Abstract

We present a continuous-wave (cw) singly-resonant optical parametric oscillator (SROPO) based on MgO-doped periodically poled lithium niobate (PPLN) delivering single-frequency idler output from 2.33 to 5.32 μm. In this system, we observe additional spectral components that have been attributed to stimulated Raman lines in other studies. However, we are able to assign them unambiguously to cascaded optical parametric processes. The tunable forward and backward idler waves generated by these additional phase-matched oscillations have frequencies that are tunable around 3.5 and 1.5 THz, respectively.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. J. W. van Herpen, S. E. Bisson, and F. J. M. Harren, "Continuous-wave operation of a single-frequency optical parametric oscillator at 4-5 ?m based on periodically poled LiNbO3," Opt. Lett. 28,2497-2499 (2003).
    [CrossRef] [PubMed]
  2. A. Henderson and R. Stafford, "Spectral broadening and stimulated Raman conversion in a continuous-wave optical parametric oscillator," Opt. Lett. 32,1281-1283 (2007).
    [CrossRef] [PubMed]
  3. A. V. Okishev and J. D. Zuegel, "Intracavity-pumped Raman laser action in a mid-IR, continuous-wave (cw) MgO:PPLN optical parametric oscillator," Opt. Express 14,12169-12173 (2006).
    [CrossRef] [PubMed]
  4. O. Gayer, Z. Sacks, E. Galun, and A. Arie, "Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3," Appl. Phys. B: Lasers Opt. 91,343-348 (2008).
    [CrossRef]
  5. O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, "Temperaturedependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3," Appl. Phys. B: Lasers Opt. 86,111-115 (2007).
  6. U. T. Schwarz, and M. Maier, "Asymmetric Raman lines caused by an anharmonic lattice potential in lithium niobate," Phys. Rev. B 55,11041-11044 (1997).
    [CrossRef]
  7. A Ridah, P Bourson, MD Fontana, G Malovichko, "The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3", J. Phys.: Condens. Matter 9,9687-9693 (1997).
    [CrossRef]
  8. T. D. Wang,S. T. Lin, Y. Y. Lin,A. C. Chiang, and Y. C. Huang, "Forward and backward Terahertz-wave difference-frequency generations from periodically poled lithium niobate," Opt. Express 16,6471-6478 (2008).
    [CrossRef] [PubMed]
  9. L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97,123505 (2005).
    [CrossRef]

2008 (2)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, "Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3," Appl. Phys. B: Lasers Opt. 91,343-348 (2008).
[CrossRef]

T. D. Wang,S. T. Lin, Y. Y. Lin,A. C. Chiang, and Y. C. Huang, "Forward and backward Terahertz-wave difference-frequency generations from periodically poled lithium niobate," Opt. Express 16,6471-6478 (2008).
[CrossRef] [PubMed]

2007 (2)

A. Henderson and R. Stafford, "Spectral broadening and stimulated Raman conversion in a continuous-wave optical parametric oscillator," Opt. Lett. 32,1281-1283 (2007).
[CrossRef] [PubMed]

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, "Temperaturedependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3," Appl. Phys. B: Lasers Opt. 86,111-115 (2007).

2006 (1)

2005 (1)

L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97,123505 (2005).
[CrossRef]

2003 (1)

1997 (2)

U. T. Schwarz, and M. Maier, "Asymmetric Raman lines caused by an anharmonic lattice potential in lithium niobate," Phys. Rev. B 55,11041-11044 (1997).
[CrossRef]

A Ridah, P Bourson, MD Fontana, G Malovichko, "The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3", J. Phys.: Condens. Matter 9,9687-9693 (1997).
[CrossRef]

Anstett, G.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, "Temperaturedependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3," Appl. Phys. B: Lasers Opt. 86,111-115 (2007).

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, "Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3," Appl. Phys. B: Lasers Opt. 91,343-348 (2008).
[CrossRef]

Bartschke, J.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, "Temperaturedependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3," Appl. Phys. B: Lasers Opt. 86,111-115 (2007).

Bauer, T.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, "Temperaturedependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3," Appl. Phys. B: Lasers Opt. 86,111-115 (2007).

Bisson, S. E.

Bourson, P

A Ridah, P Bourson, MD Fontana, G Malovichko, "The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3", J. Phys.: Condens. Matter 9,9687-9693 (1997).
[CrossRef]

Chiang, A. C.

Fontana, MD

A Ridah, P Bourson, MD Fontana, G Malovichko, "The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3", J. Phys.: Condens. Matter 9,9687-9693 (1997).
[CrossRef]

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, "Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3," Appl. Phys. B: Lasers Opt. 91,343-348 (2008).
[CrossRef]

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, "Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3," Appl. Phys. B: Lasers Opt. 91,343-348 (2008).
[CrossRef]

Harren, F. J. M.

