Abstract

Intense ultrashort light pulses induce three dimensional localized phase transformation of diamond. Photoinduced amorphous structures have electrical conducting properties of a maximum of 64 S/m based on a localized transition from sp3 to sp 2 in diamond. The laser parameters of fluence and scanning speed affect the resultant electrical conductivities due to recrystallization and multi-filamentation phenomena. We demonstrate that the laser-processed diamond with the periodic cylinder arrays have the characteristic transmission properties in terahertz region, which are good agreement with theoretical calculations. The fabricated periodic structures act as metallo-dielectric photonic crystal.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. Sundaram and E. Mazur, "Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses," Nature Mater. 1, 217-224 (2002).
    [CrossRef]
  2. H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C. -Y. Ruan, and A. H. Zewail, "Direct Imaging of Transient Molecular Structures with Ultrafast Diffraction," Science 291, 458-462 (2001).
    [CrossRef] [PubMed]
  3. B. B. Hu, X. -C. Zhang, and D. H. Auston, "Terahertz radiation induced by subband-gap femtosecond optical excitation of GaAs," Phys. Rev. Lett. 67, 2709-2712 (1991).
    [CrossRef] [PubMed]
  4. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  5. E. N. Glezer and E. Mazur, "Ultrafast-laser driven micro-explosions in transparent materials," Appl. Phys. Lett. 71, 882-884 (1997).
    [CrossRef]
  6. M. F. Yanik, H. N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, "Functional regeneration after laser axotomy," Nature 432, 822 (2004).
    [CrossRef] [PubMed]
  7. H. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, S. Matsuo, M. Misawa, and J. Nishii, "Arbitrary-lattice photonic crystals created by multiphoton microfabrication," Opt. Lett. 26, 325-327 (2001).
    [CrossRef]
  8. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, "Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses," Phys. Rev. Lett. 91, 247405-1-4 (2003).
    [CrossRef] [PubMed]
  9. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
    [CrossRef]
  10. C. V. Shank, R. Yen, and C. Hirlimann, "Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon," Phys. Rev. Lett. 50, 454-457 (1983).
    [CrossRef]
  11. H. W. K. Tom, G. D. Aumiller, and C. H. Brito-Cruz, "Time-resolved study of laser-induced disorder of Si surfaces," Phys. Rev. Lett. 60, 1438-1441 (1988).
    [CrossRef] [PubMed]
  12. P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, "Ultrafast electronic disordering during femtosecond laser melting of GaAs," Phys. Rev. Lett. 67, 1023-1026 (1991).
    [CrossRef] [PubMed]
  13. S. V. Govorkov, T. Schröder, I. L. Shumay, and P. Heist, "Transient gratings and second-harmonic probing of the phase transformation of a GaAs surface under femtosecond laser irradiation," Phys. Rev. B 46, 6864-6868 (1992).
    [CrossRef]
  14. I. L. Shumay and U. Höfer, "Phase transformations of an InSb surface induced by strong femtosecond laser pulses," Phys. Rev. B 53, 15878-15884 (1996).
    [CrossRef]
  15. K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. von der Linde, "Dynamics of Ultrafast Phase Changes in Amorphous GeSb Films," Phys. Rev. Lett. 81, 3679-3682 (1998).
    [CrossRef]
  16. D. H. Reitze, H. Ahn, and M. C. Downer, "Optical properties of liquid carbon measured by femtosecond spectroscopy," Phys. Rev. B 45, 2677-2693 (1992).
    [CrossRef]
  17. S. Preuss and M. Stuke, "Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics," Appl. Phys. Lett. 67, 338-340 (1995).
    [CrossRef]
  18. H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, "Theory for laser-induced ultrafast phase transitions in carbon," Appl. Phys. A 69, S49-S53 (1999).
  19. Q. Wu, L. Yu, Y. Ma, Y. Liao, R. Fang, L. Zhang, X. Chen, and K. Wang, "Raman investigation of amorphous carbon in diamond film treated by laser," J. Appl. Phys. 93, 94-100 (2003).
    [CrossRef]
  20. G. A. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, "Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch," Appl. Phys. Lett. 39, 295-296 (1981).
    [CrossRef]
  21. Z. Chang, A. Rundquist, H. Wang, M.M. Murnane, and H. Kapteyn, "Generation of Coherent Soft X Rays at 2.7 nm Using High Harmonics," Phys. Rev. Lett. 79, 2967-2970 (1997).
    [CrossRef]
  22. C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Rksi, J. A. Squier, B. C. Walker, K. R. Wilson, and C. P. J. Barty, "Picosecond-milliångström lattice dynamics measured by ultrafast X-ray diffraction," Nature 398, 310-312 (1999).
    [CrossRef]
  23. K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, "Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses," Opt. Lett. 25, 408-410 (2000).
    [CrossRef]
  24. H. Adachi, K. Takano, Y. Hosokawa, T. Inoue, Y. Mori, H. Matsumura, M. Yoshimura, Y. Tsunaka, M. Morikawa, S. Kanaya, H. Masuhara, Y. Kai, and T. Sasaki, "Laser Irradiated Growth of Protein Crystal," Jpn. J. Appl. Phys. 42, L798-L800 (2003).
    [CrossRef]
  25. G. J. Lee, S. H. Song, Y. P. Lee, H. Cheong, C. S. Yoon, Y. D. Son, and J. Jang, "Arbitrary surface structuring of amorphous silicon films based on femtosecond-laser-induced crystallization," Appl. Phys. Lett. 89, 15190-7-3 (2006).
    [CrossRef]
  26. H. Ma, G. Guo, J. Yang, Y. Guo, and N. Ma, "Femtosecond laser irradiation-induced phase transformation on titanium dioxide crystal surface," Nucl. Instrum. Methods Phys. Res. B 264, 61-65 (2007).
    [CrossRef]
  27. K. Nakamura, Y. Sora, H. Y. Yoshikawa, Y. Hosokawa, R. Murai, H. Adachi, Y. Mori, T. Sasaki, and H. Masuhara, "Femtosecond laser-induced crystallization of protein in gel medium," Appl. Surf. Sci. 253, 6425-6429 (2007).
    [CrossRef]
  28. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, "Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass," Opt. Exp. 15, 5674-5686 (2007).
    [CrossRef]
  29. H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, "Microscopic analysis of the laser-induced femtosecond graphitization of diamond," Phys. Rev. B 60, R3701-R3704 (1999).
    [CrossRef]
  30. C. Z. Wang, K. M. Ho, M. D. Shirk, and P. A. Molian, "Laser-Induced Graphitization on a Diamond (111) Surface," Phys. Rev. Lett. 85, 4092-4095 (2000).
    [CrossRef] [PubMed]
  31. H. O. Jeschke, M. E. Garcia and K. H. Bennemann, "Theory for the Ultrafast Ablation of Graphite Films," Phys. Rev. Lett. 87, 015003-1-4 (2001).
    [CrossRef] [PubMed]
  32. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77-79 (2001).
    [CrossRef] [PubMed]
  33. A. C. Ferrari and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon," Phys. Rev. B 61, 14095-14107 (2000).
    [CrossRef]
  34. F. Tuinstra and J. L. Koenig, " Raman Spectrum of Graphite," J. Chem. Phys. 53, 1126-1130 (1970).
    [CrossRef]
  35. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, "Self-channeling of high-peak-power femtosecond laser pulses in air," Opt. Lett. 20, 73-75 (1995).
    [CrossRef] [PubMed]
  36. G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, "Organizing Multiple Femtosecond Filaments in Air," Phys. Rev. Lett. 93, 035003-1-4 (2004).
    [CrossRef] [PubMed]
  37. C. G. R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, "High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding," Nature 431, 538-541 (2004).
    [CrossRef] [PubMed]
  38. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
    [CrossRef] [PubMed]
  39. J. Henzie, M. H. Lee, and T. W. Odom, "Multiscale patterning of plasmonic metamaterials," Nature Nanotechnol. 2, 549-554 (2007).
    [CrossRef]

