Abstract

We propose an iterative algorithm that exploits the dispersion mismatch between reference and sample arm in frequency-domain optical coherence tomography (FD-OCT) to effectively cancel complex conjugate mirror terms in individual A-scans and thereby generate full range tomograms. The resulting scheme, termed dispersion encoded full range (DEFR) OCT, allows distinguishing real structures from complex conjugate mirror artifacts. Even though DEFR-OCT has higher post-processing complexity than conventional FD-OCT, acquisition speed is not compromised since no additional A-scans need to be measured, thereby rendering this technique robust against phase fluctuations. The algorithm uses numerical dispersion compensation and exhibits similar resolution as standard processing. The residual leakage of mirror terms is further reduced by incorporating additional knowledge such as the power spectrum of the light source. The suppression ratio of mirror signals is more than 50 dB and thus comparable to complex FD-OCT techniques which use multiple A-scans.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-27-16-1415
    [CrossRef]
  2. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, "Phase-shifting algorithm to achieve highspeed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett. 28, 2201-2203 (2003). http://ol.osa.org/abstract.cfm?URI=ol-28-22-2201
    [CrossRef] [PubMed]
  3. P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and W. Gorczynska, "Complex spectral OCT in human eye imaging in vivo," Opt. Commun. 229, 79-84 (2004). http://dx.doi.org/doi:10.1016/j.optcom.2003.10.041
    [CrossRef]
  4. P. Targowski, W. Gorczynska, M. Szkulmowski, M. Wojtkowski, and A. Kowalczyk, "Improved complex spectral domain OCT for in vivo eye imaging," Opt. Commun. 249, 357-362 (2005). http://dx.doi.org/doi:10.1016/j.optcom.2005.01.016
    [CrossRef]
  5. J. Zhang, J. S. Nelson, and Z. P. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-2-147
    [CrossRef] [PubMed]
  6. E. G¨otzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, "High speed full range complex spectral domain optical coherence tomography," Opt. Express 13, 583-594 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-583
    [CrossRef] [PubMed]
  7. M. A. Choma, C. Yang, and J. A. Izatt, "Instantaneous quadrature low-coherence interferometry with 3×3 fiberoptic couplers," Opt. Lett. 28, 2162-2164 (2003). http://ol.osa.org/abstract.cfm?URI=ol-28-22-2162
    [CrossRef] [PubMed]
  8. M. V. Sarunic, M. A. Choma, C. H. Yang, and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers," Opt. Express 13, 957-967 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-3-957
    [CrossRef] [PubMed]
  9. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, "Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography," Opt. Lett. 31, 2426-2428 (2006). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-16-2426
    [CrossRef] [PubMed]
  10. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, "Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography," Appl. Opt. 45, 1861-1865 (2006). http://ao.osa.org/abstract.cfm?URI=ao-45-8-1861
    [CrossRef] [PubMed]
  11. R. K. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Applied Physics Letters 90, 054103 (2007). http://link.aip.org/link/?APL/90/054103/1
  12. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt. Lett. 32, 3453-3455 (2007). http://ol.osa.org/abstract.cfm?URI=ol-32-23-3453
    [CrossRef] [PubMed]
  13. B. Baumann, M. Pircher, E. G¨otzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13 375-13 387 (2007). http://www.opticsexpress.org/abstract.cfm?URI=oe-15-20-13375
    [CrossRef]
  14. Y. K. Tao, M. Zhao, and J. A. Izatt, "High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation," Opt. Lett. 32, 2918-2920 (2007). http://ol.osa.org/abstract.cfm?URI=ol-32-20-2918
    [CrossRef] [PubMed]
  15. S. Makita, T. Fabritius, and Y. Yasuno, "Full-range, high-speed, high-resolution 1-?m spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16, 8406-8420 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-12-8406
    [CrossRef] [PubMed]
  16. S. Yun, G. Tearney, J. de Boer, and B. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-4828 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-20-4822
    [CrossRef] [PubMed]
  17. A. M. Davis, M. A. Choma, and J. A. Izatt, "Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt. 10, 064 005-6 (2005). http://link.aip.org/link/?JBO/10/064005/1
    [CrossRef]
  18. A. H. Bachmann, R. A. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-1496 (2006). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-4-1487
    [CrossRef] [PubMed]
  19. A. H. Bachmann, R. Michaely, T. Lasser, and R. A. Leitgeb, "Dual beam heterodyne Fourier domain optical coherence tomography," Opt. Express 15, 9254-9266 (2007). http://www.opticsexpress.org/abstract.cfm?URI=oe-15-15-9254
