Abstract

An optical scheme for speckle suppression using two or three partially coherent beams in a projection system is proposed. Diffractive optical elements (DOE) placed in the intermediate image plane create several beams carrying the image to a screen. Transparent plates of different thicknesses are placed in the Fourier plane of the projective lens and used for beam decorrelation. The coherence matrix algorithm for speckle suppression is used to calculate the speckle contrast ratio. It is shown that for a small decorrelation length and using the same maximum thickness of the transparent plates, two partially coherent beams would provide better suppression than three beams with different diffraction orders. However, for a large decorrelation length, the three beam setup provides better speckle suppression for all three colors examined with a suppression coefficient close to theoretical limits. Verification of speckle suppression using three-beam decorrelation is reported.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. I. Trisnadi, C. B. Carlisle and R. Monteverde, "Overview and applications of Grating Light ValveTM based optical write engines for high-speed digital imaging," MOEMS Display and Imaging Systems II, edited by Hakan Urey, David L. Dickensheets, Proc. SPIE 5348, 52-64 (2004).
    [CrossRef]
  2. M. W. Kowarz, J. C. Brazas and J. G. Phalen, "Conformal Grating Electromechanical system (GEMS) for High-Speed Digital Light Modulation," IEEE, 15th Int. MEMS Conf. Digest, 568-573 (2002).
  3. S. K. Yun, J. Song, T.-W. Lee, I. Yeo, Y. Choi, Y. Lee, S. An, K. Han, Y. Victor, H.-W. Park, C. Park, H. Kim, J. Yang, J. Cheong, S. Ryu, K. Oh, H. Yang, Y. Hong, S. Hong, S. Yoon, J. Jang, J. Kyoung, O. Lim, C. Kim, A. Lapchuk, S. Ihar, S. Lee, S. Kim, Y. Hwang, K. Woo, S. Shin, J. Kang and D.-H. Park, "Spatial Optical Modulator (SOM): Samsung’s Light Modulator for the Next Generation Laser Display," IMID/IDMC '06 DIGEST (Proceeding of Society for Information Display - SID. August, 2006), 29-1, 551-555.
  4. S. K. Yun, "Open hole-based diffractive light modulator," US Patent Number US7206118 (2007).
  5. J. W. Goodman, "Some fundamental properties of speckle," J. Opt. Soc. Am. 66, 1145-1150 (1976).
    [CrossRef]
  6. E. Marom, S. Kresic-Juric and L. Bergstein, "Analysis of speckle noise in bar-code scanning systems," J. Opt. Soc. Am. A 18, 888-901 (2001), http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-18-4-888.
    [CrossRef]
  7. A. Lencina, P. Vaveliuk, M. Tebaldi, and N. Bolognini, "Modulated speckle simulations based on the random-walk model," Opt. Lett. 28, 1748-1750 (2003), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-28-19-1748.
    [CrossRef] [PubMed]
  8. J. W. Goodman, "Speckle with a finite number of steps," Appl. Opt. 47, A111-A118 (2008), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-4-A111.
    [CrossRef] [PubMed]
  9. C. M. P. Rodrigues and J. L. Pinto, "Contrast of polychromatic speckle patterns and its dependence to surface heights distribution," Opt. Eng. 42, 1699-1703 (2003).
    [CrossRef]
  10. A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura and S. Hirata, "Effective speckle reduction in laser projection displays," Proc. of SPIE 6911, 69110T (2008).
    [CrossRef]
  11. L. Wang, T. Tschudi, M. Boeddinghaus, A. Elbert, T. Halldorsson, and P. Petursson, "Speckle reduction in laser projections with ultrasonic waves," Opt. Eng. 39, 1659-1664 (2000).
    [CrossRef]
  12. L. Wang, T. Tschudi, T. Halldorsson and P. R. Petursson, "Speckle reduction in laser projection systems by diffractive optical elements," Appl. Opt. 37, 1770-1775 (1998).
    [CrossRef]
  13. J. I. Trisnadi, "Hadamard speckle contrast reduction," Opt. Lett. 29, 11-13 (2004).
    [CrossRef] [PubMed]
  14. V. Yurlov, A. Lapchuk, S. K. Yun, J. Song, and H. Yang, "Speckle suppression in scanning laser display,"Appl. Opt. 47, 179-187 (2008).
    [CrossRef] [PubMed]
  15. E. G. Rawson, A. B. Nafarrate, R. E. Norton, and J. W. Goodman, "Speckle-free rear-projection screen using two close screens in slow relative motion," J. Opt. Soc. Am. 66, 1290-1294 (1976), http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-66-11-1290.
    [CrossRef]
  16. J. I. Trisnadi, "Method and apparatus for reducing laser speckle using polarization average," US Patent Number US6956878 (2005).
  17. J. C. Dainty, A. E. Ennos, M. Francon, J. W. Goodman, T. S. McKechnie and G. Parry, "Laser speckle and related phenomena," Springler-Verlag, Berlin, Heidelberg, New York, 1975.
  18. J. W. Goodman, Speckle Phenomena in Optics: Theory and application, (Roberts and Company Publishers, 2007), Chap. 5.
  19. F. Riechert, U. Lemmer, M. Peeters, I. Fischer, G. Verschaffelt and G. Bastian, "Speckle phenomena in pulse broad-area vertical-cavity surface-emitting laser emission under different driving and illumination conditions," in CLEO/Europe and IQEC 2007 Conference Digest, (Optical Society of America, 2007), paper CB5_3.
  20. F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, I. Fischer "Speckle characteristics of a broad-area VCSEL in the incoherent emission regime," Opt. Commun., in press (2008).
    [CrossRef]

