Abstract

A novel single-wavelength fiber ring laser with 250 mW output power is reported. A double-clad polarization-maintaining erbium-ytterbium co-doped fiber was used in a unidirectional ring cavity as an active medium to eliminate spatial hole-burning effect in the cavity. The output of the laser was single-longitudinal mode. A fiber Fabry-Perot filter was used in the cavity to increase the longitudinal-mode spacing which eliminated the mode hopping. The maximum output power produced by the laser without mode hopping was 250 mW. The optical signal to noise ratio (OSNR) of the laser was more than 40 dB.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. H. Yla-Jarkko and A. B. Grudinin, “Performance limitations of high-power DFB fiber lasers,” IEEE Photon. Technol. Lett. 15(2), 191–193 (2003).
    [CrossRef]
  2. C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W Single-Frequency Narrow-Linewidth MOPA Using Large-Core Erbium-Ytterbium Co-Doped Fiber,” IEEE Photon. Technol. Lett. 16(8), 1825–1827 (2004).
    [CrossRef]
  3. S. U. Alam, R. Wixey, L. Hickey, K. H. Yla-Jarkko, and M. N. Zervas, “High power, single-mode, single-frequency DFB fibre laser at 1550 nm in MOPA configuration," in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CMK7.
  4. X. X. Yang, L. Zhan, Q. S. Shen, and Y. X. Xia, “High-power single-longitudinal-mode fiber laser with a ring Fabry-Perot resonator and a saturable absorber,” IEEE Photon. Technol. Lett. 20(11), 879–881 (2008).
    [CrossRef]
  5. A. Polynkin, P. Polynkin, M. Mansuripur, and N. Peyghambarian, “Single-frequency fiber ring laser with 1W output power at 1.5 mu m,” Opt. Express 13(8), 3179–3184 (2005).
    [CrossRef] [PubMed]
  6. Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, “Stable Single-Frequency Traveling-Wave Fiber Loop Laser with Integral Saturable-Absorber-Based Tracking Narrow-Band-Filter,” Opt. Lett. 20(8), 875–877 (1995).
    [CrossRef] [PubMed]
  7. S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Coupled-Cavity Erbium Fiber Lasers Incorporating Fiber Grating Reflectors,” Opt. Lett. 18(23), 2023–2025 (1993).
    [CrossRef] [PubMed]
  8. A. Gloag, N. Langford, K. McCallion, and W. Johnstone, “Continuously tunable single-frequency erbium ring fiber laser,” J. Opt. Soc. Am. B 13(5), 921–925 (1996).
    [CrossRef]
  9. P. Urquhart, “Compound Optical-Fiber-Based Resonators,” J. Opt. Soc. Am. A 5(6), 803–812 (1988).
    [CrossRef]
  10. A. Schawlow, “L and Townes, C. H., “Infrared and Optical Masers,” Phys. Rev. 112, 1940–1949 (1958).
    [CrossRef]
  11. N. Y. Voo, P. Horak, M. Ibsen, and W. H. Loh, “Anomalous Linewidth behavior in short-cavity single-frequency fiber laser,” IEEE Photon. Technol. Lett. 17(3), 546–548 (2005).
    [CrossRef]
  12. P. Horak, N. Y. Voo, M. Ibsen, and W. H. Loh, “Pump-noise-induced linewidth contributions in distributed feedback fiber lasers,” IEEE Photon. Technol. Lett. 18(9), 998–1000 (2006).
    [CrossRef]

2008

X. X. Yang, L. Zhan, Q. S. Shen, and Y. X. Xia, “High-power single-longitudinal-mode fiber laser with a ring Fabry-Perot resonator and a saturable absorber,” IEEE Photon. Technol. Lett. 20(11), 879–881 (2008).
[CrossRef]

2006

P. Horak, N. Y. Voo, M. Ibsen, and W. H. Loh, “Pump-noise-induced linewidth contributions in distributed feedback fiber lasers,” IEEE Photon. Technol. Lett. 18(9), 998–1000 (2006).
[CrossRef]

2005

N. Y. Voo, P. Horak, M. Ibsen, and W. H. Loh, “Anomalous Linewidth behavior in short-cavity single-frequency fiber laser,” IEEE Photon. Technol. Lett. 17(3), 546–548 (2005).
[CrossRef]

A. Polynkin, P. Polynkin, M. Mansuripur, and N. Peyghambarian, “Single-frequency fiber ring laser with 1W output power at 1.5 mu m,” Opt. Express 13(8), 3179–3184 (2005).
[CrossRef] [PubMed]

2004

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W Single-Frequency Narrow-Linewidth MOPA Using Large-Core Erbium-Ytterbium Co-Doped Fiber,” IEEE Photon. Technol. Lett. 16(8), 1825–1827 (2004).
[CrossRef]

2003

K. H. Yla-Jarkko and A. B. Grudinin, “Performance limitations of high-power DFB fiber lasers,” IEEE Photon. Technol. Lett. 15(2), 191–193 (2003).
[CrossRef]

1996

1995

1993

1988

1958

A. Schawlow, “L and Townes, C. H., “Infrared and Optical Masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Alegria, C.

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W Single-Frequency Narrow-Linewidth MOPA Using Large-Core Erbium-Ytterbium Co-Doped Fiber,” IEEE Photon. Technol. Lett. 16(8), 1825–1827 (2004).
[CrossRef]

Alvarez-Chavez, J. A.

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W Single-Frequency Narrow-Linewidth MOPA Using Large-Core Erbium-Ytterbium Co-Doped Fiber,” IEEE Photon. Technol. Lett. 16(8), 1825–1827 (2004).
[CrossRef]

Cheng, Y.

Chernikov, S. V.

Codemard, C.

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W Single-Frequency Narrow-Linewidth MOPA Using Large-Core Erbium-Ytterbium Co-Doped Fiber,” IEEE Photon. Technol. Lett. 16(8), 1825–1827 (2004).
[CrossRef]

Fu, L.

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W Single-Frequency Narrow-Linewidth MOPA Using Large-Core Erbium-Ytterbium Co-Doped Fiber,” IEEE Photon. Technol. Lett. 16(8), 1825–1827 (2004).
[CrossRef]

Gloag, A.

Grudinin, A. B.

K. H. Yla-Jarkko and A. B. Grudinin, “Performance limitations of high-power DFB fiber lasers,” IEEE Photon. Technol. Lett. 15(2), 191–193 (2003).
[CrossRef]

Horak, P.

P. Horak, N. Y. Voo, M. Ibsen, and W. H. Loh, “Pump-noise-induced linewidth contributions in distributed feedback fiber lasers,” IEEE Photon. Technol. Lett. 18(9), 998–1000 (2006).
[CrossRef]

N. Y. Voo, P. Horak, M. Ibsen, and W. H. Loh, “Anomalous Linewidth behavior in short-cavity single-frequency fiber laser,” IEEE Photon. Technol. Lett. 17(3), 546–548 (2005).
[CrossRef]

Ibsen, M.

P. Horak, N. Y. Voo, M. Ibsen, and W. H. Loh, “Pump-noise-induced linewidth contributions in distributed feedback fiber lasers,” IEEE Photon. Technol. Lett. 18(9), 998–1000 (2006).
[CrossRef]

N. Y. Voo, P. Horak, M. Ibsen, and W. H. Loh, “Anomalous Linewidth behavior in short-cavity single-frequency fiber laser,” IEEE Photon. Technol. Lett. 17(3), 546–548 (2005).
[CrossRef]

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W Single-Frequency Narrow-Linewidth MOPA Using Large-Core Erbium-Ytterbium Co-Doped Fiber,” IEEE Photon. Technol. Lett. 16(8), 1825–1827 (2004).
[CrossRef]

Jeong, Y.

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W Single-Frequency Narrow-Linewidth MOPA Using Large-Core Erbium-Ytterbium Co-Doped Fiber,” IEEE Photon. Technol. Lett. 16(8), 1825–1827 (2004).
[CrossRef]

Johnstone, W.

Kashyap, R.

Kringlebotn, J. T.

Laming, R. I.

Langford, N.

Loh, W. H.

P. Horak, N. Y. Voo, M. Ibsen, and W. H. Loh, “Pump-noise-induced linewidth contributions in distributed feedback fiber lasers,” IEEE Photon. Technol. Lett. 18(9), 998–1000 (2006).
[CrossRef]

N. Y. Voo, P. Horak, M. Ibsen, and W. H. Loh, “Anomalous Linewidth behavior in short-cavity single-frequency fiber laser,” IEEE Photon. Technol. Lett. 17(3), 546–548 (2005).
[CrossRef]

Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, “Stable Single-Frequency Traveling-Wave Fiber Loop Laser with Integral Saturable-Absorber-Based Tracking Narrow-Band-Filter,” Opt. Lett. 20(8), 875–877 (1995).
[CrossRef] [PubMed]

Mansuripur, M.

McCallion, K.

Nilsson, J.

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W Single-Frequency Narrow-Linewidth MOPA Using Large-Core Erbium-Ytterbium Co-Doped Fiber,” IEEE Photon. Technol. Lett. 16(8), 1825–1827 (2004).
[CrossRef]

Payne, D. N.

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Sahu, J. K.

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W Single-Frequency Narrow-Linewidth MOPA Using Large-Core Erbium-Ytterbium Co-Doped Fiber,” IEEE Photon. Technol. Lett. 16(8), 1825–1827 (2004).
[CrossRef]

Schawlow, A.

A. Schawlow, “L and Townes, C. H., “Infrared and Optical Masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Shen, Q. S.

X. X. Yang, L. Zhan, Q. S. Shen, and Y. X. Xia, “High-power single-longitudinal-mode fiber laser with a ring Fabry-Perot resonator and a saturable absorber,” IEEE Photon. Technol. Lett. 20(11), 879–881 (2008).
[CrossRef]

Taylor, J. R.

Urquhart, P.

Voo, N. Y.

P. Horak, N. Y. Voo, M. Ibsen, and W. H. Loh, “Pump-noise-induced linewidth contributions in distributed feedback fiber lasers,” IEEE Photon. Technol. Lett. 18(9), 998–1000 (2006).
[CrossRef]

N. Y. Voo, P. Horak, M. Ibsen, and W. H. Loh, “Anomalous Linewidth behavior in short-cavity single-frequency fiber laser,” IEEE Photon. Technol. Lett. 17(3), 546–548 (2005).
[CrossRef]

Xia, Y. X.

X. X. Yang, L. Zhan, Q. S. Shen, and Y. X. Xia, “High-power single-longitudinal-mode fiber laser with a ring Fabry-Perot resonator and a saturable absorber,” IEEE Photon. Technol. Lett. 20(11), 879–881 (2008).
[CrossRef]

Yang, X. X.

X. X. Yang, L. Zhan, Q. S. Shen, and Y. X. Xia, “High-power single-longitudinal-mode fiber laser with a ring Fabry-Perot resonator and a saturable absorber,” IEEE Photon. Technol. Lett. 20(11), 879–881 (2008).
[CrossRef]

Yla-Jarkko, K. H.

K. H. Yla-Jarkko and A. B. Grudinin, “Performance limitations of high-power DFB fiber lasers,” IEEE Photon. Technol. Lett. 15(2), 191–193 (2003).
[CrossRef]

Zhan, L.

X. X. Yang, L. Zhan, Q. S. Shen, and Y. X. Xia, “High-power single-longitudinal-mode fiber laser with a ring Fabry-Perot resonator and a saturable absorber,” IEEE Photon. Technol. Lett. 20(11), 879–881 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

X. X. Yang, L. Zhan, Q. S. Shen, and Y. X. Xia, “High-power single-longitudinal-mode fiber laser with a ring Fabry-Perot resonator and a saturable absorber,” IEEE Photon. Technol. Lett. 20(11), 879–881 (2008).
[CrossRef]

K. H. Yla-Jarkko and A. B. Grudinin, “Performance limitations of high-power DFB fiber lasers,” IEEE Photon. Technol. Lett. 15(2), 191–193 (2003).
[CrossRef]

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W Single-Frequency Narrow-Linewidth MOPA Using Large-Core Erbium-Ytterbium Co-Doped Fiber,” IEEE Photon. Technol. Lett. 16(8), 1825–1827 (2004).
[CrossRef]

N. Y. Voo, P. Horak, M. Ibsen, and W. H. Loh, “Anomalous Linewidth behavior in short-cavity single-frequency fiber laser,” IEEE Photon. Technol. Lett. 17(3), 546–548 (2005).
[CrossRef]

P. Horak, N. Y. Voo, M. Ibsen, and W. H. Loh, “Pump-noise-induced linewidth contributions in distributed feedback fiber lasers,” IEEE Photon. Technol. Lett. 18(9), 998–1000 (2006).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev.

A. Schawlow, “L and Townes, C. H., “Infrared and Optical Masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Other

S. U. Alam, R. Wixey, L. Hickey, K. H. Yla-Jarkko, and M. N. Zervas, “High power, single-mode, single-frequency DFB fibre laser at 1550 nm in MOPA configuration," in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CMK7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental fiber laser. OI: Polarization independent optical isolator.

Fig. 2
Fig. 2

Fabry-Perot filter formed by fused fiber couplers, where K1 and K2 are intensity coupling ratios. Ein, Ereflec. and Etrans are incident, reflected and transmitted electric fields, respectively. LFP = L1 + L2 is the cavity length.

Fig. 3
Fig. 3

Theoretical output of the (a) ring cavity (obtained from Eq. (5)) for RFBG = 56% and Leffcetive = 4.0 m. (b) FP filter (Eq. (2)) for K1 = K2 = 0.99 and LFP = 0.4 m.

Fig. 4
Fig. 4

Output of the laser obtained using (a) OSA and (b) Scanning Fabry-Perot spectrum analyzer.

Fig. 5
Fig. 5

Input-Output characteristics of the laser at 1570.27 nm. Length of the active fiber 1 m.

Fig. 6
Fig. 6

Output of the laser oscillated in multimode, prior to adjusting the polarization controller plates.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

EtransEin=(1K1)(1K2)exp(JβLFP)1+K1K2exp(JβLFP)EreflecEin=J(K1+K2exp(JβLFP))1+K1K2exp(JβLFP)(EtransEin)2+(EreflecEin)2=1}.
ItransIin=(1K1)(1K2)(1+K1K2)24K1K2sin2(βLFP2)IreflecIin=1(1K1)(1K2)(1+K1K2)24K1K2sin2(βLFP2)}.
J(K1+K2cos(βLFP))K2sin(βLFP)=0.
FSRFP=ΔυFP=cnLFP,
EtransRingEin=RFBG+exp(α0Leffective+JβLeffective)1+RFBGexp(α0Leffective+JβLeffective)βLeffective=(2m+1)πFSRcavity=Δυcavity=cnLeffective},

Metrics