    [CrossRef] [PubMed]
  20. B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, "Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation," Opt. Lett. 31, 362-364 (2006). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-3-362
    [CrossRef] [PubMed]
  21. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2435
    [CrossRef] [PubMed]
  22. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, "Autofocus algorithm for dispersion correction in optical coherence tomography," Appl. Opt. 42, 3038-3046 (2003). http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-16-3038
    [CrossRef] [PubMed]
  23. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2404
    [CrossRef] [PubMed]
  24. K. E. O’Hara and M. Hacker, "Method to suppress artifacts in frequency-domain optical coherence tomograghy," US7330270 (2008).
  25. J. A. Izatt and M. A. Choma, Optical Coherence Tomography Technology and Applications (Springer, 2008), Vol. XXIX, chap. 2, "Theory of Optical Coherence Tomography", pp. 47-72. http://www.springer.com/medicine/radiology/book/978-3-540-77549-2?detailsPage=samplePages
    [CrossRef]
  26. A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, "Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography," Opt. Express 9, 610-615 (2001). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-12-610
    [CrossRef] [PubMed]
  27. M. Duarte, M. Davenport, M. Wakin, and R. Baraniuk, "Sparse Signal Detection from Incoherent Projections," in Proc. Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP)3, III305-308 (2006). http://dx.doi.org/doi:10.1109/ICASSP.2006.1660651
  28. B. Povazay, B. Hofer, B. Hermann, A. Unterhuber, J. E. Morgan, C. Glittenberg, S. Binder, and W. Drexler, "Minimum distance mapping using three-dimensional optical coherence tomography for glaucoma diagnosis," J. Biomed. Opt. 12, 041 204 (2007). http://link.aip.org/link/?JBO/12/041204/1
    [CrossRef]
  29. E. J. Fern’andez, A. Unterhuber, B. Pova?zay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-13-6213
    [CrossRef] [PubMed]
  30. R. K. Wang and Z. Ma, "A practical approach to eliminate autocorrelation artefacts for volumerate spectral domain optical coherence tomography," Phys. Med. Biol. 51, 3231-3239 (2006). http://www.iop.org/EJ/abstract/0031-9155/51/12/015/
    [CrossRef] [PubMed]
  31. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-3-367
    [CrossRef] [PubMed]
  32. C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, "Spectral resolution and sampling issues in Fourier-transform spectral interferometry," J. Opt. Soc. Am. B 17, 1795-1802 (2000). http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-10-1795
    [CrossRef]
  33. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). http://dx.doi.org/10.1117/1.1482379
    [CrossRef] [PubMed]
  34. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-18-2183
    [CrossRef] [PubMed]
  35. B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, "Realtime fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 ?m," Opt. Express 13, 3931-3944 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-11-3931
    [CrossRef] [PubMed]
  36. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2156
    [CrossRef] [PubMed]
  37. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10 652-10 664 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-26-10652
    [CrossRef] [PubMed]
  38. M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination," J. Biomed. Opt. 12, 041205 (2007). http://link.aip.org/link/?JBO/12/041205/1
    [CrossRef]
  39. W. Drexler, U. Morgner, F. X. K¨artner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-24-17-1221
    [CrossRef]
  40. J. F. de Boer, C. E. Saxer, and J. S. Nelson, "Stable carrier generation and phase-resolved digital data processing in optical coherence tomography," Appl. Opt. 40, 5787-5790 (2001). http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-40-31-5787
    [CrossRef]
  41. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, "Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media," Appl. Opt. 42, 204-217 (2003). http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-2-204
    [CrossRef] [PubMed]
  42. A. R. Tumlinson, B. Hofer, A. M. Winkler, B. Pova?zay, W. Drexler, and J. K. Barton, "Inherent homogenous media dispersion compensation in frequency domain optical coherence tomography by accurate k-sampling," Appl. Opt. 47, 687-693 (2008). http://ao.osa.org/abstract.cfm?URI=ao-47-5-687
    [CrossRef] [PubMed]
  43. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography andscattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007); http://www.opticsexpress.org/abstract.cfm?URI=oe-15-10-6121
    [CrossRef] [PubMed]