2008 (4)

F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, I. Fischer "Speckle characteristics of a broad-area VCSEL in the incoherent emission regime," Opt. Commun., in press (2008).
[CrossRef]

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura and S. Hirata, "Effective speckle reduction in laser projection displays," Proc. of SPIE 6911, 69110T (2008).
[CrossRef]

J. W. Goodman, "Speckle with a finite number of steps," Appl. Opt. 47, A111-A118 (2008), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-4-A111.
[CrossRef] [PubMed]

V. Yurlov, A. Lapchuk, S. K. Yun, J. Song, and H. Yang, "Speckle suppression in scanning laser display,"Appl. Opt. 47, 179-187 (2008).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

A. Lencina, P. Vaveliuk, M. Tebaldi, and N. Bolognini, "Modulated speckle simulations based on the random-walk model," Opt. Lett. 28, 1748-1750 (2003), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-28-19-1748.
[CrossRef] [PubMed]

C. M. P. Rodrigues and J. L. Pinto, "Contrast of polychromatic speckle patterns and its dependence to surface heights distribution," Opt. Eng. 42, 1699-1703 (2003).
[CrossRef]

2001 (1)

2000 (1)

L. Wang, T. Tschudi, M. Boeddinghaus, A. Elbert, T. Halldorsson, and P. Petursson, "Speckle reduction in laser projections with ultrasonic waves," Opt. Eng. 39, 1659-1664 (2000).
[CrossRef]

1998 (1)

1976 (2)

Bastian, G.

F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, I. Fischer "Speckle characteristics of a broad-area VCSEL in the incoherent emission regime," Opt. Commun., in press (2008).
[CrossRef]

Bergstein, L.

Boeddinghaus, M.

L. Wang, T. Tschudi, M. Boeddinghaus, A. Elbert, T. Halldorsson, and P. Petursson, "Speckle reduction in laser projections with ultrasonic waves," Opt. Eng. 39, 1659-1664 (2000).
[CrossRef]

Bolognini, N.

Elbert, A.

L. Wang, T. Tschudi, M. Boeddinghaus, A. Elbert, T. Halldorsson, and P. Petursson, "Speckle reduction in laser projections with ultrasonic waves," Opt. Eng. 39, 1659-1664 (2000).
[CrossRef]

Fischer, I.

