Abstract

A perturbative analysis is proposed to estimate optical losses for electrically pumped micro-disk lasers. The optical field interaction with the electrical contacts and the optimization of their implementation is investigated. Our model shows a good agreement with 3D Finite Difference Time Domain (FDTD) computation and can be used for designing contacts for thin micro-disks, with a considerably reduced calculation time.

We also demonstrate that losses induced by the contacts can be exploited to select the optical mode of a micro-laser.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Brasseur, P. Roos, K. Repasky, and J. Carlsten, "Characterization of a continuous-wave Raman laser in H2," J. Opt. Soc. Am. B 16, 1305-1312 (1999).
    [CrossRef]
  2. H. Park, A. Fang, S. Kodama, and J. Bowers, "Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells," Opt. Express 13, 9460-9464 (2005).
    [CrossRef] [PubMed]
  3. A. Fang, H. Park, R. Jones, O. Cohen, M. Paniccia, and J. Bowers, "A continuous-wave hybrid AlGaInAs-silicon evanescent laser," IEEE Photon. Technol. Lett. 18, 1143-1145 (2006).
    [CrossRef]
  4. R. Ushigome, M. Fujita, A. Sakai, T. Baba, and Y. Kokubun, "GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect," Jpn. J. Appl. Phys 41, 6364-6369 (2002).
    [CrossRef]
  5. M. Fujita, R. Ushigome, and T. Baba, "Continuous wave lasing in GaInAsP microdisk injection laser withthreshold current of 40 ?A," Electron. Lett. 36, 790-791 (2000).
    [CrossRef]
  6. J. Van Campenhout, P. Rojo-Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J. Fedeli, and R. Baets, "Electrically injected thin-film InGaAsP microdisk lasers integrated on a Si-wafer," 2006 Annual Symposium of the IEEE/LEOS Benelux Chapter, 30/11/2006-1/12/2006, Eindhoven, the Netherlands/Molina Vazquez, J; Verdurmen, E; van den Boom, H; Leijtens, X; Koonen, A.-2006-ISBN 90-6144-989-8 (2006).
  7. P. Rojo Romeo, J. Van Campenhout, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, D. Van Thourhout, R. Baets, J. Fedeli et al., "Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs," Opt. Express 14, 3864-3871 (2006).
    [CrossRef] [PubMed]
  8. J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J. Fedeli, C. Lagahe, and R. Baets, "Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit," Opt. Express 15, 6744-6749 (2007).
    [CrossRef] [PubMed]
  9. J. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, "Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer," Adv. Opt. Technol. 15 (2008).
  10. J. Van Campenhout, P. Rojo-Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Cioccio, J. Fedeli, and R. Baets, "Design and Optimization of Electrically Injected InP-Based Microdisk Lasers Integrated on and Coupled to a SOI Waveguide Circuit," J. Lightwave Technol. 26, 52-63 (2008).
    [CrossRef]
  11. M. Chin, "Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes," J. Appl. Phys. 75, 3302 (1994).
    [CrossRef]
  12. K. P. Huy, "Etude de micro structures utilisant le guidage réfractifá fort confinement de la lumiére," Ph.D. dissertation, Institut de Microélectronique, Electromagnétisme et Photonique (2005).
  13. N. Frateschi and A. Levi, "The spectrum of microdisk lasers," J. Appl. Phys. 80, 644 (1996).
    [CrossRef]
  14. TessaFDTD : http://alioth.debian.org/projects/tessa/.
  15. Harminv: http://ab-initio.mit.edu/harminv/.

2008 (1)

2007 (1)

2006 (2)

2005 (1)

2002 (1)

R. Ushigome, M. Fujita, A. Sakai, T. Baba, and Y. Kokubun, "GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect," Jpn. J. Appl. Phys 41, 6364-6369 (2002).
[CrossRef]

2000 (1)

M. Fujita, R. Ushigome, and T. Baba, "Continuous wave lasing in GaInAsP microdisk injection laser withthreshold current of 40 ?A," Electron. Lett. 36, 790-791 (2000).
[CrossRef]

1999 (1)

1996 (1)

N. Frateschi and A. Levi, "The spectrum of microdisk lasers," J. Appl. Phys. 80, 644 (1996).
[CrossRef]

1994 (1)

M. Chin, "Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes," J. Appl. Phys. 75, 3302 (1994).
[CrossRef]

Baba, T.

R. Ushigome, M. Fujita, A. Sakai, T. Baba, and Y. Kokubun, "GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect," Jpn. J. Appl. Phys 41, 6364-6369 (2002).
[CrossRef]

M. Fujita, R. Ushigome, and T. Baba, "Continuous wave lasing in GaInAsP microdisk injection laser withthreshold current of 40 ?A," Electron. Lett. 36, 790-791 (2000).
[CrossRef]

Baets, R.