2007 (5)

H. Ma, G. Guo, J. Yang, Y. Guo, and N. Ma, "Femtosecond laser irradiation-induced phase transformation on titanium dioxide crystal surface," Nucl. Instrum. Methods Phys. Res. B 264, 61-65 (2007).
[CrossRef]

K. Nakamura, Y. Sora, H. Y. Yoshikawa, Y. Hosokawa, R. Murai, H. Adachi, Y. Mori, T. Sasaki, and H. Masuhara, "Femtosecond laser-induced crystallization of protein in gel medium," Appl. Surf. Sci. 253, 6425-6429 (2007).
[CrossRef]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, "Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass," Opt. Exp. 15, 5674-5686 (2007).
[CrossRef]

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

J. Henzie, M. H. Lee, and T. W. Odom, "Multiscale patterning of plasmonic metamaterials," Nature Nanotechnol. 2, 549-554 (2007).
[CrossRef]

2006 (1)

G. J. Lee, S. H. Song, Y. P. Lee, H. Cheong, C. S. Yoon, Y. D. Son, and J. Jang, "Arbitrary surface structuring of amorphous silicon films based on femtosecond-laser-induced crystallization," Appl. Phys. Lett. 89, 15190-7-3 (2006).
[CrossRef]

2004 (3)

M. F. Yanik, H. N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, "Functional regeneration after laser axotomy," Nature 432, 822 (2004).
[CrossRef] [PubMed]

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, "Organizing Multiple Femtosecond Filaments in Air," Phys. Rev. Lett. 93, 035003-1-4 (2004).
[CrossRef] [PubMed]

C. G. R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, "High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding," Nature 431, 538-541 (2004).
[CrossRef] [PubMed]

2003 (3)

H. Adachi, K. Takano, Y. Hosokawa, T. Inoue, Y. Mori, H. Matsumura, M. Yoshimura, Y. Tsunaka, M. Morikawa, S. Kanaya, H. Masuhara, Y. Kai, and T. Sasaki, "Laser Irradiated Growth of Protein Crystal," Jpn. J. Appl. Phys. 42, L798-L800 (2003).
[CrossRef]

Q. Wu, L. Yu, Y. Ma, Y. Liao, R. Fang, L. Zhang, X. Chen, and K. Wang, "Raman investigation of amorphous carbon in diamond film treated by laser," J. Appl. Phys. 93, 94-100 (2003).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, "Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses," Phys. Rev. Lett. 91, 247405-1-4 (2003).
[CrossRef] [PubMed]

2002 (1)

S. K. Sundaram and E. Mazur, "Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses," Nature Mater. 1, 217-224 (2002).
[CrossRef]

2001 (4)

H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C. -Y. Ruan, and A. H. Zewail, "Direct Imaging of Transient Molecular Structures with Ultrafast Diffraction," Science 291, 458-462 (2001).
[CrossRef] [PubMed]

H. O. Jeschke, M. E. Garcia and K. H. Bennemann, "Theory for the Ultrafast Ablation of Graphite Films," Phys. Rev. Lett. 87, 015003-1-4 (2001).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

H. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, S. Matsuo, M. Misawa, and J. Nishii, "Arbitrary-lattice photonic crystals created by multiphoton microfabrication," Opt. Lett. 26, 325-327 (2001).
[CrossRef]

2000 (3)

C. Z. Wang, K. M. Ho, M. D. Shirk, and P. A. Molian, "Laser-Induced Graphitization on a Diamond (111) Surface," Phys. Rev. Lett. 85, 4092-4095 (2000).
[CrossRef] [PubMed]

A. C. Ferrari and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon," Phys. Rev. B 61, 14095-14107 (2000).
[CrossRef]

K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, "Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses," Opt. Lett. 25, 408-410 (2000).
[CrossRef]

1999 (3)

H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, "Microscopic analysis of the laser-induced femtosecond graphitization of diamond," Phys. Rev. B 60, R3701-R3704 (1999).
[CrossRef]

H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, "Theory for laser-induced ultrafast phase transitions in carbon," Appl. Phys. A 69, S49-S53 (1999).

C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Rksi, J. A. Squier, B. C. Walker, K. R. Wilson, and C. P. J. Barty, "Picosecond-milliångström lattice dynamics measured by ultrafast X-ray diffraction," Nature 398, 310-312 (1999).
[CrossRef]

1998 (1)

K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. von der Linde, "Dynamics of Ultrafast Phase Changes in Amorphous GeSb Films," Phys. Rev. Lett. 81, 3679-3682 (1998).
[CrossRef]

1997 (2)

Z. Chang, A. Rundquist, H. Wang, M.M. Murnane, and H. Kapteyn, "Generation of Coherent Soft X Rays at 2.7 nm Using High Harmonics," Phys. Rev. Lett. 79, 2967-2970 (1997).
[CrossRef]

E. N. Glezer and E. Mazur, "Ultrafast-laser driven micro-explosions in transparent materials," Appl. Phys. Lett. 71, 882-884 (1997).
[CrossRef]

1996 (2)

I. L. Shumay and U. Höfer, "Phase transformations of an InSb surface induced by strong femtosecond laser pulses," Phys. Rev. B 53, 15878-15884 (1996).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