2008

2007

2006

B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, "Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation," Opt. Lett. 31, 362-364 (2006). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-3-362
[CrossRef] [PubMed]

A. H. Bachmann, R. A. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-1496 (2006). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-4-1487
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, "Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography," Appl. Opt. 45, 1861-1865 (2006). http://ao.osa.org/abstract.cfm?URI=ao-45-8-1861
[CrossRef] [PubMed]

E. J. Fern’andez, A. Unterhuber, B. Pova?zay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-13-6213
[CrossRef] [PubMed]

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, "Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography," Opt. Lett. 31, 2426-2428 (2006). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-16-2426
[CrossRef] [PubMed]

R. K. Wang and Z. Ma, "A practical approach to eliminate autocorrelation artefacts for volumerate spectral domain optical coherence tomography," Phys. Med. Biol. 51, 3231-3239 (2006). http://www.iop.org/EJ/abstract/0031-9155/51/12/015/
[CrossRef] [PubMed]

2005

2004

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-3-367
[CrossRef] [PubMed]

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and W. Gorczynska, "Complex spectral OCT in human eye imaging in vivo," Opt. Commun. 229, 79-84 (2004). http://dx.doi.org/doi:10.1016/j.optcom.2003.10.041
[CrossRef]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2156
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2404
[CrossRef] [PubMed]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2435
[CrossRef] [PubMed]

S. Yun, G. Tearney, J. de Boer, and B. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-4828 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-20-4822
[CrossRef] [PubMed]

2003

2002

2001

2000

1999

Akiba, M.

Aoki, G.

Applegate, B. E.

Artal, P.

Bachmann, A. H.

Bajraszewski, T.

Barton, J. K.

Belabas, N.

Boppart, S. A.

Bouma, B.

Bouma, B. E.

Cense, B.

Chen, T. C.

Chen, Z. P.

Choma, M. A.

de Boer, J.

de Boer, J. F.

Dorrer, C.

Drexler, W.

Duker, J. S.

Endo, T.

Fabritius, T.

Fercher, A. F.

Fern’andez, E. J.

Fujimoto, J. G.

G¨otzinger, E.

Gorczynska, W.

P. Targowski, W. Gorczynska, M. Szkulmowski, M. Wojtkowski, and A. Kowalczyk, "Improved complex spectral domain OCT for in vivo eye imaging," Opt. Commun. 249, 357-362 (2005). http://dx.doi.org/doi:10.1016/j.optcom.2005.01.016
[CrossRef]

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and W. Gorczynska, "Complex spectral OCT in human eye imaging in vivo," Opt. Commun. 229, 79-84 (2004). http://dx.doi.org/doi:10.1016/j.optcom.2003.10.041
[CrossRef]

Hermann, B.

Hitzenberger, C. K.

Hofer, B.

Hong, Y.

Ippen, E. P.

Itoh, M.

Izatt, J. A.

Joffre, M.

K¨artner, F. X.

Karamata, B.

