Abstract

Using coupled-mode theory, we have shown that there is a π phase jump between the input and the through/drop fields of a codirectional coupler when the gap width between the coupled-waveguides reaches certain values such that the length of the coupler equals to the odd integer (for through field) or even integer (for drop field) times of the Transfer Distance. We introduced an efficient numerical method based on combining the scattering matrix method and FDTD method for analyzing a microring that has material loss. By applying this method, we found that the phase jump phenomenon also occurs in a half-ring coupler when the gap width between the coupled half-ring waveguides reaches a critical value. We showed that, for a given operating bandwidth, it is important that the gap width between the rings has to be larger than a certain value in order to avoid the phase jump, or smaller in order to take advantage of the phase jump. Based on the phase jump phenomenon, we found that the through and the drop spectra of the single-arm and the double-arm microring can be manipulated to shift about one half free spectral range by selecting appropriate gap widths. A novel all-microring wavelength interleaver, based on the phase jump phenomenon, is proposed and numerically demonstrated.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. M. Lee and M. C. Wu, "Tunable coupling regimes of silicon microdisk resonators using MEMS actuators," Opt. Express 14, 4703-4712 (2006).
    [CrossRef]
  2. A. Yariv and P. Yeh, Photonics:optical electronics in modern communications (Oxford University Press Inc., 2007), pp. 184-189.
  3. M. A. Popovic, C. Manolatou, and M. R. Watts, "Coupled-induced resonance frequency shifts in coupled dielectric multi-cavity filters," Opt. Express 14, 1208-1222 (2006).
    [CrossRef]
  4. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, "Effect of a layered environment on the complex nature frequencies of two-dimensional WGM dieletric-ring resonators," IEEE J. Lightwave Technol. 20, 1563-1572 (2002).
    [CrossRef]
  5. O. Schwelb, "On the nature of resonance splitting in coupled multiring optical resonators," Opt. Commun. 281, 1065-1071 (2008).
    [CrossRef]
  6. T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, "Microringresonator-based add-drop filters in SiN: fabrication and analysis," Opt. Express 12, 1437-1442 (2004).
    [CrossRef]
  7. T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, "Fabrication of add-drop filters based on frequency-matched microring resonators," IEEE J. Lightwave Technol. 24, 2207-2218 (2006).
    [CrossRef]
  8. S. Cao, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, "Interleaver technology: comparisons and applications requirements," IEEE J. Lightwave Technol. 22, 281-289 (2004).
    [CrossRef]
  9. C. K. Madsen and J. H. Zhao, Optical filter design and analysis: a signal processing approach (John Willey & Sons Inc., 1999), pp. 165-177.
  10. T. Mizuno, T. Kitoh, M. Oguma, Y. Inoue, T. Shibata and H. Takahashi, "Uniform wavelength spacing Mach-Zehnder interference using phase-generating couplers," IEEE J. Lightwave Technol. 24, 3217-3226 (2006).
    [CrossRef]
  11. K. Oda, N. Takato, H. Toba, and K. Nosu, "A wide-band guided-wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission systems," IEEE J. Lightwave Technol. 6, 1016-1023 (1988).
    [CrossRef]
  12. M. Kohtoku, S. Oku, Y. Kadota, and Y. Yoshikuni, "200-GHz FSR periodic multi/demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interference with a ring resonator," IEEE Photon. Technol. Lett. 12, 1174-1176 (2000).
    [CrossRef]
  13. Z. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen, "A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 19, 1072-1074 (2007).
    [CrossRef]
  14. J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, "Passive ring-assisted Mach-Zehnder interleaver on silicon-on-insulator," Opt. Express 16, 8359-8365 (2008).
    [CrossRef]
  15. C. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2000), Chap. 4.
  16. M. A. Popovic, T. Barwicz, M. R. Watts, P. T. Rakich, L. Socci, E. P. Ippen, F. X. Kartner, and H. I. Smith, "Multistage high-order microring-resonator add-drop filters," Opt. Lett. 31, 2571-2573 (2006).
    [CrossRef]
  17. S. Xiao, M. H. Khan, H. Shen, and M. Qi, "A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion," Opt. Express 15, 14765-14771 (2007).
    [CrossRef]
  18. S. Xiao, M. H. Khan, H. Shen, and M. Qi, "Silicon-on-insulator microring add-drop filters with free spectral ranges over 30 nm," IEEE J. Lightwave Technol. 26, 228-236 (2008).
    [CrossRef]
  19. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
    [CrossRef]

2008 (3)

O. Schwelb, "On the nature of resonance splitting in coupled multiring optical resonators," Opt. Commun. 281, 1065-1071 (2008).
[CrossRef]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, "Silicon-on-insulator microring add-drop filters with free spectral ranges over 30 nm," IEEE J. Lightwave Technol. 26, 228-236 (2008).
[CrossRef]