1995 (2)

S. Preuss and M. Stuke, "Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics," Appl. Phys. Lett. 67, 338-340 (1995).
[CrossRef]

A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, "Self-channeling of high-peak-power femtosecond laser pulses in air," Opt. Lett. 20, 73-75 (1995).
[CrossRef] [PubMed]

1994 (1)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

1992 (2)

S. V. Govorkov, T. Schröder, I. L. Shumay, and P. Heist, "Transient gratings and second-harmonic probing of the phase transformation of a GaAs surface under femtosecond laser irradiation," Phys. Rev. B 46, 6864-6868 (1992).
[CrossRef]

D. H. Reitze, H. Ahn, and M. C. Downer, "Optical properties of liquid carbon measured by femtosecond spectroscopy," Phys. Rev. B 45, 2677-2693 (1992).
[CrossRef]

1991 (2)

P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, "Ultrafast electronic disordering during femtosecond laser melting of GaAs," Phys. Rev. Lett. 67, 1023-1026 (1991).
[CrossRef] [PubMed]

B. B. Hu, X. -C. Zhang, and D. H. Auston, "Terahertz radiation induced by subband-gap femtosecond optical excitation of GaAs," Phys. Rev. Lett. 67, 2709-2712 (1991).
[CrossRef] [PubMed]

1988 (1)

H. W. K. Tom, G. D. Aumiller, and C. H. Brito-Cruz, "Time-resolved study of laser-induced disorder of Si surfaces," Phys. Rev. Lett. 60, 1438-1441 (1988).
[CrossRef] [PubMed]

1983 (1)

C. V. Shank, R. Yen, and C. Hirlimann, "Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon," Phys. Rev. Lett. 50, 454-457 (1983).
[CrossRef]

1981 (1)

G. A. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, "Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch," Appl. Phys. Lett. 39, 295-296 (1981).
[CrossRef]

1970 (1)

F. Tuinstra and J. L. Koenig, " Raman Spectrum of Graphite," J. Chem. Phys. 53, 1126-1130 (1970).
[CrossRef]

Adachi, H.

K. Nakamura, Y. Sora, H. Y. Yoshikawa, Y. Hosokawa, R. Murai, H. Adachi, Y. Mori, T. Sasaki, and H. Masuhara, "Femtosecond laser-induced crystallization of protein in gel medium," Appl. Surf. Sci. 253, 6425-6429 (2007).
[CrossRef]

H. Adachi, K. Takano, Y. Hosokawa, T. Inoue, Y. Mori, H. Matsumura, M. Yoshimura, Y. Tsunaka, M. Morikawa, S. Kanaya, H. Masuhara, Y. Kai, and T. Sasaki, "Laser Irradiated Growth of Protein Crystal," Jpn. J. Appl. Phys. 42, L798-L800 (2003).
[CrossRef]

Afonso, C. N.

K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. von der Linde, "Dynamics of Ultrafast Phase Changes in Amorphous GeSb Films," Phys. Rev. Lett. 81, 3679-3682 (1998).
[CrossRef]

Ahn, H.

D. H. Reitze, H. Ahn, and M. C. Downer, "Optical properties of liquid carbon measured by femtosecond spectroscopy," Phys. Rev. B 45, 2677-2693 (1992).
[CrossRef]

Antonetti, A.

G. A. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, "Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch," Appl. Phys. Lett. 39, 295-296 (1981).
[CrossRef]

Aumiller, G. D.

H. W. K. Tom, G. D. Aumiller, and C. H. Brito-Cruz, "Time-resolved study of laser-induced disorder of Si surfaces," Phys. Rev. Lett. 60, 1438-1441 (1988).
[CrossRef] [PubMed]

Auston, D. H.

B. B. Hu, X. -C. Zhang, and D. H. Auston, "Terahertz radiation induced by subband-gap femtosecond optical excitation of GaAs," Phys. Rev. Lett. 67, 2709-2712 (1991).
[CrossRef] [PubMed]

Barty, C. P. J.

C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Rksi, J. A. Squier, B. C. Walker, K. R. Wilson, and C. P. J. Barty, "Picosecond-milliångström lattice dynamics measured by ultrafast X-ray diffraction," Nature 398, 310-312 (1999).
[CrossRef]

Bennemann, K. H.

H. O. Jeschke, M. E. Garcia and K. H. Bennemann, "Theory for the Ultrafast Ablation of Graphite Films," Phys. Rev. Lett. 87, 015003-1-4 (2001).
[CrossRef] [PubMed]

H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, "Microscopic analysis of the laser-induced femtosecond graphitization of diamond," Phys. Rev. B 60, R3701-R3704 (1999).
[CrossRef]

H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, "Theory for laser-induced ultrafast phase transitions in carbon," Appl. Phys. A 69, S49-S53 (1999).

Ben-Yakar, A.

M. F. Yanik, H. N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, "Functional regeneration after laser axotomy," Nature 432, 822 (2004).
[CrossRef] [PubMed]

Bialkowski, J.

K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. von der Linde, "Dynamics of Ultrafast Phase Changes in Amorphous GeSb Films," Phys. Rev. Lett. 81, 3679-3682 (1998).
[CrossRef]

Bloembergen, N.

P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, "Ultrafast electronic disordering during femtosecond laser melting of GaAs," Phys. Rev. Lett. 67, 1023-1026 (1991).
[CrossRef] [PubMed]

Braun, A.

Brito-Cruz, C. H.

H. W. K. Tom, G. D. Aumiller, and C. H. Brito-Cruz, "Time-resolved study of laser-induced disorder of Si surfaces," Phys. Rev. Lett. 60, 1438-1441 (1988).
[CrossRef] [PubMed]

Bruhwiler, , D.

C. G. R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, "High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding," Nature 431, 538-541 (2004).
[CrossRef] [PubMed]

Cary, J.

C. G. R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, "High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding," Nature 431, 538-541 (2004).
[CrossRef] [PubMed]

Cavalleri, A.

C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Rksi, J. A. Squier, B. C. Walker, K. R. Wilson, and C. P. J. Barty, "Picosecond-milliångström lattice dynamics measured by ultrafast X-ray diffraction," Nature 398, 310-312 (1999).
[CrossRef]

Chang, Z.

Z. Chang, A. Rundquist, H. Wang, M.M. Murnane, and H. Kapteyn, "Generation of Coherent Soft X Rays at 2.7 nm Using High Harmonics," Phys. Rev. Lett. 79, 2967-2970 (1997).
[CrossRef]

Chen, X.