Hebling, J.

L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97,123505 (2005).
[CrossRef]

Henderson, A.

Huang, Y. C.

Kuhl, J.

L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97,123505 (2005).
[CrossRef]

L’Huillier, J. A.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, "Temperaturedependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3," Appl. Phys. B: Lasers Opt. 86,111-115 (2007).

Lin, S. T.

Lin, Y. Y.

Maier, M.

U. T. Schwarz, and M. Maier, "Asymmetric Raman lines caused by an anharmonic lattice potential in lithium niobate," Phys. Rev. B 55,11041-11044 (1997).
[CrossRef]

Malovichko, G

A Ridah, P Bourson, MD Fontana, G Malovichko, "The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3", J. Phys.: Condens. Matter 9,9687-9693 (1997).
[CrossRef]

Nittmann, M.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, "Temperaturedependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3," Appl. Phys. B: Lasers Opt. 86,111-115 (2007).

Okishev, A. V.

Palfalvi, L.

L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97,123505 (2005).
[CrossRef]

Paul, O.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, "Temperaturedependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3," Appl. Phys. B: Lasers Opt. 86,111-115 (2007).

Peter, A.

L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97,123505 (2005).
[CrossRef]

Polgar, K.

L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97,123505 (2005).
[CrossRef]

Quosig, A.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, "Temperaturedependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3," Appl. Phys. B: Lasers Opt. 86,111-115 (2007).

Ridah, A

A Ridah, P Bourson, MD Fontana, G Malovichko, "The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3", J. Phys.: Condens. Matter 9,9687-9693 (1997).
[CrossRef]

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, "Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3," Appl. Phys. B: Lasers Opt. 91,343-348 (2008).
[CrossRef]

Schwarz, U. T.

U. T. Schwarz, and M. Maier, "Asymmetric Raman lines caused by an anharmonic lattice potential in lithium niobate," Phys. Rev. B 55,11041-11044 (1997).
[CrossRef]

Stafford, R.

van Herpen, M. M. J. W.

Wang, T. D.

Zuegel, J. D.

Appl. Phys. B: Lasers Opt. (2)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, "Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3," Appl. Phys. B: Lasers Opt. 91,343-348 (2008).
[CrossRef]

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’Huillier, "Temperaturedependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3," Appl. Phys. B: Lasers Opt. 86,111-115 (2007).

J. Appl. Phys. (1)

L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97,123505 (2005).
[CrossRef]

J. Phys.: Condens. Matter (1)

A Ridah, P Bourson, MD Fontana, G Malovichko, "The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3", J. Phys.: Condens. Matter 9,9687-9693 (1997).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (1)

U. T. Schwarz, and M. Maier, "Asymmetric Raman lines caused by an anharmonic lattice potential in lithium niobate," Phys. Rev. B 55,11041-11044 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic illustration of the experimental setup: P p, P p *, P s, and P i represent powers of the single-frequency pump wave, its transmitted portion, the signal wave, and the idler wave. The signal wavelength is denoted by λ s.

Fig. 2.
Fig. 2.

Measured signal wavelengths (oe-17-01-87-i001) and calculated idler wavelengths (oe-17-01-87-i002) for the QPM period lengths around 30 μm (left) and around 25 μm (right). The theoretical values (oe-17-01-87-i003) are calculated with a temperature dependent Sellmeier equation [4] considering the thermal expansion of the crystal [5].

Fig. 3.
Fig. 3.

Measured spectrum for a crystal at 60 °C with a QPM period length of 25.6 μm and a pump power of P p = 4.7 W. The expected signal frequency at 1304 nm is denoted as λ s 1 (other symbols: see text).

Fig. 4.
Fig. 4.

Measured frequency shifts Δν1 (oe-17-01-87-i004), ∆ν2 (oe-17-01-87-i005), Δν3 (oe-17-01-87-i006), and Δνr (oe-17-01-87-i007) for the additional spectral components with respect to the initial signal wavelength λ s 1 (see Fig. 3). The theoretical values (oe-17-01-87-i008) are calculated using a temperature independent Sellmeier equation in the terahertz regime [9]. The error bars are of the order of the symbol size and therefore not drawn. Details are given in the text.

Fig. 5.
Fig. 5.

Schemes of the cascaded optical processes (top) and their wave vector diagrams (bottom). The initial parametric oscillation a) converts the pump wave λ p at 1030 nm to the resonant signal wave λ s 1 which acts as a pump source itself for the subsequent parametric backward oscillation b) and the parametric forward oscillation c). Forward and backward denotes here the propagation direction of the idler wave with respect to the pump wave.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k s 1 k s 2 + k i 2 = K Λ
k s 1 k s 4 + k i 4 = K Λ ,

Metrics