J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, "Passive ring-assisted Mach-Zehnder interleaver on silicon-on-insulator," Opt. Express 16, 8359-8365 (2008).
[CrossRef]

2007 (2)

Z. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen, "A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 19, 1072-1074 (2007).
[CrossRef]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, "A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion," Opt. Express 15, 14765-14771 (2007).
[CrossRef]

2006 (5)

M. A. Popovic, C. Manolatou, and M. R. Watts, "Coupled-induced resonance frequency shifts in coupled dielectric multi-cavity filters," Opt. Express 14, 1208-1222 (2006).
[CrossRef]

M. C. M. Lee and M. C. Wu, "Tunable coupling regimes of silicon microdisk resonators using MEMS actuators," Opt. Express 14, 4703-4712 (2006).
[CrossRef]

M. A. Popovic, T. Barwicz, M. R. Watts, P. T. Rakich, L. Socci, E. P. Ippen, F. X. Kartner, and H. I. Smith, "Multistage high-order microring-resonator add-drop filters," Opt. Lett. 31, 2571-2573 (2006).
[CrossRef]

T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, "Fabrication of add-drop filters based on frequency-matched microring resonators," IEEE J. Lightwave Technol. 24, 2207-2218 (2006).
[CrossRef]

T. Mizuno, T. Kitoh, M. Oguma, Y. Inoue, T. Shibata and H. Takahashi, "Uniform wavelength spacing Mach-Zehnder interference using phase-generating couplers," IEEE J. Lightwave Technol. 24, 3217-3226 (2006).
[CrossRef]

2004 (3)

S. Cao, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, "Interleaver technology: comparisons and applications requirements," IEEE J. Lightwave Technol. 22, 281-289 (2004).
[CrossRef]

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, "Microringresonator-based add-drop filters in SiN: fabrication and analysis," Opt. Express 12, 1437-1442 (2004).
[CrossRef]

2002 (1)

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, "Effect of a layered environment on the complex nature frequencies of two-dimensional WGM dieletric-ring resonators," IEEE J. Lightwave Technol. 20, 1563-1572 (2002).
[CrossRef]

2000 (1)

M. Kohtoku, S. Oku, Y. Kadota, and Y. Yoshikuni, "200-GHz FSR periodic multi/demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interference with a ring resonator," IEEE Photon. Technol. Lett. 12, 1174-1176 (2000).
[CrossRef]

1988 (1)

K. Oda, N. Takato, H. Toba, and K. Nosu, "A wide-band guided-wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission systems," IEEE J. Lightwave Technol. 6, 1016-1023 (1988).
[CrossRef]

Absil, P. P.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

Barwicz, T.

Benson, T. M.

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, "Effect of a layered environment on the complex nature frequencies of two-dimensional WGM dieletric-ring resonators," IEEE J. Lightwave Technol. 20, 1563-1572 (2002).
[CrossRef]

Boriskina, S. V.

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, "Effect of a layered environment on the complex nature frequencies of two-dimensional WGM dieletric-ring resonators," IEEE J. Lightwave Technol. 20, 1563-1572 (2002).
[CrossRef]

Cao, S.

S. Cao, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, "Interleaver technology: comparisons and applications requirements," IEEE J. Lightwave Technol. 22, 281-289 (2004).
[CrossRef]

Chang, S. J.

Z. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen, "A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 19, 1072-1074 (2007).
[CrossRef]

Chen, Y. J.

Z. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen, "A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 19, 1072-1074 (2007).
[CrossRef]

Chu, S. T.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

Damask, J. N.

S. Cao, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, "Interleaver technology: comparisons and applications requirements," IEEE J. Lightwave Technol. 22, 281-289 (2004).
[CrossRef]

Doerr, C. R.

S. Cao, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, "Interleaver technology: comparisons and applications requirements," IEEE J. Lightwave Technol. 22, 281-289 (2004).
[CrossRef]

Fang, Q.

Gill, D.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

Guiziou, L.

S. Cao, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, "Interleaver technology: comparisons and applications requirements," IEEE J. Lightwave Technol. 22, 281-289 (2004).
[CrossRef]

Harvey, G.

S. Cao, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, "Interleaver technology: comparisons and applications requirements," IEEE J. Lightwave Technol. 22, 281-289 (2004).
[CrossRef]

Haus, H. A.

Hibino, Y.

S. Cao, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, "Interleaver technology: comparisons and applications requirements," IEEE J. Lightwave Technol. 22, 281-289 (2004).
[CrossRef]

Hryniewicz, J. V.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

Inoue, Y.