Q. Wu, L. Yu, Y. Ma, Y. Liao, R. Fang, L. Zhang, X. Chen, and K. Wang, "Raman investigation of amorphous carbon in diamond film treated by laser," J. Appl. Phys. 93, 94-100 (2003).
[CrossRef]

Cheong, H.

G. J. Lee, S. H. Song, Y. P. Lee, H. Cheong, C. S. Yoon, Y. D. Son, and J. Jang, "Arbitrary surface structuring of amorphous silicon films based on femtosecond-laser-induced crystallization," Appl. Phys. Lett. 89, 15190-7-3 (2006).
[CrossRef]

Chisholm, A.

M. F. Yanik, H. N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, "Functional regeneration after laser axotomy," Nature 432, 822 (2004).
[CrossRef] [PubMed]

Cinar, H. N.

M. F. Yanik, H. N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, "Functional regeneration after laser axotomy," Nature 432, 822 (2004).
[CrossRef] [PubMed]

Couairon, A.

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, "Organizing Multiple Femtosecond Filaments in Air," Phys. Rev. Lett. 93, 035003-1-4 (2004).
[CrossRef] [PubMed]

Davis, K. M.

Downer, M. C.

D. H. Reitze, H. Ahn, and M. C. Downer, "Optical properties of liquid carbon measured by femtosecond spectroscopy," Phys. Rev. B 45, 2677-2693 (1992).
[CrossRef]

Du, D.

A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, "Self-channeling of high-peak-power femtosecond laser pulses in air," Opt. Lett. 20, 73-75 (1995).
[CrossRef] [PubMed]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

Esarey, E.

C. G. R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, "High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding," Nature 431, 538-541 (2004).
[CrossRef] [PubMed]

Fang, R.

Q. Wu, L. Yu, Y. Ma, Y. Liao, R. Fang, L. Zhang, X. Chen, and K. Wang, "Raman investigation of amorphous carbon in diamond film treated by laser," J. Appl. Phys. 93, 94-100 (2003).
[CrossRef]

Ferrari, A. C.

A. C. Ferrari and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon," Phys. Rev. B 61, 14095-14107 (2000).
[CrossRef]

Franco, M.

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, "Organizing Multiple Femtosecond Filaments in Air," Phys. Rev. Lett. 93, 035003-1-4 (2004).
[CrossRef] [PubMed]

Garcia, M. E.

H. O. Jeschke, M. E. Garcia and K. H. Bennemann, "Theory for the Ultrafast Ablation of Graphite Films," Phys. Rev. Lett. 87, 015003-1-4 (2001).
[CrossRef] [PubMed]

H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, "Microscopic analysis of the laser-induced femtosecond graphitization of diamond," Phys. Rev. B 60, R3701-R3704 (1999).
[CrossRef]

H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, "Theory for laser-induced ultrafast phase transitions in carbon," Appl. Phys. A 69, S49-S53 (1999).

Geddes, C. G. R.

C. G. R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, "High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding," Nature 431, 538-541 (2004).
[CrossRef] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

Glezer, E. N.

E. N. Glezer and E. Mazur, "Ultrafast-laser driven micro-explosions in transparent materials," Appl. Phys. Lett. 71, 882-884 (1997).
[CrossRef]

Gomez, U. M.

H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C. -Y. Ruan, and A. H. Zewail, "Direct Imaging of Transient Molecular Structures with Ultrafast Diffraction," Science 291, 458-462 (2001).
[CrossRef] [PubMed]

Goodson, B. M.

H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C. -Y. Ruan, and A. H. Zewail, "Direct Imaging of Transient Molecular Structures with Ultrafast Diffraction," Science 291, 458-462 (2001).
[CrossRef] [PubMed]

Govorkov, S. V.

S. V. Govorkov, T. Schröder, I. L. Shumay, and P. Heist, "Transient gratings and second-harmonic probing of the phase transformation of a GaAs surface under femtosecond laser irradiation," Phys. Rev. B 46, 6864-6868 (1992).
[CrossRef]

Guo, G.

H. Ma, G. Guo, J. Yang, Y. Guo, and N. Ma, "Femtosecond laser irradiation-induced phase transformation on titanium dioxide crystal surface," Nucl. Instrum. Methods Phys. Res. B 264, 61-65 (2007).
[CrossRef]

Guo, T.

C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Rksi, J. A. Squier, B. C. Walker, K. R. Wilson, and C. P. J. Barty, "Picosecond-milliångström lattice dynamics measured by ultrafast X-ray diffraction," Nature 398, 310-312 (1999).
[CrossRef]

Guo, Y.

H. Ma, G. Guo, J. Yang, Y. Guo, and N. Ma, "Femtosecond laser irradiation-induced phase transformation on titanium dioxide crystal surface," Nucl. Instrum. Methods Phys. Res. B 264, 61-65 (2007).
[CrossRef]

Heist, P.

S. V. Govorkov, T. Schröder, I. L. Shumay, and P. Heist, "Transient gratings and second-harmonic probing of the phase transformation of a GaAs surface under femtosecond laser irradiation," Phys. Rev. B 46, 6864-6868 (1992).
[CrossRef]

Henzie, J.

J. Henzie, M. H. Lee, and T. W. Odom, "Multiscale patterning of plasmonic metamaterials," Nature Nanotechnol. 2, 549-554 (2007).
[CrossRef]

Hirao, K.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, "Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass," Opt. Exp. 15, 5674-5686 (2007).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, "Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses," Phys. Rev. Lett. 91, 247405-1-4 (2003).
[CrossRef] [PubMed]

K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, "Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses," Opt. Lett. 25, 408-410 (2000).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

Hirlimann, C.

C. V. Shank, R. Yen, and C. Hirlimann, "Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon," Phys. Rev. Lett. 50, 454-457 (1983).
[CrossRef]

Ho, K. M.

C. Z. Wang, K. M. Ho, M. D. Shirk, and P. A. Molian, "Laser-Induced Graphitization on a Diamond (111) Surface," Phys. Rev. Lett. 85, 4092-4095 (2000).
[CrossRef] [PubMed]

Höfer, U.

I. L. Shumay and U. Höfer, "Phase transformations of an InSb surface induced by strong femtosecond laser pulses," Phys. Rev. B 53, 15878-15884 (1996).
[CrossRef]

Hosokawa, Y.