F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, I. Fischer "Speckle characteristics of a broad-area VCSEL in the incoherent emission regime," Opt. Commun., in press (2008).
[CrossRef]

Furukawa, A.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura and S. Hirata, "Effective speckle reduction in laser projection displays," Proc. of SPIE 6911, 69110T (2008).
[CrossRef]

Goodman, J. W.

Halldorsson, T.

L. Wang, T. Tschudi, M. Boeddinghaus, A. Elbert, T. Halldorsson, and P. Petursson, "Speckle reduction in laser projections with ultrasonic waves," Opt. Eng. 39, 1659-1664 (2000).
[CrossRef]

L. Wang, T. Tschudi, T. Halldorsson and P. R. Petursson, "Speckle reduction in laser projection systems by diffractive optical elements," Appl. Opt. 37, 1770-1775 (1998).
[CrossRef]

Hirata, S.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura and S. Hirata, "Effective speckle reduction in laser projection displays," Proc. of SPIE 6911, 69110T (2008).
[CrossRef]

Imanishi, D.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura and S. Hirata, "Effective speckle reduction in laser projection displays," Proc. of SPIE 6911, 69110T (2008).
[CrossRef]

Ito, S.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura and S. Hirata, "Effective speckle reduction in laser projection displays," Proc. of SPIE 6911, 69110T (2008).
[CrossRef]

Kresic-Juric, S.

Lapchuk, A.

Lemmer, U.

F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, I. Fischer "Speckle characteristics of a broad-area VCSEL in the incoherent emission regime," Opt. Commun., in press (2008).
[CrossRef]

Lencina, A.

Marom, E.

Nafarrate, A. B.

Norton, R. E.

Ohse, N.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura and S. Hirata, "Effective speckle reduction in laser projection displays," Proc. of SPIE 6911, 69110T (2008).
[CrossRef]

Peeters, M.

F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, I. Fischer "Speckle characteristics of a broad-area VCSEL in the incoherent emission regime," Opt. Commun., in press (2008).
[CrossRef]

Petursson, P.

L. Wang, T. Tschudi, M. Boeddinghaus, A. Elbert, T. Halldorsson, and P. Petursson, "Speckle reduction in laser projections with ultrasonic waves," Opt. Eng. 39, 1659-1664 (2000).
[CrossRef]

Petursson, P. R.

Pinto, J. L.

C. M. P. Rodrigues and J. L. Pinto, "Contrast of polychromatic speckle patterns and its dependence to surface heights distribution," Opt. Eng. 42, 1699-1703 (2003).
[CrossRef]

Rawson, E. G.

Riechert, F.

F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, I. Fischer "Speckle characteristics of a broad-area VCSEL in the incoherent emission regime," Opt. Commun., in press (2008).
[CrossRef]

Rodrigues, C. M. P.

C. M. P. Rodrigues and J. L. Pinto, "Contrast of polychromatic speckle patterns and its dependence to surface heights distribution," Opt. Eng. 42, 1699-1703 (2003).
[CrossRef]

Sato, Y.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura and S. Hirata, "Effective speckle reduction in laser projection displays," Proc. of SPIE 6911, 69110T (2008).
[CrossRef]

Song, J.

Tamamura, K.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura and S. Hirata, "Effective speckle reduction in laser projection displays," Proc. of SPIE 6911, 69110T (2008).
[CrossRef]

Tebaldi, M.

Trisnadi, J. I.

Tschudi, T.

L. Wang, T. Tschudi, M. Boeddinghaus, A. Elbert, T. Halldorsson, and P. Petursson, "Speckle reduction in laser projections with ultrasonic waves," Opt. Eng. 39, 1659-1664 (2000).
[CrossRef]

L. Wang, T. Tschudi, T. Halldorsson and P. R. Petursson, "Speckle reduction in laser projection systems by diffractive optical elements," Appl. Opt. 37, 1770-1775 (1998).
[CrossRef]

Vaveliuk, P.