Ko, T. H.

Kowalczyk, A.

P. Targowski, W. Gorczynska, M. Szkulmowski, M. Wojtkowski, and A. Kowalczyk, "Improved complex spectral domain OCT for in vivo eye imaging," Opt. Commun. 249, 357-362 (2005). http://dx.doi.org/doi:10.1016/j.optcom.2005.01.016
[CrossRef]

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and W. Gorczynska, "Complex spectral OCT in human eye imaging in vivo," Opt. Commun. 229, 79-84 (2004). http://dx.doi.org/doi:10.1016/j.optcom.2003.10.041
[CrossRef]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2404
[CrossRef] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-27-16-1415
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). http://dx.doi.org/10.1117/1.1482379
[CrossRef] [PubMed]

Lasser, T.

Le, T.

Leitgeb, R.

Leitgeb, R. A.

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt. Lett. 32, 3453-3455 (2007). http://ol.osa.org/abstract.cfm?URI=ol-32-23-3453
[CrossRef] [PubMed]

A. H. Bachmann, R. Michaely, T. Lasser, and R. A. Leitgeb, "Dual beam heterodyne Fourier domain optical coherence tomography," Opt. Express 15, 9254-9266 (2007). http://www.opticsexpress.org/abstract.cfm?URI=oe-15-15-9254
[CrossRef] [PubMed]

A. H. Bachmann, R. A. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-1496 (2006). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-4-1487
[CrossRef] [PubMed]

E. G¨otzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, "High speed full range complex spectral domain optical coherence tomography," Opt. Express 13, 583-594 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-583
[CrossRef] [PubMed]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2156
[CrossRef] [PubMed]

R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, "Phase-shifting algorithm to achieve highspeed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett. 28, 2201-2203 (2003). http://ol.osa.org/abstract.cfm?URI=ol-28-22-2201
[CrossRef] [PubMed]

Li, X. D.

Likforman, J.-P.

Ma, Z.

R. K. Wang and Z. Ma, "A practical approach to eliminate autocorrelation artefacts for volumerate spectral domain optical coherence tomography," Phys. Med. Biol. 51, 3231-3239 (2006). http://www.iop.org/EJ/abstract/0031-9155/51/12/015/
[CrossRef] [PubMed]

Makita, S.

Marks, D. L.

Michaely, R.

Miura, M.

Morgner, U.

Mujat, M.

Nassif, N. A.

Nelson, J. S.

Oldenburg, A. L.

Park, B. H.

Pierce, M. C.

Pircher, M.

Pitris, C.

Pova?zay, B.

Reynolds, J. J.

Sarunic, M. V.

Saxer, C. E.

Sekhar, S. C.

Srinivasan, V. J.

Sticker, M.

Stingl, A.

Szkulmowski, M.

P. Targowski, W. Gorczynska, M. Szkulmowski, M. Wojtkowski, and A. Kowalczyk, "Improved complex spectral domain OCT for in vivo eye imaging," Opt. Commun. 249, 357-362 (2005). http://dx.doi.org/doi:10.1016/j.optcom.2005.01.016
[CrossRef]

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and W. Gorczynska, "Complex spectral OCT in human eye imaging in vivo," Opt. Commun. 229, 79-84 (2004). http://dx.doi.org/doi:10.1016/j.optcom.2003.10.041
[CrossRef]

Tao, Y. K.

Targowski, P.

P. Targowski, W. Gorczynska, M. Szkulmowski, M. Wojtkowski, and A. Kowalczyk, "Improved complex spectral domain OCT for in vivo eye imaging," Opt. Commun. 249, 357-362 (2005). http://dx.doi.org/doi:10.1016/j.optcom.2005.01.016
[CrossRef]

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and W. Gorczynska, "Complex spectral OCT in human eye imaging in vivo," Opt. Commun. 229, 79-84 (2004). http://dx.doi.org/doi:10.1016/j.optcom.2003.10.041
[CrossRef]

Tearney, G.