K. Nakamura, Y. Sora, H. Y. Yoshikawa, Y. Hosokawa, R. Murai, H. Adachi, Y. Mori, T. Sasaki, and H. Masuhara, "Femtosecond laser-induced crystallization of protein in gel medium," Appl. Surf. Sci. 253, 6425-6429 (2007).
[CrossRef]

H. Adachi, K. Takano, Y. Hosokawa, T. Inoue, Y. Mori, H. Matsumura, M. Yoshimura, Y. Tsunaka, M. Morikawa, S. Kanaya, H. Masuhara, Y. Kai, and T. Sasaki, "Laser Irradiated Growth of Protein Crystal," Jpn. J. Appl. Phys. 42, L798-L800 (2003).
[CrossRef]

Hu, B. B.

B. B. Hu, X. -C. Zhang, and D. H. Auston, "Terahertz radiation induced by subband-gap femtosecond optical excitation of GaAs," Phys. Rev. Lett. 67, 2709-2712 (1991).
[CrossRef] [PubMed]

Ihee, H.

H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C. -Y. Ruan, and A. H. Zewail, "Direct Imaging of Transient Molecular Structures with Ultrafast Diffraction," Science 291, 458-462 (2001).
[CrossRef] [PubMed]

Inoue, T.

H. Adachi, K. Takano, Y. Hosokawa, T. Inoue, Y. Mori, H. Matsumura, M. Yoshimura, Y. Tsunaka, M. Morikawa, S. Kanaya, H. Masuhara, Y. Kai, and T. Sasaki, "Laser Irradiated Growth of Protein Crystal," Jpn. J. Appl. Phys. 42, L798-L800 (2003).
[CrossRef]

Jang, J.

G. J. Lee, S. H. Song, Y. P. Lee, H. Cheong, C. S. Yoon, Y. D. Son, and J. Jang, "Arbitrary surface structuring of amorphous silicon films based on femtosecond-laser-induced crystallization," Appl. Phys. Lett. 89, 15190-7-3 (2006).
[CrossRef]

Jeschke, H. O.

H. O. Jeschke, M. E. Garcia and K. H. Bennemann, "Theory for the Ultrafast Ablation of Graphite Films," Phys. Rev. Lett. 87, 015003-1-4 (2001).
[CrossRef] [PubMed]

H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, "Microscopic analysis of the laser-induced femtosecond graphitization of diamond," Phys. Rev. B 60, R3701-R3704 (1999).
[CrossRef]

H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, "Theory for laser-induced ultrafast phase transitions in carbon," Appl. Phys. A 69, S49-S53 (1999).

Jimenez, R.

C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Rksi, J. A. Squier, B. C. Walker, K. R. Wilson, and C. P. J. Barty, "Picosecond-milliångström lattice dynamics measured by ultrafast X-ray diffraction," Nature 398, 310-312 (1999).
[CrossRef]

Jin, Y.

M. F. Yanik, H. N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, "Functional regeneration after laser axotomy," Nature 432, 822 (2004).
[CrossRef] [PubMed]

Juodkazis, S.

Kai, Y.

H. Adachi, K. Takano, Y. Hosokawa, T. Inoue, Y. Mori, H. Matsumura, M. Yoshimura, Y. Tsunaka, M. Morikawa, S. Kanaya, H. Masuhara, Y. Kai, and T. Sasaki, "Laser Irradiated Growth of Protein Crystal," Jpn. J. Appl. Phys. 42, L798-L800 (2003).
[CrossRef]

Kanaya, S.

H. Adachi, K. Takano, Y. Hosokawa, T. Inoue, Y. Mori, H. Matsumura, M. Yoshimura, Y. Tsunaka, M. Morikawa, S. Kanaya, H. Masuhara, Y. Kai, and T. Sasaki, "Laser Irradiated Growth of Protein Crystal," Jpn. J. Appl. Phys. 42, L798-L800 (2003).
[CrossRef]

Kapteyn, H.

Z. Chang, A. Rundquist, H. Wang, M.M. Murnane, and H. Kapteyn, "Generation of Coherent Soft X Rays at 2.7 nm Using High Harmonics," Phys. Rev. Lett. 79, 2967-2970 (1997).
[CrossRef]

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, "Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses," Phys. Rev. Lett. 91, 247405-1-4 (2003).
[CrossRef] [PubMed]

Koenig, J. L.

F. Tuinstra and J. L. Koenig, " Raman Spectrum of Graphite," J. Chem. Phys. 53, 1126-1130 (1970).
[CrossRef]

Korn, G.

A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, "Self-channeling of high-peak-power femtosecond laser pulses in air," Opt. Lett. 20, 73-75 (1995).
[CrossRef] [PubMed]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

Lee, G. J.

G. J. Lee, S. H. Song, Y. P. Lee, H. Cheong, C. S. Yoon, Y. D. Son, and J. Jang, "Arbitrary surface structuring of amorphous silicon films based on femtosecond-laser-induced crystallization," Appl. Phys. Lett. 89, 15190-7-3 (2006).
[CrossRef]

Lee, M. H.

J. Henzie, M. H. Lee, and T. W. Odom, "Multiscale patterning of plasmonic metamaterials," Nature Nanotechnol. 2, 549-554 (2007).
[CrossRef]

Lee, Y. P.

G. J. Lee, S. H. Song, Y. P. Lee, H. Cheong, C. S. Yoon, Y. D. Son, and J. Jang, "Arbitrary surface structuring of amorphous silicon films based on femtosecond-laser-induced crystallization," Appl. Phys. Lett. 89, 15190-7-3 (2006).
[CrossRef]

Leemans, W. P.

C. G. R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, "High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding," Nature 431, 538-541 (2004).
[CrossRef] [PubMed]

Liao, Y.

Q. Wu, L. Yu, Y. Ma, Y. Liao, R. Fang, L. Zhang, X. Chen, and K. Wang, "Raman investigation of amorphous carbon in diamond film treated by laser," J. Appl. Phys. 93, 94-100 (2003).
[CrossRef]

Liu, X.

A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, "Self-channeling of high-peak-power femtosecond laser pulses in air," Opt. Lett. 20, 73-75 (1995).
[CrossRef] [PubMed]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

Lobastov, V. A.

H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C. -Y. Ruan, and A. H. Zewail, "Direct Imaging of Transient Molecular Structures with Ultrafast Diffraction," Science 291, 458-462 (2001).
[CrossRef] [PubMed]

Ma, H.

H. Ma, G. Guo, J. Yang, Y. Guo, and N. Ma, "Femtosecond laser irradiation-induced phase transformation on titanium dioxide crystal surface," Nucl. Instrum. Methods Phys. Res. B 264, 61-65 (2007).
[CrossRef]

Ma, N.

H. Ma, G. Guo, J. Yang, Y. Guo, and N. Ma, "Femtosecond laser irradiation-induced phase transformation on titanium dioxide crystal surface," Nucl. Instrum. Methods Phys. Res. B 264, 61-65 (2007).
[CrossRef]

Ma, Y.