T. Mizuno, T. Kitoh, M. Oguma, Y. Inoue, T. Shibata and H. Takahashi, "Uniform wavelength spacing Mach-Zehnder interference using phase-generating couplers," IEEE J. Lightwave Technol. 24, 3217-3226 (2006).
[CrossRef]

Ippen, E. P.

Johnson, F. G.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

Kadota, Y.

M. Kohtoku, S. Oku, Y. Kadota, and Y. Yoshikuni, "200-GHz FSR periodic multi/demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interference with a ring resonator," IEEE Photon. Technol. Lett. 12, 1174-1176 (2000).
[CrossRef]

Kartner, F. X.

Khan, M. H.

S. Xiao, M. H. Khan, H. Shen, and M. Qi, "Silicon-on-insulator microring add-drop filters with free spectral ranges over 30 nm," IEEE J. Lightwave Technol. 26, 228-236 (2008).
[CrossRef]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, "A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion," Opt. Express 15, 14765-14771 (2007).
[CrossRef]

King, O.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

Kitoh, T.

T. Mizuno, T. Kitoh, M. Oguma, Y. Inoue, T. Shibata and H. Takahashi, "Uniform wavelength spacing Mach-Zehnder interference using phase-generating couplers," IEEE J. Lightwave Technol. 24, 3217-3226 (2006).
[CrossRef]

Kohtoku, M.

M. Kohtoku, S. Oku, Y. Kadota, and Y. Yoshikuni, "200-GHz FSR periodic multi/demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interference with a ring resonator," IEEE Photon. Technol. Lett. 12, 1174-1176 (2000).
[CrossRef]

Kwong, D. L.

Lee, M. C. M.

Li, H.

S. Cao, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, "Interleaver technology: comparisons and applications requirements," IEEE J. Lightwave Technol. 22, 281-289 (2004).
[CrossRef]

Little, B. E.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

Lo, G. Q.

Manolatou, C.

Mizuno, T.

T. Mizuno, T. Kitoh, M. Oguma, Y. Inoue, T. Shibata and H. Takahashi, "Uniform wavelength spacing Mach-Zehnder interference using phase-generating couplers," IEEE J. Lightwave Technol. 24, 3217-3226 (2006).
[CrossRef]

Ni, C. Y.

Z. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen, "A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 19, 1072-1074 (2007).
[CrossRef]

Nosich, A. I.

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, "Effect of a layered environment on the complex nature frequencies of two-dimensional WGM dieletric-ring resonators," IEEE J. Lightwave Technol. 20, 1563-1572 (2002).
[CrossRef]

Nosu, K.

K. Oda, N. Takato, H. Toba, and K. Nosu, "A wide-band guided-wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission systems," IEEE J. Lightwave Technol. 6, 1016-1023 (1988).
[CrossRef]

Oda, K.

K. Oda, N. Takato, H. Toba, and K. Nosu, "A wide-band guided-wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission systems," IEEE J. Lightwave Technol. 6, 1016-1023 (1988).
[CrossRef]

Oguma, M.

T. Mizuno, T. Kitoh, M. Oguma, Y. Inoue, T. Shibata and H. Takahashi, "Uniform wavelength spacing Mach-Zehnder interference using phase-generating couplers," IEEE J. Lightwave Technol. 24, 3217-3226 (2006).
[CrossRef]

Oku, S.

M. Kohtoku, S. Oku, Y. Kadota, and Y. Yoshikuni, "200-GHz FSR periodic multi/demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interference with a ring resonator," IEEE Photon. Technol. Lett. 12, 1174-1176 (2000).
[CrossRef]

Popovic, M. A.

Qi, M.

S. Xiao, M. H. Khan, H. Shen, and M. Qi, "Silicon-on-insulator microring add-drop filters with free spectral ranges over 30 nm," IEEE J. Lightwave Technol. 26, 228-236 (2008).
[CrossRef]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, "A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion," Opt. Express 15, 14765-14771 (2007).
[CrossRef]

Rakich, P. T.

Schwelb, O.

O. Schwelb, "On the nature of resonance splitting in coupled multiring optical resonators," Opt. Commun. 281, 1065-1071 (2008).
[CrossRef]

Seiferth, F.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

Sewell, P.

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, "Effect of a layered environment on the complex nature frequencies of two-dimensional WGM dieletric-ring resonators," IEEE J. Lightwave Technol. 20, 1563-1572 (2002).
[CrossRef]

Shen, H.

S. Xiao, M. H. Khan, H. Shen, and M. Qi, "Silicon-on-insulator microring add-drop filters with free spectral ranges over 30 nm," IEEE J. Lightwave Technol. 26, 228-236 (2008).
[CrossRef]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, "A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion," Opt. Express 15, 14765-14771 (2007).
[CrossRef]

Shibata, T.