Tearney, G. J.

Tumlinson, A. R.

Unterhuber, A.

Vakoc, B. J.

Wang, R. K.

R. K. Wang and Z. Ma, "A practical approach to eliminate autocorrelation artefacts for volumerate spectral domain optical coherence tomography," Phys. Med. Biol. 51, 3231-3239 (2006). http://www.iop.org/EJ/abstract/0031-9155/51/12/015/
[CrossRef] [PubMed]

Winkler, A. M.

Wojtkowski, M.

P. Targowski, W. Gorczynska, M. Szkulmowski, M. Wojtkowski, and A. Kowalczyk, "Improved complex spectral domain OCT for in vivo eye imaging," Opt. Commun. 249, 357-362 (2005). http://dx.doi.org/doi:10.1016/j.optcom.2005.01.016
[CrossRef]

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and W. Gorczynska, "Complex spectral OCT in human eye imaging in vivo," Opt. Commun. 229, 79-84 (2004). http://dx.doi.org/doi:10.1016/j.optcom.2003.10.041
[CrossRef]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2404
[CrossRef] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-27-16-1415
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). http://dx.doi.org/10.1117/1.1482379
[CrossRef] [PubMed]

Yamanari, M.

Yang, C.

Yang, C. H.

Yasuno, Y.

Yatagai, T.

Yun, S.

Yun, S. H.

Zawadzki, R.

Zhang, J.

Zhao, M.

Appl. Opt.

J. Biomed. Opt.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). http://dx.doi.org/10.1117/1.1482379
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

Opt. Commun.

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and W. Gorczynska, "Complex spectral OCT in human eye imaging in vivo," Opt. Commun. 229, 79-84 (2004). http://dx.doi.org/doi:10.1016/j.optcom.2003.10.041
[CrossRef]

P. Targowski, W. Gorczynska, M. Szkulmowski, M. Wojtkowski, and A. Kowalczyk, "Improved complex spectral domain OCT for in vivo eye imaging," Opt. Commun. 249, 357-362 (2005). http://dx.doi.org/doi:10.1016/j.optcom.2005.01.016
[CrossRef]

Opt. Express

A. H. Bachmann, R. A. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-1496 (2006). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-4-1487
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, "Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography," Opt. Express 9, 610-615 (2001). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-12-610
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography andscattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007); http://www.opticsexpress.org/abstract.cfm?URI=oe-15-10-6121
[CrossRef] [PubMed]

A. H. Bachmann, R. Michaely, T. Lasser, and R. A. Leitgeb, "Dual beam heterodyne Fourier domain optical coherence tomography," Opt. Express 15, 9254-9266 (2007). http://www.opticsexpress.org/abstract.cfm?URI=oe-15-15-9254
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-3-367
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-18-2183
[CrossRef] [PubMed]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2156
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2404
[CrossRef] [PubMed]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2435
[CrossRef] [PubMed]

S. Yun, G. Tearney, J. de Boer, and B. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-4828 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-20-4822
[CrossRef] [PubMed]

E. G¨otzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, "High speed full range complex spectral domain optical coherence tomography," Opt. Express 13, 583-594 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-583
[CrossRef] [PubMed]

M. V. Sarunic, M. A. Choma, C. H. Yang, and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers," Opt. Express 13, 957-967 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-3-957
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, "Realtime fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 ?m," Opt. Express 13, 3931-3944 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-11-3931
[CrossRef] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, "Full-range, high-speed, high-resolution 1-?m spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16, 8406-8420 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-12-8406
[CrossRef] [PubMed]

E. J. Fern’andez, A. Unterhuber, B. Pova?zay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006). http://www.opticsexpress.org/abstract.cfm?URI=oe-14-13-6213
[CrossRef] [PubMed]

Opt. Lett.