Q. Wu, L. Yu, Y. Ma, Y. Liao, R. Fang, L. Zhang, X. Chen, and K. Wang, "Raman investigation of amorphous carbon in diamond film treated by laser," J. Appl. Phys. 93, 94-100 (2003).
[CrossRef]

Masuhara, H.

K. Nakamura, Y. Sora, H. Y. Yoshikawa, Y. Hosokawa, R. Murai, H. Adachi, Y. Mori, T. Sasaki, and H. Masuhara, "Femtosecond laser-induced crystallization of protein in gel medium," Appl. Surf. Sci. 253, 6425-6429 (2007).
[CrossRef]

H. Adachi, K. Takano, Y. Hosokawa, T. Inoue, Y. Mori, H. Matsumura, M. Yoshimura, Y. Tsunaka, M. Morikawa, S. Kanaya, H. Masuhara, Y. Kai, and T. Sasaki, "Laser Irradiated Growth of Protein Crystal," Jpn. J. Appl. Phys. 42, L798-L800 (2003).
[CrossRef]

Matsumura, H.

H. Adachi, K. Takano, Y. Hosokawa, T. Inoue, Y. Mori, H. Matsumura, M. Yoshimura, Y. Tsunaka, M. Morikawa, S. Kanaya, H. Masuhara, Y. Kai, and T. Sasaki, "Laser Irradiated Growth of Protein Crystal," Jpn. J. Appl. Phys. 42, L798-L800 (2003).
[CrossRef]

Matsuo, S.

Mazur, E.

S. K. Sundaram and E. Mazur, "Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses," Nature Mater. 1, 217-224 (2002).
[CrossRef]

E. N. Glezer and E. Mazur, "Ultrafast-laser driven micro-explosions in transparent materials," Appl. Phys. Lett. 71, 882-884 (1997).
[CrossRef]

P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, "Ultrafast electronic disordering during femtosecond laser melting of GaAs," Phys. Rev. Lett. 67, 1023-1026 (1991).
[CrossRef] [PubMed]

Méchain, G.

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, "Organizing Multiple Femtosecond Filaments in Air," Phys. Rev. Lett. 93, 035003-1-4 (2004).
[CrossRef] [PubMed]

Misawa, M.

Mitsuyu, T.

Miura, K.

Molian, P. A.

C. Z. Wang, K. M. Ho, M. D. Shirk, and P. A. Molian, "Laser-Induced Graphitization on a Diamond (111) Surface," Phys. Rev. Lett. 85, 4092-4095 (2000).
[CrossRef] [PubMed]

Mori, Y.

K. Nakamura, Y. Sora, H. Y. Yoshikawa, Y. Hosokawa, R. Murai, H. Adachi, Y. Mori, T. Sasaki, and H. Masuhara, "Femtosecond laser-induced crystallization of protein in gel medium," Appl. Surf. Sci. 253, 6425-6429 (2007).
[CrossRef]

H. Adachi, K. Takano, Y. Hosokawa, T. Inoue, Y. Mori, H. Matsumura, M. Yoshimura, Y. Tsunaka, M. Morikawa, S. Kanaya, H. Masuhara, Y. Kai, and T. Sasaki, "Laser Irradiated Growth of Protein Crystal," Jpn. J. Appl. Phys. 42, L798-L800 (2003).
[CrossRef]

Morikawa, M.

H. Adachi, K. Takano, Y. Hosokawa, T. Inoue, Y. Mori, H. Matsumura, M. Yoshimura, Y. Tsunaka, M. Morikawa, S. Kanaya, H. Masuhara, Y. Kai, and T. Sasaki, "Laser Irradiated Growth of Protein Crystal," Jpn. J. Appl. Phys. 42, L798-L800 (2003).
[CrossRef]

Mourou, G.

A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, "Self-channeling of high-peak-power femtosecond laser pulses in air," Opt. Lett. 20, 73-75 (1995).
[CrossRef] [PubMed]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

Mourou, G. A.

G. A. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, "Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch," Appl. Phys. Lett. 39, 295-296 (1981).
[CrossRef]

Murai, R.

K. Nakamura, Y. Sora, H. Y. Yoshikawa, Y. Hosokawa, R. Murai, H. Adachi, Y. Mori, T. Sasaki, and H. Masuhara, "Femtosecond laser-induced crystallization of protein in gel medium," Appl. Surf. Sci. 253, 6425-6429 (2007).
[CrossRef]

Murnane, M.M.

Z. Chang, A. Rundquist, H. Wang, M.M. Murnane, and H. Kapteyn, "Generation of Coherent Soft X Rays at 2.7 nm Using High Harmonics," Phys. Rev. Lett. 79, 2967-2970 (1997).
[CrossRef]

Mysyrowicz, A.

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, "Organizing Multiple Femtosecond Filaments in Air," Phys. Rev. Lett. 93, 035003-1-4 (2004).
[CrossRef] [PubMed]

Nakamura, K.

K. Nakamura, Y. Sora, H. Y. Yoshikawa, Y. Hosokawa, R. Murai, H. Adachi, Y. Mori, T. Sasaki, and H. Masuhara, "Femtosecond laser-induced crystallization of protein in gel medium," Appl. Surf. Sci. 253, 6425-6429 (2007).
[CrossRef]

Nieter, C.

C. G. R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, "High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding," Nature 431, 538-541 (2004).
[CrossRef] [PubMed]

Nishii, J.

Odom, T. W.

J. Henzie, M. H. Lee, and T. W. Odom, "Multiscale patterning of plasmonic metamaterials," Nature Nanotechnol. 2, 549-554 (2007).
[CrossRef]

Orszag, A.

G. A. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, "Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch," Appl. Phys. Lett. 39, 295-296 (1981).
[CrossRef]

Prade, B.

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, "Organizing Multiple Femtosecond Filaments in Air," Phys. Rev. Lett. 93, 035003-1-4 (2004).
[CrossRef] [PubMed]

Preuss, S.

S. Preuss and M. Stuke, "Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics," Appl. Phys. Lett. 67, 338-340 (1995).
[CrossRef]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, "Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses," Phys. Rev. Lett. 91, 247405-1-4 (2003).
[CrossRef] [PubMed]

K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, "Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses," Opt. Lett. 25, 408-410 (2000).
[CrossRef]

Reitze, D. H.

D. H. Reitze, H. Ahn, and M. C. Downer, "Optical properties of liquid carbon measured by femtosecond spectroscopy," Phys. Rev. B 45, 2677-2693 (1992).
[CrossRef]

Rksi, F.