Bowers, J.

A. Fang, H. Park, R. Jones, O. Cohen, M. Paniccia, and J. Bowers, "A continuous-wave hybrid AlGaInAs-silicon evanescent laser," IEEE Photon. Technol. Lett. 18, 1143-1145 (2006).
[CrossRef]

H. Park, A. Fang, S. Kodama, and J. Bowers, "Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells," Opt. Express 13, 9460-9464 (2005).
[CrossRef] [PubMed]

Brasseur, J.

Carlsten, J.

Chin, M.

M. Chin, "Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes," J. Appl. Phys. 75, 3302 (1994).
[CrossRef]

Cioccio, L.

Cohen, O.

A. Fang, H. Park, R. Jones, O. Cohen, M. Paniccia, and J. Bowers, "A continuous-wave hybrid AlGaInAs-silicon evanescent laser," IEEE Photon. Technol. Lett. 18, 1143-1145 (2006).
[CrossRef]

Di Cioccio, L.

Fang, A.

A. Fang, H. Park, R. Jones, O. Cohen, M. Paniccia, and J. Bowers, "A continuous-wave hybrid AlGaInAs-silicon evanescent laser," IEEE Photon. Technol. Lett. 18, 1143-1145 (2006).
[CrossRef]

H. Park, A. Fang, S. Kodama, and J. Bowers, "Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells," Opt. Express 13, 9460-9464 (2005).
[CrossRef] [PubMed]

Fedeli, J.

Frateschi, N.

N. Frateschi and A. Levi, "The spectrum of microdisk lasers," J. Appl. Phys. 80, 644 (1996).
[CrossRef]

Fujita, M.

R. Ushigome, M. Fujita, A. Sakai, T. Baba, and Y. Kokubun, "GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect," Jpn. J. Appl. Phys 41, 6364-6369 (2002).
[CrossRef]

M. Fujita, R. Ushigome, and T. Baba, "Continuous wave lasing in GaInAsP microdisk injection laser withthreshold current of 40 ?A," Electron. Lett. 36, 790-791 (2000).
[CrossRef]

Hollinger, G.

Jones, R.

A. Fang, H. Park, R. Jones, O. Cohen, M. Paniccia, and J. Bowers, "A continuous-wave hybrid AlGaInAs-silicon evanescent laser," IEEE Photon. Technol. Lett. 18, 1143-1145 (2006).
[CrossRef]

Kazmierczak, A.

Kodama, S.

Kokubun, Y.

R. Ushigome, M. Fujita, A. Sakai, T. Baba, and Y. Kokubun, "GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect," Jpn. J. Appl. Phys 41, 6364-6369 (2002).
[CrossRef]

Lagahe, C.

Letartre, X.

Levi, A.

N. Frateschi and A. Levi, "The spectrum of microdisk lasers," J. Appl. Phys. 80, 644 (1996).
[CrossRef]

Paniccia, M.

A. Fang, H. Park, R. Jones, O. Cohen, M. Paniccia, and J. Bowers, "A continuous-wave hybrid AlGaInAs-silicon evanescent laser," IEEE Photon. Technol. Lett. 18, 1143-1145 (2006).
[CrossRef]

Park, H.

A. Fang, H. Park, R. Jones, O. Cohen, M. Paniccia, and J. Bowers, "A continuous-wave hybrid AlGaInAs-silicon evanescent laser," IEEE Photon. Technol. Lett. 18, 1143-1145 (2006).
[CrossRef]

H. Park, A. Fang, S. Kodama, and J. Bowers, "Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells," Opt. Express 13, 9460-9464 (2005).
[CrossRef] [PubMed]

Regreny, P.

Repasky, K.

Rojo Romeo, P.

Rojo-Romeo, P.

Roos, P.

Sakai, A.

R. Ushigome, M. Fujita, A. Sakai, T. Baba, and Y. Kokubun, "GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect," Jpn. J. Appl. Phys 41, 6364-6369 (2002).
[CrossRef]

Seassal, C.

Ushigome, R.

R. Ushigome, M. Fujita, A. Sakai, T. Baba, and Y. Kokubun, "GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect," Jpn. J. Appl. Phys 41, 6364-6369 (2002).
[CrossRef]

M. Fujita, R. Ushigome, and T. Baba, "Continuous wave lasing in GaInAsP microdisk injection laser withthreshold current of 40 ?A," Electron. Lett. 36, 790-791 (2000).
[CrossRef]

Van Campenhout, J.

Van Thourhout, D.

Verstuyft, S.