Verschaffelt, G.

F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, I. Fischer "Speckle characteristics of a broad-area VCSEL in the incoherent emission regime," Opt. Commun., in press (2008).
[CrossRef]

Wakabayashi, K.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura and S. Hirata, "Effective speckle reduction in laser projection displays," Proc. of SPIE 6911, 69110T (2008).
[CrossRef]

Wang, L.

L. Wang, T. Tschudi, M. Boeddinghaus, A. Elbert, T. Halldorsson, and P. Petursson, "Speckle reduction in laser projections with ultrasonic waves," Opt. Eng. 39, 1659-1664 (2000).
[CrossRef]

L. Wang, T. Tschudi, T. Halldorsson and P. R. Petursson, "Speckle reduction in laser projection systems by diffractive optical elements," Appl. Opt. 37, 1770-1775 (1998).
[CrossRef]

Yang, H.

Yun, S. K.

Yurlov, V.

Appl. Opt. (3)

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, I. Fischer "Speckle characteristics of a broad-area VCSEL in the incoherent emission regime," Opt. Commun., in press (2008).
[CrossRef]

Opt. Eng. (2)

C. M. P. Rodrigues and J. L. Pinto, "Contrast of polychromatic speckle patterns and its dependence to surface heights distribution," Opt. Eng. 42, 1699-1703 (2003).
[CrossRef]

L. Wang, T. Tschudi, M. Boeddinghaus, A. Elbert, T. Halldorsson, and P. Petursson, "Speckle reduction in laser projections with ultrasonic waves," Opt. Eng. 39, 1659-1664 (2000).
[CrossRef]

Opt. Lett. (2)

Proc. of SPIE (1)

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura and S. Hirata, "Effective speckle reduction in laser projection displays," Proc. of SPIE 6911, 69110T (2008).
[CrossRef]

Other (8)

J. I. Trisnadi, "Method and apparatus for reducing laser speckle using polarization average," US Patent Number US6956878 (2005).

J. C. Dainty, A. E. Ennos, M. Francon, J. W. Goodman, T. S. McKechnie and G. Parry, "Laser speckle and related phenomena," Springler-Verlag, Berlin, Heidelberg, New York, 1975.

J. W. Goodman, Speckle Phenomena in Optics: Theory and application, (Roberts and Company Publishers, 2007), Chap. 5.

F. Riechert, U. Lemmer, M. Peeters, I. Fischer, G. Verschaffelt and G. Bastian, "Speckle phenomena in pulse broad-area vertical-cavity surface-emitting laser emission under different driving and illumination conditions," in CLEO/Europe and IQEC 2007 Conference Digest, (Optical Society of America, 2007), paper CB5_3.

J. I. Trisnadi, C. B. Carlisle and R. Monteverde, "Overview and applications of Grating Light ValveTM based optical write engines for high-speed digital imaging," MOEMS Display and Imaging Systems II, edited by Hakan Urey, David L. Dickensheets, Proc. SPIE 5348, 52-64 (2004).
[CrossRef]

M. W. Kowarz, J. C. Brazas and J. G. Phalen, "Conformal Grating Electromechanical system (GEMS) for High-Speed Digital Light Modulation," IEEE, 15th Int. MEMS Conf. Digest, 568-573 (2002).

S. K. Yun, J. Song, T.-W. Lee, I. Yeo, Y. Choi, Y. Lee, S. An, K. Han, Y. Victor, H.-W. Park, C. Park, H. Kim, J. Yang, J. Cheong, S. Ryu, K. Oh, H. Yang, Y. Hong, S. Hong, S. Yoon, J. Jang, J. Kyoung, O. Lim, C. Kim, A. Lapchuk, S. Ihar, S. Lee, S. Kim, Y. Hwang, K. Woo, S. Shin, J. Kang and D.-H. Park, "Spatial Optical Modulator (SOM): Samsung’s Light Modulator for the Next Generation Laser Display," IMID/IDMC '06 DIGEST (Proceeding of Society for Information Display - SID. August, 2006), 29-1, 551-555.