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, "Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography," Opt. Lett. 31, 2426-2428 (2006). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-16-2426
[CrossRef] [PubMed]

B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, "Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation," Opt. Lett. 31, 362-364 (2006). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-3-362
[CrossRef] [PubMed]

J. Zhang, J. S. Nelson, and Z. P. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-2-147
[CrossRef] [PubMed]

Y. K. Tao, M. Zhao, and J. A. Izatt, "High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation," Opt. Lett. 32, 2918-2920 (2007). http://ol.osa.org/abstract.cfm?URI=ol-32-20-2918
[CrossRef] [PubMed]

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt. Lett. 32, 3453-3455 (2007). http://ol.osa.org/abstract.cfm?URI=ol-32-23-3453
[CrossRef] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-27-16-1415
[CrossRef]

W. Drexler, U. Morgner, F. X. K¨artner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-24-17-1221
[CrossRef]

M. A. Choma, C. Yang, and J. A. Izatt, "Instantaneous quadrature low-coherence interferometry with 3×3 fiberoptic couplers," Opt. Lett. 28, 2162-2164 (2003). http://ol.osa.org/abstract.cfm?URI=ol-28-22-2162
[CrossRef] [PubMed]

R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, "Phase-shifting algorithm to achieve highspeed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett. 28, 2201-2203 (2003). http://ol.osa.org/abstract.cfm?URI=ol-28-22-2201
[CrossRef] [PubMed]

Phys. Med. Biol.

R. K. Wang and Z. Ma, "A practical approach to eliminate autocorrelation artefacts for volumerate spectral domain optical coherence tomography," Phys. Med. Biol. 51, 3231-3239 (2006). http://www.iop.org/EJ/abstract/0031-9155/51/12/015/
[CrossRef] [PubMed]

Other

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10 652-10 664 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-26-10652
[CrossRef] [PubMed]

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination," J. Biomed. Opt. 12, 041205 (2007). http://link.aip.org/link/?JBO/12/041205/1
[CrossRef]

R. K. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Applied Physics Letters 90, 054103 (2007). http://link.aip.org/link/?APL/90/054103/1

B. Baumann, M. Pircher, E. G¨otzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13 375-13 387 (2007). http://www.opticsexpress.org/abstract.cfm?URI=oe-15-20-13375
[CrossRef]

A. M. Davis, M. A. Choma, and J. A. Izatt, "Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt. 10, 064 005-6 (2005). http://link.aip.org/link/?JBO/10/064005/1
[CrossRef]

K. E. O’Hara and M. Hacker, "Method to suppress artifacts in frequency-domain optical coherence tomograghy," US7330270 (2008).

J. A. Izatt and M. A. Choma, Optical Coherence Tomography Technology and Applications (Springer, 2008), Vol. XXIX, chap. 2, "Theory of Optical Coherence Tomography", pp. 47-72. http://www.springer.com/medicine/radiology/book/978-3-540-77549-2?detailsPage=samplePages
[CrossRef]

M. Duarte, M. Davenport, M. Wakin, and R. Baraniuk, "Sparse Signal Detection from Incoherent Projections," in Proc. Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP)3, III305-308 (2006). http://dx.doi.org/doi:10.1109/ICASSP.2006.1660651

B. Povazay, B. Hofer, B. Hermann, A. Unterhuber, J. E. Morgan, C. Glittenberg, S. Binder, and W. Drexler, "Minimum distance mapping using three-dimensional optical coherence tomography for glaucoma diagnosis," J. Biomed. Opt. 12, 041 204 (2007). http://link.aip.org/link/?JBO/12/041204/1
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Block diagram of the dispersion encoded full range (DEFR) algorithm and associated pre-processing steps. The iterative procedure is indicated by iteration index i. The peak detector is denoted as PD; further notations: measured raw signal s, interference signal , measurement vector f, dispersive phase term ϕ(ω) and corresponding vector ϕ , fast Fourier transform F, residual signal r, intermediate spatial signal c; and finally the complex full range tomogram line t̂ ∈ ℂ N . The diagram parts associated with equations (14), (16) and (15) are high-lighted in green, red and blue, respectively.

