polymer waveguide technology,” Electron. Lett. 32(16), 1470–1471 (1996).
[Crossref]
M. Kobayashi, H. Terui, M. Kawachi, and J. Noda, “2×2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. 18(10), 1603–1610 (1982).
[Crossref]
J. R. Winnery, C. Hu, and Y. S. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE J. Quantum Electron. 13(4), 262–267 (1977).
[Crossref]
J. L. D. Bougrenet and D. B. D. La Tocnaye, “Engineering liquid crystals for optimal uses in optical communication systems,” Liq. Cryst. 31(2), 241–269 (2004).
[Crossref]
Z. He, Y. Li, Y. Li, Y. Zhang, L. Liu, and L. Xu, “Low-loss channel waveguides and Y-splitter formed by ion-exchange in silica-on-silicon,” Opt. Express 16(5), 3172–3177 (2008).
[Crossref]
[PubMed]
Z. He, Y. Li, Y. Li, Y. Zhang, L. Liu, and L. Xu, “Low-loss channel waveguides and Y-splitter formed by ion-exchange in silica-on-silicon,” Opt. Express 16(5), 3172–3177 (2008).
[Crossref]
[PubMed]
A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[Crossref]
[PubMed]
A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[Crossref]
[PubMed]
S. Muto, T. Nagata, K. Asai, H. Ashizawa, and K. Arii, “Optical stabilizer and directional coupler switch using polymer thin film waveguides with liquid crystal clad,” Jpn. J. Appl. Phys. 29(Part 1, No. 9), 1724–1726 (1990).
[Crossref]
S. Muto, T. Nagata, K. Asai, H. Ashizawa, and K. Arii, “Optical stabilizer and directional coupler switch using polymer thin film waveguides with liquid crystal clad,” Jpn. J. Appl. Phys. 29(Part 1, No. 9), 1724–1726 (1990).
[Crossref]
H. Desmet, K. Neyts, and R. Baets, “Modeling nematic liquid crystals in the neighborhood of edges,” J. Appl. Phys. 98(12), 123517 (2005).
[Crossref]
J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulations and experiments on self-focusing conditions in nematic liquid-crystal planar cells,” Opt. Express 12(6), 1011–1018 (2004).
[Crossref]
[PubMed]
A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[Crossref]
[PubMed]
M. Haruna, Y. Segawa, and H. Nishihara, “Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28(17), 1612–1613 (1992).
[Crossref]
M. Kobayashi, H. Terui, M. Kawachi, and J. Noda, “2×2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. 18(10), 1603–1610 (1982).
[Crossref]
A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[Crossref]
[PubMed]
A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[Crossref]
[PubMed]
M. Haruna, Y. Segawa, and H. Nishihara, “Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28(17), 1612–1613 (1992).
[Crossref]
L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[Crossref]
M. Kobayashi, H. Terui, M. Kawachi, and J. Noda, “2×2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. 18(10), 1603–1610 (1982).
[Crossref]
J. R. Winnery, C. Hu, and Y. S. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE J. Quantum Electron. 13(4), 262–267 (1977).
[Crossref]
H. H. Keil, H. H. Yao, and C. Zawadzki, “2×2 digital optical switch realized by low cost polymer waveguide technology,” Electron. Lett. 32(16), 1470–1471 (1996).
[Crossref]
H. H. Keil, H. H. Yao, and C. Zawadzki, “2×2 digital optical switch realized by low cost polymer waveguide technology,” Electron. Lett. 32(16), 1470–1471 (1996).
[Crossref]
H. H. Keil, H. H. Yao, and C. Zawadzki, “2×2 digital optical switch realized by low cost polymer waveguide technology,” Electron. Lett. 32(16), 1470–1471 (1996).
[Crossref]
M. Haruna, Y. Segawa, and H. Nishihara, “Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28(17), 1612–1613 (1992).
[Crossref]
J. R. Winnery, C. Hu, and Y. S. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE J. Quantum Electron. 13(4), 262–267 (1977).
[Crossref]
A. D’Alessandro, B. D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
[Crossref]
M. Kobayashi, H. Terui, M. Kawachi, and J. Noda, “2×2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. 18(10), 1603–1610 (1982).
[Crossref]
L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[Crossref]
H. P. Chan, C. K. Chow, and A. K. Das, “A wide-angle X-junction polymeric thermooptic digital switch with low crosstalk,” IEEE Photon. Technol. Lett. 15(9), 1210–1212 (2003).
[Crossref]
H. Desmet, K. Neyts, and R. Baets, “Modeling nematic liquid crystals in the neighborhood of edges,” J. Appl. Phys. 98(12), 123517 (2005).
[Crossref]
C. G. Choi, “Fabrication of optical waveguides in thermosetting polymers using hot embossing,” J. Micromech. Microeng. 14(7), 945–949 (2004).
[Crossref]
S. Muto, T. Nagata, K. Asai, H. Ashizawa, and K. Arii, “Optical stabilizer and directional coupler switch using polymer thin film waveguides with liquid crystal clad,” Jpn. J. Appl. Phys. 29(Part 1, No. 9), 1724–1726 (1990).
[Crossref]
J. L. D. Bougrenet and D. B. D. La Tocnaye, “Engineering liquid crystals for optimal uses in optical communication systems,” Liq. Cryst. 31(2), 241–269 (2004).
[Crossref]
R. Asquini and A. d’Alessandro, “BPM analysis of an integrated optical switch using polymeric optical waveguides and SSFLC at 1.55μm,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 375, 243–251 (2002).
[Crossref]
K. Maru and Y. Abe, “Low-loss, flat-passband and athermal arrayed-waveguide grating multi/demultiplexer,” Opt. Express 15(26), 18351–18356 (2007).
[Crossref]
[PubMed]
Z. He, Y. Li, Y. Li, Y. Zhang, L. Liu, and L. Xu, “Low-loss channel waveguides and Y-splitter formed by ion-exchange in silica-on-silicon,” Opt. Express 16(5), 3172–3177 (2008).
[Crossref]
[PubMed]
A. D’Alessandro, D. Donisi, L. De Sio, R. Beccherelli, R. Asquini, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16(13), 9254–9260 (2008).
[Crossref]
[PubMed]
W. Jin, K. S. Chiang, and Q. Liu, “Electro-optic long-period waveguide gratings in lithium niobate,” Opt. Express 16(25), 20409–20417 (2008).
[Crossref]
[PubMed]
J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulations and experiments on self-focusing conditions in nematic liquid-crystal planar cells,” Opt. Express 12(6), 1011–1018 (2004).
[Crossref]
[PubMed]
A. Szameit, J. Burghoff, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, “Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica,” Opt. Express 14(13), 6055–6062 (2006).
[Crossref]
[PubMed]
A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[Crossref]
[PubMed]
W. C. Chuang, J. S. Lin, K. Y. Lee, and W. Y. Lee, “Polymer waveguide switch using liquid crystal overlayer,” SPIE‘s International Symposium on Opto-Electrics and Micro-Photonics, 1998.
V. G. Chigrinov, “Liquid crystal devices for photonics applications,” Proc. SPIE 6781, 67811 (2007).
A. Diaz, S. Kubo, D. H. Kwon, J. Park, D. Werner, T. Mallouk, and I. C. Khoo, “Nonlinear liquid crystal Na no-metamaterials” IEEE/LEOS Winter Topical Meeting Series, 2008, 94–95(2008).
I. C. Khoo, Liquid Crystal (John Wiley & Sons, 2007), Chap. 6.