S. K. Yun, "Open hole-based diffractive light modulator," US Patent Number US7206118 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Optical scheme of speckle suppression in a projection system using a vibrating DOE in the intermediate image plane.

Fig. 2.
Fig. 2.

Optical scheme of speckle suppression in a projection system using DOEs in the intermediate image plane with several partially coherent beams for image projection; (a) YZ plane cross section (unfolded); (b) XZ plane cross section.

Fig. 3.
Fig. 3.

Optical schemes for projection system using two (a) and three (b) diffraction order beams for image projection.

Fig. 4.
Fig. 4.

Vertical DOE (Diffractive Optical Element) shape used in the three order speckle suppression scheme

Fig. 5.
Fig. 5.

Diffraction order intensities for meander shape DOE with optimal groove depths for three color speckle suppression.

Fig. 6.
Fig. 6.

Dependence of speckle CR on retarder thickness s2 for green laser (λ= 0.532 μm, equal intensity of diffraction orders: IG±1= IG0, retarder’s material refractive index: n=1.882). Solid lines- three beam case; dashed lines- two beam case. Here four different laser band widths are considered: δλ = 0.05 nm, δλ = 0.1 nm, δλ = 0.2 nm and δλ = 0.3 nm, respectively.

Fig. 7.
Fig. 7.

Dependence of speckle CR on retarder thickness for red laser (λ= 0.640 μm, I1=0.5*I0) light (n=1.882): solid lines- three beam case; dashed lines- two beam case. Here four different laser band widths are considered: δλ = 0.1 nm, δλ = 0.2 nm, δλ = 0.3 nm and δλ = 0.4 nm, respectively.

Fig. 8.
Fig. 8.

Dependence of speckle suppression of blue LD (λ= 0.440 μm, I1=2.9*I0) light on the decorrelation length (n=1.882): solid lines- three beam case; dashed lines- two beam case.

Fig. 9.
Fig. 9.

Principal scheme of diffraction order beam propagation through retarder glass plates at the Fourier transform plane.

Fig. 10.
Fig. 10.

Spectrum of green laser depending on the case temperature. (a) FWHM bandwidth δλ=0.05 nm at 30°C. (b) FWHM bandwidth δλ=0.14 nm at 40°C.

Fig. 11.
Fig. 11.

The final speckle CR ~ 5% of the implemented pico-projector as measured by CCD camera. (a) Two-dimensional image of white screen captured by CCD camera. (b) Horizontal line profile and speckle distribution.

Tables (1)

Tables Icon

Table 1. Comparison of speckle suppression: theoretical vs. measure

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

CR=σII=I2I2I,
CR=i=1NσIn2i=1NIn
μ(cτ)=AI(k)exp{kcτ}dk=exp((δkντ)216),
μij=exp{(δk4)2[si(ni1)sj(nj1)]2}exp{(πδλ2λ2)2[si(ni1)sj(nj1)]2}.
μijexp{(πδλ2λ2)2[(sisj)(n1)]2}.
sisj2λ2πδλ(n1)0.64λ2δλ(n1).
CR=CR01+μ22.
(I0I0I1μ*01I0I1μ*01I0I1μ01I1I1μ11*I0I1μ01I1μ11I1).
det(I0λI0I1μ*01I0I1μ*0,1I0I1μ01I1λI1μ1,1*I0I1μ0,1I1μ1,1I1λ)=0.
λ3 λ2(I0+2I1)+λ(2I1I0+I12I12μ1,12I0I1μ012I0I1μ0,12)I12I0+
+I0I12μ1,12+I0I12μ0,12+I0I12μ0,12I1I0I1μ0,1μ0,1*μ*1,1I0I1I1μ1,1μ0,1μ0,1*=0.
CR=λ12+λ22+λ32λ1+λ2+λ3

Metrics