Fig. 2.
Fig. 2.

(a) Sharpness metric R as a function of dispersion parameter â2 with â3 = 0, (b) R as function of â3 with â2 = -0.083, i.e., the optimum value from (a), (c) combined optimization of â2 and â3 to find the global sharpness optimum, (d) mirror signals for various positions, (e) mirror signals after application of compensation phase; positive positions are plotted as solid lines, signals from negative mirror positions as thin dashed lines.

Fig. 3.
Fig. 3.

(a) Mirror signals after dispersion compensation, (b) mirror signals after dispersion encoded full range (DEFR) algorithm. Signals at different positions are plotted using different colors.

Fig. 4.
Fig. 4.

(a) Signal loss after DEFR algorithm, (b) artifact suppression ratio of the DEFR algorithm, (c) resolution with no dispersion (black curve) and after dispersion compensation for different dispersive materials in sample arm. Results for 120 nm and 55 nm bandwidth are plotted as solid and dashed lines, respectively. Results for standard processing are plotted in green (120 nm) and cyan (55 nm), DEFR algorithm in red (120 nm) and blue (55 nm).

Fig. 5.
Fig. 5.

(a)–(d) Retinal tomograms (fovea) obtained by conventional processing; (e)–(h) to-mograms after 256 iterations of dispersion encoded full range (DEFR) algorithm.

Fig. 6.
Fig. 6.

Tomograms with sample close to zero delay (ZD), (a) conventional processing with dispersion compensation, (b) dispersion encoded full range (DEFR) algorithm, (c) improved DEFR algorithm.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

Er(ω)=Ir(ω) exp (2zrc0)
Es(ω)=nIs(n)(ω) exp (2zdc0) exp (jωn(ω)2(zs(n)zd)c0) .
Es(ω)nIs(n)(ω)exp(2(zs(n)d)c0)exp(jk(ω)2d),
S˜(ω)=2n{Ir(ωIs(n)(ω)exp(2(zs(n)zr)c0)exp(j(k(ω)ωc0)2d)}.
k(ω)=i=0ai(ωω0)i,ai=1i!dik(ω)dωiω0,
exp ((ω)) =exp(ji=2a˜i(ωω0)i),
S˜(ω)=n{I(n)(ω)exp(2(zs(n)z˜r)c0)exp((ω))}.
S˜(ω)=nI(n)(ω)eτne(ω)+nI(n)*(ω)eτne(ω).
S˜c(ω)=S˜(ω)e(ω)=nI(n)(ω)eτnS˜d(ω)+nI(n)*(ω)eτnej2ϕ(ω)S˜m(ω),
d=l=1Ktnlψnl=Ψt .
f=Φd+Φ*d*+w,
f=2{ΦΨt}+w.
t̂=argmint t1 subject to {Vt}=f.
ni=argmaxn=1Nci,n,withci,n=vn,ri1vn,
t̂ni=t̂ni+2ci,ni,
ri=ri12{ci,nivnivni}=ri1ci,nivnivnici,ni*vni*vni.
d̂=Ψt̂.
s˜=s b,sb2b.
S˜(ωp)=I(ωp){exp(jωp2(zszr)c0)}=I(ωp){exp(jωpτz)}.
ωu=ω1+ωNω1N1(u+N2),ωu[ω1,ωN],
ωp(u)=b0+b1u+b2u2+b3u3+=b0+b1u+ω˜p(u).
g(p)=ωp(u)=ω1+ωNω1N1(g˜(u)+N2),withg˜(u)=u+ω˜p(u)b1.
[b0τzb1τz] =([1u]T[1u])−1 [1u]T φz ,
ĥu=1Nxx=1Nxfx,u2 ,
h=h˜h˜ N .

Metrics