Electron. Lett. (1)

M. Fujita, R. Ushigome, and T. Baba, "Continuous wave lasing in GaInAsP microdisk injection laser withthreshold current of 40 ?A," Electron. Lett. 36, 790-791 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Fang, H. Park, R. Jones, O. Cohen, M. Paniccia, and J. Bowers, "A continuous-wave hybrid AlGaInAs-silicon evanescent laser," IEEE Photon. Technol. Lett. 18, 1143-1145 (2006).
[CrossRef]

J. Appl. Phys. (2)

M. Chin, "Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes," J. Appl. Phys. 75, 3302 (1994).
[CrossRef]

N. Frateschi and A. Levi, "The spectrum of microdisk lasers," J. Appl. Phys. 80, 644 (1996).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys (1)

R. Ushigome, M. Fujita, A. Sakai, T. Baba, and Y. Kokubun, "GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect," Jpn. J. Appl. Phys 41, 6364-6369 (2002).
[CrossRef]

Opt. Express (3)

Other (5)

J. Van Campenhout, P. Rojo-Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J. Fedeli, and R. Baets, "Electrically injected thin-film InGaAsP microdisk lasers integrated on a Si-wafer," 2006 Annual Symposium of the IEEE/LEOS Benelux Chapter, 30/11/2006-1/12/2006, Eindhoven, the Netherlands/Molina Vazquez, J; Verdurmen, E; van den Boom, H; Leijtens, X; Koonen, A.-2006-ISBN 90-6144-989-8 (2006).

J. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, "Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer," Adv. Opt. Technol. 15 (2008).

TessaFDTD : http://alioth.debian.org/projects/tessa/.

Harminv: http://ab-initio.mit.edu/harminv/.

K. P. Huy, "Etude de micro structures utilisant le guidage réfractifá fort confinement de la lumiére," Ph.D. dissertation, Institut de Microélectronique, Electromagnétisme et Photonique (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic view of an electrically driven micro-disk, with its top and bottom contacts, coupled to an optical waveguide, in a cladding medium (silica for instance).

Fig. 2.
Fig. 2.

Description of the studied structure: Hc and Rc are the investigated parameters. The regions 1 and 2 correspond to the location where the evanescent part of the field is absorbed in the contact. These 2 volumes represent the deposited material to connect the micro-disk to external wires.

Fig. 3.
Fig. 3.

Vertical confinement of the WGM for the (0,26,0) mode at 1.51 μm. The area in gray corresponds to the z-values inside the micro-disk.

Fig. 4.
Fig. 4.

Evolution of losses for the (0,26,0) mode at 1.51 μm as a function of the external radius of the via, for Hc = 0.4 μm and a 2.5 μm radius InP micro-disk embedded in silica.

Fig. 5.
Fig. 5.

Evolution of losses as a function of the distance between the micro-disk and the top contact of the membrane for the (0,26,0) mode at 1.51 μm and a via radius Rc = 1 μm. Due to the small via radius, via losses are negligible

Fig. 6.
Fig. 6.

Overview of the WGM (0,26,0) (z component of the induction) for a perfect microdisk (1), and with a 100 nm thick slab for a 0.55 μm InP membrane (2).

Fig. 7.
Fig. 7.

E(z) evolution for the (0,26,0) mode at 1.52 μm, ndisk = 3.2 and nclad = 1.5. The colored area corresponds to the micro-disk (545 nm thick, light gray) or the slab (100 nm thick, in dark gray).

Fig. 8.
Fig. 8.

Evolution of losses for the (0,26,0) mode as a function of the distance between the micro-disk and the top contact of the membrane, for Rc = 1.0 μm and a top contact with α 0 = 3.01 × 106 m -1 and ncont = 1.6.

Fig. 9.
Fig. 9.

Evolution of losses as a function of the external radius of the via, for Hc = 0.45 μm and a top ITO contact.

Fig. 10.
Fig. 10.

Evolution of losses in the tab for the modes described in table 1 and Rc = 1.0 μm, using ncont = 1.52 and α 0 = 1.83 × 105 m -1

Fig. 11.
Fig. 11.

Evolution of losses in the via for the modes described in table 1 and Hc = 0.45 μm

Tables (1)

Tables Icon

Table 1. Resonant modes at around 1.55 μm for a micro-disk of index ndisk = 3.17 in a medium of index nclad = 1.44

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ΔE+k2ni2E=0
E=E(z)(mUm(r)rsin(mθ)er+dUmdr(r)cos(mθ)eθ)
Um(r)={Jm(kneffr)rRjJm(kncladr)+yYm(kncladr)rRE(z)={cos(kNDiskz)zH2cos(kNDiskH2)ekNclad(H2z)zH2
e<θ>=2km2ε2D2Ez2Jm2+(ε3Dkm2Ez2+(Ezz)2)(Jm12+Jm+12)
Etotτ=Econtτa+Etotτ0=Etot(τa1EcontEtot+τ01)
τc1=τa1EcontEtot
τc1=τ1τo1

Metrics