T. Mizuno, T. Kitoh, M. Oguma, Y. Inoue, T. Shibata and H. Takahashi, "Uniform wavelength spacing Mach-Zehnder interference using phase-generating couplers," IEEE J. Lightwave Technol. 24, 3217-3226 (2006).
[CrossRef]

Smith, H. I.

Socci, L.

Song, J.

Suzuki, S.

S. Cao, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, "Interleaver technology: comparisons and applications requirements," IEEE J. Lightwave Technol. 22, 281-289 (2004).
[CrossRef]

Takahashi, H.

T. Mizuno, T. Kitoh, M. Oguma, Y. Inoue, T. Shibata and H. Takahashi, "Uniform wavelength spacing Mach-Zehnder interference using phase-generating couplers," IEEE J. Lightwave Technol. 24, 3217-3226 (2006).
[CrossRef]

Takato, N.

K. Oda, N. Takato, H. Toba, and K. Nosu, "A wide-band guided-wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission systems," IEEE J. Lightwave Technol. 6, 1016-1023 (1988).
[CrossRef]

Tao, S. H.

Toba, H.

K. Oda, N. Takato, H. Toba, and K. Nosu, "A wide-band guided-wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission systems," IEEE J. Lightwave Technol. 6, 1016-1023 (1988).
[CrossRef]

Trakalo, M.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

Van, V.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

Wang, Z.

Z. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen, "A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 19, 1072-1074 (2007).
[CrossRef]

Watts, M. R.

Wu, K. Y.

S. Cao, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, "Interleaver technology: comparisons and applications requirements," IEEE J. Lightwave Technol. 22, 281-289 (2004).
[CrossRef]

Wu, M. C.

Xiao, S.

S. Xiao, M. H. Khan, H. Shen, and M. Qi, "Silicon-on-insulator microring add-drop filters with free spectral ranges over 30 nm," IEEE J. Lightwave Technol. 26, 228-236 (2008).
[CrossRef]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, "A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion," Opt. Express 15, 14765-14771 (2007).
[CrossRef]

Xie, P.

S. Cao, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, "Interleaver technology: comparisons and applications requirements," IEEE J. Lightwave Technol. 22, 281-289 (2004).
[CrossRef]

Yoshikuni, Y.

M. Kohtoku, S. Oku, Y. Kadota, and Y. Yoshikuni, "200-GHz FSR periodic multi/demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interference with a ring resonator," IEEE Photon. Technol. Lett. 12, 1174-1176 (2000).
[CrossRef]

Yu, M. B.

IEEE J. Lightwave Technol. (6)

T. Mizuno, T. Kitoh, M. Oguma, Y. Inoue, T. Shibata and H. Takahashi, "Uniform wavelength spacing Mach-Zehnder interference using phase-generating couplers," IEEE J. Lightwave Technol. 24, 3217-3226 (2006).
[CrossRef]

K. Oda, N. Takato, H. Toba, and K. Nosu, "A wide-band guided-wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission systems," IEEE J. Lightwave Technol. 6, 1016-1023 (1988).
[CrossRef]

T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, "Fabrication of add-drop filters based on frequency-matched microring resonators," IEEE J. Lightwave Technol. 24, 2207-2218 (2006).
[CrossRef]

S. Cao, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, "Interleaver technology: comparisons and applications requirements," IEEE J. Lightwave Technol. 22, 281-289 (2004).
[CrossRef]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, "Effect of a layered environment on the complex nature frequencies of two-dimensional WGM dieletric-ring resonators," IEEE J. Lightwave Technol. 20, 1563-1572 (2002).
[CrossRef]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, "Silicon-on-insulator microring add-drop filters with free spectral ranges over 30 nm," IEEE J. Lightwave Technol. 26, 228-236 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
[CrossRef]

M. Kohtoku, S. Oku, Y. Kadota, and Y. Yoshikuni, "200-GHz FSR periodic multi/demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interference with a ring resonator," IEEE Photon. Technol. Lett. 12, 1174-1176 (2000).
[CrossRef]

Z. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen, "A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 19, 1072-1074 (2007).
[CrossRef]

Opt. Commun. (1)

O. Schwelb, "On the nature of resonance splitting in coupled multiring optical resonators," Opt. Commun. 281, 1065-1071 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Other (3)

C. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2000), Chap. 4.

C. K. Madsen and J. H. Zhao, Optical filter design and analysis: a signal processing approach (John Willey & Sons Inc., 1999), pp. 165-177.

A. Yariv and P. Yeh, Photonics:optical electronics in modern communications (Oxford University Press Inc., 2007), pp. 184-189.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics