Abstract

InxGa1-xAs wurtzite nanoneedles are grown without catalysts on silicon substrates with x ranging from zero to 0.15 using low-temperature metalorganic chemical vapor deposition. The nanoneedles assume a 6°-9° tapered shape, have sharp 2~5 nm tips, are 4 μm in length and 600 nm wide at the base. The micro-photoluminescence peaks exhibit redshifts corresponding to their increased indium incorporation. Core-shell InGaAs/GaAs layered quantum well structures are grown which exhibit quantum confinement of carriers, and emission below the silicon bandgap.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Moewe, L. C. Chuang, V. G. Dubrovskii, and C. Chang-Hasnain, “Growth mechanisms and crystallographic structure of InP nanowires on lattice-mismatched substrates,” J. Appl. Phys. 104(4), 044313 (2008).
    [CrossRef]
  2. L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang-Hasnain, and S. Crankshaw, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90(4), 043115 (2007).
    [CrossRef]
  3. M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett. 93(2), 023116 (2008).
    [CrossRef]
  4. R. C. Smith, J. D. Carey, R. D. Forrest, and S. R. P. Silva, “Effect of aspect ratio and anode location on the field emission properties of a single tip based emitter,” J. Vac. Sci. Technol. B 23(2), 632–635 (2005).
    [CrossRef]
  5. Y. B. Tang, H. T. Cong, Z. M. Wang, and H.-M. Cheng, “Catalyst-seeded synthesis and field emission properties of flowerlike Si-doped AlN nanoneedle array,” Appl. Phys. Lett. 89(25), 253112 (2006).
    [CrossRef]
  6. J. Y. Huang, K. Kempa, S. H. Jo, S. Chen, and Z. F. Ren, “Giant field enhancement at carbon nanotube tips induced by multistage effect,” Appl. Phys. Lett. 87(5), 053110 (2005).
    [CrossRef]
  7. G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30(2), 519–526 (1984).
    [CrossRef]
  8. R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318(1-3), 131–136 (2000).
    [CrossRef]
  9. S. L. Chuang, Physics of Optoelectronic Devices, John Wiley & Sons, Inc., New York, NY, 1995.
  10. R. Banerjee, A. Bhattacharya, A. Genc, and B. M. Arora, “Structure of twins in GaAs nanowires grown by the vapour-liquid-solid process,” Philos. Mag. Lett. 86(12), 807–816 (2006).
    [CrossRef]

2008

M. Moewe, L. C. Chuang, V. G. Dubrovskii, and C. Chang-Hasnain, “Growth mechanisms and crystallographic structure of InP nanowires on lattice-mismatched substrates,” J. Appl. Phys. 104(4), 044313 (2008).
[CrossRef]

M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett. 93(2), 023116 (2008).
[CrossRef]

2007

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang-Hasnain, and S. Crankshaw, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90(4), 043115 (2007).
[CrossRef]

2006

Y. B. Tang, H. T. Cong, Z. M. Wang, and H.-M. Cheng, “Catalyst-seeded synthesis and field emission properties of flowerlike Si-doped AlN nanoneedle array,” Appl. Phys. Lett. 89(25), 253112 (2006).
[CrossRef]

R. Banerjee, A. Bhattacharya, A. Genc, and B. M. Arora, “Structure of twins in GaAs nanowires grown by the vapour-liquid-solid process,” Philos. Mag. Lett. 86(12), 807–816 (2006).
[CrossRef]

2005

J. Y. Huang, K. Kempa, S. H. Jo, S. Chen, and Z. F. Ren, “Giant field enhancement at carbon nanotube tips induced by multistage effect,” Appl. Phys. Lett. 87(5), 053110 (2005).
[CrossRef]

R. C. Smith, J. D. Carey, R. D. Forrest, and S. R. P. Silva, “Effect of aspect ratio and anode location on the field emission properties of a single tip based emitter,” J. Vac. Sci. Technol. B 23(2), 632–635 (2005).
[CrossRef]

2000

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318(1-3), 131–136 (2000).
[CrossRef]

1984

G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30(2), 519–526 (1984).
[CrossRef]

Arora, B. M.

R. Banerjee, A. Bhattacharya, A. Genc, and B. M. Arora, “Structure of twins in GaAs nanowires grown by the vapour-liquid-solid process,” Philos. Mag. Lett. 86(12), 807–816 (2006).
[CrossRef]

Banerjee, R.

R. Banerjee, A. Bhattacharya, A. Genc, and B. M. Arora, “Structure of twins in GaAs nanowires grown by the vapour-liquid-solid process,” Philos. Mag. Lett. 86(12), 807–816 (2006).
[CrossRef]

Bhattacharya, A.

R. Banerjee, A. Bhattacharya, A. Genc, and B. M. Arora, “Structure of twins in GaAs nanowires grown by the vapour-liquid-solid process,” Philos. Mag. Lett. 86(12), 807–816 (2006).
[CrossRef]

Boyd, G. T.

G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30(2), 519–526 (1984).
[CrossRef]

Carey, J. D.

R. C. Smith, J. D. Carey, R. D. Forrest, and S. R. P. Silva, “Effect of aspect ratio and anode location on the field emission properties of a single tip based emitter,” J. Vac. Sci. Technol. B 23(2), 632–635 (2005).
[CrossRef]

Chang-Hasnain, C.

M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett. 93(2), 023116 (2008).
[CrossRef]

M. Moewe, L. C. Chuang, V. G. Dubrovskii, and C. Chang-Hasnain, “Growth mechanisms and crystallographic structure of InP nanowires on lattice-mismatched substrates,” J. Appl. Phys. 104(4), 044313 (2008).
[CrossRef]

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang-Hasnain, and S. Crankshaw, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90(4), 043115 (2007).
[CrossRef]

Chase, C.

M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett. 93(2), 023116 (2008).
[CrossRef]

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang-Hasnain, and S. Crankshaw, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90(4), 043115 (2007).
[CrossRef]

Chen, S.

J. Y. Huang, K. Kempa, S. H. Jo, S. Chen, and Z. F. Ren, “Giant field enhancement at carbon nanotube tips induced by multistage effect,” Appl. Phys. Lett. 87(5), 053110 (2005).
[CrossRef]

Cheng, H.-M.

Y. B. Tang, H. T. Cong, Z. M. Wang, and H.-M. Cheng, “Catalyst-seeded synthesis and field emission properties of flowerlike Si-doped AlN nanoneedle array,” Appl. Phys. Lett. 89(25), 253112 (2006).
[CrossRef]

Chuang, L. C.

M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett. 93(2), 023116 (2008).
[CrossRef]

M. Moewe, L. C. Chuang, V. G. Dubrovskii, and C. Chang-Hasnain, “Growth mechanisms and crystallographic structure of InP nanowires on lattice-mismatched substrates,” J. Appl. Phys. 104(4), 044313 (2008).
[CrossRef]

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang-Hasnain, and S. Crankshaw, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90(4), 043115 (2007).
[CrossRef]

Cong, H. T.

Y. B. Tang, H. T. Cong, Z. M. Wang, and H.-M. Cheng, “Catalyst-seeded synthesis and field emission properties of flowerlike Si-doped AlN nanoneedle array,” Appl. Phys. Lett. 89(25), 253112 (2006).
[CrossRef]

Crankshaw, S.

M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett. 93(2), 023116 (2008).
[CrossRef]

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang-Hasnain, and S. Crankshaw, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90(4), 043115 (2007).
[CrossRef]

Deckert, V.

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318(1-3), 131–136 (2000).
[CrossRef]

Dubrovskii, V. G.

M. Moewe, L. C. Chuang, V. G. Dubrovskii, and C. Chang-Hasnain, “Growth mechanisms and crystallographic structure of InP nanowires on lattice-mismatched substrates,” J. Appl. Phys. 104(4), 044313 (2008).
[CrossRef]

Forrest, R. D.

R. C. Smith, J. D. Carey, R. D. Forrest, and S. R. P. Silva, “Effect of aspect ratio and anode location on the field emission properties of a single tip based emitter,” J. Vac. Sci. Technol. B 23(2), 632–635 (2005).
[CrossRef]

Genc, A.

R. Banerjee, A. Bhattacharya, A. Genc, and B. M. Arora, “Structure of twins in GaAs nanowires grown by the vapour-liquid-solid process,” Philos. Mag. Lett. 86(12), 807–816 (2006).
[CrossRef]

Huang, J. Y.

J. Y. Huang, K. Kempa, S. H. Jo, S. Chen, and Z. F. Ren, “Giant field enhancement at carbon nanotube tips induced by multistage effect,” Appl. Phys. Lett. 87(5), 053110 (2005).
[CrossRef]

Jo, S. H.

J. Y. Huang, K. Kempa, S. H. Jo, S. Chen, and Z. F. Ren, “Giant field enhancement at carbon nanotube tips induced by multistage effect,” Appl. Phys. Lett. 87(5), 053110 (2005).
[CrossRef]

Kempa, K.

J. Y. Huang, K. Kempa, S. H. Jo, S. Chen, and Z. F. Ren, “Giant field enhancement at carbon nanotube tips induced by multistage effect,” Appl. Phys. Lett. 87(5), 053110 (2005).
[CrossRef]

Kobayashi, N. P.

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang-Hasnain, and S. Crankshaw, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90(4), 043115 (2007).
[CrossRef]

Leite, J. R. R.

G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30(2), 519–526 (1984).
[CrossRef]

Moewe, M.

M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett. 93(2), 023116 (2008).
[CrossRef]

M. Moewe, L. C. Chuang, V. G. Dubrovskii, and C. Chang-Hasnain, “Growth mechanisms and crystallographic structure of InP nanowires on lattice-mismatched substrates,” J. Appl. Phys. 104(4), 044313 (2008).
[CrossRef]

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang-Hasnain, and S. Crankshaw, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90(4), 043115 (2007).
[CrossRef]

Rasing, Th.

G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30(2), 519–526 (1984).
[CrossRef]

Ren, Z. F.

J. Y. Huang, K. Kempa, S. H. Jo, S. Chen, and Z. F. Ren, “Giant field enhancement at carbon nanotube tips induced by multistage effect,” Appl. Phys. Lett. 87(5), 053110 (2005).
[CrossRef]

Shen, Y. R.

G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30(2), 519–526 (1984).
[CrossRef]

Silva, S. R. P.

R. C. Smith, J. D. Carey, R. D. Forrest, and S. R. P. Silva, “Effect of aspect ratio and anode location on the field emission properties of a single tip based emitter,” J. Vac. Sci. Technol. B 23(2), 632–635 (2005).
[CrossRef]

Smith, R. C.

R. C. Smith, J. D. Carey, R. D. Forrest, and S. R. P. Silva, “Effect of aspect ratio and anode location on the field emission properties of a single tip based emitter,” J. Vac. Sci. Technol. B 23(2), 632–635 (2005).
[CrossRef]

Stöckle, R. M.

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318(1-3), 131–136 (2000).
[CrossRef]

Suh, Y. D.

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318(1-3), 131–136 (2000).
[CrossRef]

Tang, Y. B.

Y. B. Tang, H. T. Cong, Z. M. Wang, and H.-M. Cheng, “Catalyst-seeded synthesis and field emission properties of flowerlike Si-doped AlN nanoneedle array,” Appl. Phys. Lett. 89(25), 253112 (2006).
[CrossRef]

Wang, Z. M.

Y. B. Tang, H. T. Cong, Z. M. Wang, and H.-M. Cheng, “Catalyst-seeded synthesis and field emission properties of flowerlike Si-doped AlN nanoneedle array,” Appl. Phys. Lett. 89(25), 253112 (2006).
[CrossRef]

Zenobi, R.

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318(1-3), 131–136 (2000).
[CrossRef]

Appl. Phys. Lett.

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang-Hasnain, and S. Crankshaw, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90(4), 043115 (2007).
[CrossRef]

M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon,” Appl. Phys. Lett. 93(2), 023116 (2008).
[CrossRef]

Y. B. Tang, H. T. Cong, Z. M. Wang, and H.-M. Cheng, “Catalyst-seeded synthesis and field emission properties of flowerlike Si-doped AlN nanoneedle array,” Appl. Phys. Lett. 89(25), 253112 (2006).
[CrossRef]

J. Y. Huang, K. Kempa, S. H. Jo, S. Chen, and Z. F. Ren, “Giant field enhancement at carbon nanotube tips induced by multistage effect,” Appl. Phys. Lett. 87(5), 053110 (2005).
[CrossRef]

Chem. Phys. Lett.

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318(1-3), 131–136 (2000).
[CrossRef]

J. Appl. Phys.

M. Moewe, L. C. Chuang, V. G. Dubrovskii, and C. Chang-Hasnain, “Growth mechanisms and crystallographic structure of InP nanowires on lattice-mismatched substrates,” J. Appl. Phys. 104(4), 044313 (2008).
[CrossRef]

J. Vac. Sci. Technol. B

R. C. Smith, J. D. Carey, R. D. Forrest, and S. R. P. Silva, “Effect of aspect ratio and anode location on the field emission properties of a single tip based emitter,” J. Vac. Sci. Technol. B 23(2), 632–635 (2005).
[CrossRef]

Philos. Mag. Lett.

R. Banerjee, A. Bhattacharya, A. Genc, and B. M. Arora, “Structure of twins in GaAs nanowires grown by the vapour-liquid-solid process,” Philos. Mag. Lett. 86(12), 807–816 (2006).
[CrossRef]

Phys. Rev. B

G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30(2), 519–526 (1984).
[CrossRef]

Other

S. L. Chuang, Physics of Optoelectronic Devices, John Wiley & Sons, Inc., New York, NY, 1995.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a)-(c): SEM images of InxGa1-xAs NNs with indium concentrations of x = 0, 0.05 and 0.15. The images are tilted 30° from the normal view. The pure GaAs NN was grown on a 4° off-cut (111)Si wafer. The scale bar (middle) is 500 nm and applies to all the SEM images. (d)-(f): top-down views of the x = 0, 0.05 and 0.15 InxGa1-xAs NNs, respectively. The GaAs NN has a hexagonal cross section, which becomes more rounded for higher indium concentrations.

Fig. 2
Fig. 2

μ-PL spectra of InxGa1-xAs NNs with x = 0, 0.05 and 0.15.

Fig. 3
Fig. 3

HRTEM image at the tip of the In0.15Ga0.85As NN imaged on the [1-100] zone axis. Comparisons with the GaAs NNs show that the lattice constant is 0.9 +/− 0.1% larger

Fig. 4
Fig. 4

(a) Three NN samples were grown, starting with a 4 μm long GaAs core for 60 min, then coating with In0.15Ga0.85As for 1-3 min (~5-15 nm width), and capping with a GaAs barrier for 10 min. The schematic shows a three dimensional side-view of the NN growth steps with one third of the needle cut away to show the heterostructure layers. (b) μ-PL spectra of the 60-minute bulk GaAs NN, bulk In0.15Ga0.85As NN and the three QW NNs

Fig. 5
Fig. 5

The μ-PL emission spectra of single NNs comparing the 30% and 15% indium QW NNs to the pure GaAs NN. All spectra are shown in normalized arbitrary units. The emission can be tuned from 1.509 eV to 1.119 eV, a range of 390 meV. The 30% indium QW NN emission is below the silicon band edge.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

0.993×[.419+.7(1x)+.4(1x)2] (eV)=Eg(InxGa1-xAs).

Metrics