C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Rksi, J. A. Squier, B. C. Walker, K. R. Wilson, and C. P. J. Barty, "Picosecond-milliångström lattice dynamics measured by ultrafast X-ray diffraction," Nature 398, 310-312 (1999).
[CrossRef]

Robertson, J.

A. C. Ferrari and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon," Phys. Rev. B 61, 14095-14107 (2000).
[CrossRef]

Rose-Petruck, C.

C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Rksi, J. A. Squier, B. C. Walker, K. R. Wilson, and C. P. J. Barty, "Picosecond-milliångström lattice dynamics measured by ultrafast X-ray diffraction," Nature 398, 310-312 (1999).
[CrossRef]

Ruan, C. -Y.

H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C. -Y. Ruan, and A. H. Zewail, "Direct Imaging of Transient Molecular Structures with Ultrafast Diffraction," Science 291, 458-462 (2001).
[CrossRef] [PubMed]

Rundquist, A.

Z. Chang, A. Rundquist, H. Wang, M.M. Murnane, and H. Kapteyn, "Generation of Coherent Soft X Rays at 2.7 nm Using High Harmonics," Phys. Rev. Lett. 79, 2967-2970 (1997).
[CrossRef]

Saeta, P.

P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, "Ultrafast electronic disordering during femtosecond laser melting of GaAs," Phys. Rev. Lett. 67, 1023-1026 (1991).
[CrossRef] [PubMed]

Sakakura, M.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, "Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass," Opt. Exp. 15, 5674-5686 (2007).
[CrossRef]

Sasaki, T.

K. Nakamura, Y. Sora, H. Y. Yoshikawa, Y. Hosokawa, R. Murai, H. Adachi, Y. Mori, T. Sasaki, and H. Masuhara, "Femtosecond laser-induced crystallization of protein in gel medium," Appl. Surf. Sci. 253, 6425-6429 (2007).
[CrossRef]

H. Adachi, K. Takano, Y. Hosokawa, T. Inoue, Y. Mori, H. Matsumura, M. Yoshimura, Y. Tsunaka, M. Morikawa, S. Kanaya, H. Masuhara, Y. Kai, and T. Sasaki, "Laser Irradiated Growth of Protein Crystal," Jpn. J. Appl. Phys. 42, L798-L800 (2003).
[CrossRef]

Schröder, T.

S. V. Govorkov, T. Schröder, I. L. Shumay, and P. Heist, "Transient gratings and second-harmonic probing of the phase transformation of a GaAs surface under femtosecond laser irradiation," Phys. Rev. B 46, 6864-6868 (1992).
[CrossRef]

Schroeder, C. B.

C. G. R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, "High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding," Nature 431, 538-541 (2004).
[CrossRef] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Shank, C. V.

C. V. Shank, R. Yen, and C. Hirlimann, "Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon," Phys. Rev. Lett. 50, 454-457 (1983).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Shimotsuma, Y.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, "Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass," Opt. Exp. 15, 5674-5686 (2007).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, "Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses," Phys. Rev. Lett. 91, 247405-1-4 (2003).
[CrossRef] [PubMed]

Shirk, M. D.

C. Z. Wang, K. M. Ho, M. D. Shirk, and P. A. Molian, "Laser-Induced Graphitization on a Diamond (111) Surface," Phys. Rev. Lett. 85, 4092-4095 (2000).
[CrossRef] [PubMed]

Shumay, I. L.

I. L. Shumay and U. Höfer, "Phase transformations of an InSb surface induced by strong femtosecond laser pulses," Phys. Rev. B 53, 15878-15884 (1996).
[CrossRef]

S. V. Govorkov, T. Schröder, I. L. Shumay, and P. Heist, "Transient gratings and second-harmonic probing of the phase transformation of a GaAs surface under femtosecond laser irradiation," Phys. Rev. B 46, 6864-6868 (1992).
[CrossRef]

Siders, C. W.

C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Rksi, J. A. Squier, B. C. Walker, K. R. Wilson, and C. P. J. Barty, "Picosecond-milliångström lattice dynamics measured by ultrafast X-ray diffraction," Nature 398, 310-312 (1999).
[CrossRef]

Siegal, Y.

P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, "Ultrafast electronic disordering during femtosecond laser melting of GaAs," Phys. Rev. Lett. 67, 1023-1026 (1991).
[CrossRef] [PubMed]

Siegel, J.

K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. von der Linde, "Dynamics of Ultrafast Phase Changes in Amorphous GeSb Films," Phys. Rev. Lett. 81, 3679-3682 (1998).
[CrossRef]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. von der Linde, "Dynamics of Ultrafast Phase Changes in Amorphous GeSb Films," Phys. Rev. Lett. 81, 3679-3682 (1998).
[CrossRef]

Solis, J.

K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. von der Linde, "Dynamics of Ultrafast Phase Changes in Amorphous GeSb Films," Phys. Rev. Lett. 81, 3679-3682 (1998).
[CrossRef]

Son, Y. D.

G. J. Lee, S. H. Song, Y. P. Lee, H. Cheong, C. S. Yoon, Y. D. Son, and J. Jang, "Arbitrary surface structuring of amorphous silicon films based on femtosecond-laser-induced crystallization," Appl. Phys. Lett. 89, 15190-7-3 (2006).
[CrossRef]

Song, S. H.

G. J. Lee, S. H. Song, Y. P. Lee, H. Cheong, C. S. Yoon, Y. D. Son, and J. Jang, "Arbitrary surface structuring of amorphous silicon films based on femtosecond-laser-induced crystallization," Appl. Phys. Lett. 89, 15190-7-3 (2006).
[CrossRef]

Sora, Y.

K. Nakamura, Y. Sora, H. Y. Yoshikawa, Y. Hosokawa, R. Murai, H. Adachi, Y. Mori, T. Sasaki, and H. Masuhara, "Femtosecond laser-induced crystallization of protein in gel medium," Appl. Surf. Sci. 253, 6425-6429 (2007).
[CrossRef]

Squier, J.

A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, "Self-channeling of high-peak-power femtosecond laser pulses in air," Opt. Lett. 20, 73-75 (1995).
[CrossRef] [PubMed]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

Squier, J. A.

C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Rksi, J. A. Squier, B. C. Walker, K. R. Wilson, and C. P. J. Barty, "Picosecond-milliångström lattice dynamics measured by ultrafast X-ray diffraction," Nature 398, 310-312 (1999).
[CrossRef]

Srinivasan, R.

H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C. -Y. Ruan, and A. H. Zewail, "Direct Imaging of Transient Molecular Structures with Ultrafast Diffraction," Science 291, 458-462 (2001).
[CrossRef] [PubMed]

Stancampiano, C. V.

G. A. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, "Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch," Appl. Phys. Lett. 39, 295-296 (1981).
[CrossRef]

Stuke, M.

S. Preuss and M. Stuke, "Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics," Appl. Phys. Lett. 67, 338-340 (1995).
[CrossRef]

Sugimoto, N.

Sun, H.

Sun, K.

Sundaram, S. K.

S. K. Sundaram and E. Mazur, "Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses," Nature Mater. 1, 217-224 (2002).
[CrossRef]

Takano, K.

H. Adachi, K. Takano, Y. Hosokawa, T. Inoue, Y. Mori, H. Matsumura, M. Yoshimura, Y. Tsunaka, M. Morikawa, S. Kanaya, H. Masuhara, Y. Kai, and T. Sasaki, "Laser Irradiated Growth of Protein Crystal," Jpn. J. Appl. Phys. 42, L798-L800 (2003).
[CrossRef]

Terazima, M.

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, "Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass," Opt. Exp. 15, 5674-5686 (2007).
[CrossRef]

Tom, H. W. K.

H. W. K. Tom, G. D. Aumiller, and C. H. Brito-Cruz, "Time-resolved study of laser-induced disorder of Si surfaces," Phys. Rev. Lett. 60, 1438-1441 (1988).
[CrossRef] [PubMed]

Toth, Cs.

C. G. R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, "High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding," Nature 431, 538-541 (2004).
[CrossRef] [PubMed]

Tsunaka, Y.

H. Adachi, K. Takano, Y. Hosokawa, T. Inoue, Y. Mori, H. Matsumura, M. Yoshimura, Y. Tsunaka, M. Morikawa, S. Kanaya, H. Masuhara, Y. Kai, and T. Sasaki, "Laser Irradiated Growth of Protein Crystal," Jpn. J. Appl. Phys. 42, L798-L800 (2003).
[CrossRef]

Tuinstra, F.

F. Tuinstra and J. L. Koenig, " Raman Spectrum of Graphite," J. Chem. Phys. 53, 1126-1130 (1970).
[CrossRef]

van Tilborg, J.

C. G. R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, "High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding," Nature 431, 538-541 (2004).
[CrossRef] [PubMed]

von der Linde, D.

K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. von der Linde, "Dynamics of Ultrafast Phase Changes in Amorphous GeSb Films," Phys. Rev. Lett. 81, 3679-3682 (1998).
[CrossRef]

Walker, B. C.

C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Rksi, J. A. Squier, B. C. Walker, K. R. Wilson, and C. P. J. Barty, "Picosecond-milliångström lattice dynamics measured by ultrafast X-ray diffraction," Nature 398, 310-312 (1999).
[CrossRef]

Wang, C. Z.

C. Z. Wang, K. M. Ho, M. D. Shirk, and P. A. Molian, "Laser-Induced Graphitization on a Diamond (111) Surface," Phys. Rev. Lett. 85, 4092-4095 (2000).
[CrossRef] [PubMed]

Wang, H.

Z. Chang, A. Rundquist, H. Wang, M.M. Murnane, and H. Kapteyn, "Generation of Coherent Soft X Rays at 2.7 nm Using High Harmonics," Phys. Rev. Lett. 79, 2967-2970 (1997).
[CrossRef]

Wang, J.-K.

P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, "Ultrafast electronic disordering during femtosecond laser melting of GaAs," Phys. Rev. Lett. 67, 1023-1026 (1991).
[CrossRef] [PubMed]

Wang, K.

Q. Wu, L. Yu, Y. Ma, Y. Liao, R. Fang, L. Zhang, X. Chen, and K. Wang, "Raman investigation of amorphous carbon in diamond film treated by laser," J. Appl. Phys. 93, 94-100 (2003).
[CrossRef]

Watanabe, M.

Wilson, K. R.

C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Rksi, J. A. Squier, B. C. Walker, K. R. Wilson, and C. P. J. Barty, "Picosecond-milliångström lattice dynamics measured by ultrafast X-ray diffraction," Nature 398, 310-312 (1999).
[CrossRef]

Wu, Q.

Q. Wu, L. Yu, Y. Ma, Y. Liao, R. Fang, L. Zhang, X. Chen, and K. Wang, "Raman investigation of amorphous carbon in diamond film treated by laser," J. Appl. Phys. 93, 94-100 (2003).
[CrossRef]

Xu, Y.

Yang, J.

H. Ma, G. Guo, J. Yang, Y. Guo, and N. Ma, "Femtosecond laser irradiation-induced phase transformation on titanium dioxide crystal surface," Nucl. Instrum. Methods Phys. Res. B 264, 61-65 (2007).
[CrossRef]

Yanik, M. F.

M. F. Yanik, H. N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, "Functional regeneration after laser axotomy," Nature 432, 822 (2004).
[CrossRef] [PubMed]

Yen, R.

C. V. Shank, R. Yen, and C. Hirlimann, "Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon," Phys. Rev. Lett. 50, 454-457 (1983).
[CrossRef]

Yoon, C. S.

G. J. Lee, S. H. Song, Y. P. Lee, H. Cheong, C. S. Yoon, Y. D. Son, and J. Jang, "Arbitrary surface structuring of amorphous silicon films based on femtosecond-laser-induced crystallization," Appl. Phys. Lett. 89, 15190-7-3 (2006).
[CrossRef]

Yoshikawa, H. Y.

K. Nakamura, Y. Sora, H. Y. Yoshikawa, Y. Hosokawa, R. Murai, H. Adachi, Y. Mori, T. Sasaki, and H. Masuhara, "Femtosecond laser-induced crystallization of protein in gel medium," Appl. Surf. Sci. 253, 6425-6429 (2007).
[CrossRef]

Yoshimura, M.

H. Adachi, K. Takano, Y. Hosokawa, T. Inoue, Y. Mori, H. Matsumura, M. Yoshimura, Y. Tsunaka, M. Morikawa, S. Kanaya, H. Masuhara, Y. Kai, and T. Sasaki, "Laser Irradiated Growth of Protein Crystal," Jpn. J. Appl. Phys. 42, L798-L800 (2003).
[CrossRef]

Yu, L.

Q. Wu, L. Yu, Y. Ma, Y. Liao, R. Fang, L. Zhang, X. Chen, and K. Wang, "Raman investigation of amorphous carbon in diamond film treated by laser," J. Appl. Phys. 93, 94-100 (2003).
[CrossRef]

Zewail, A. H.

H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C. -Y. Ruan, and A. H. Zewail, "Direct Imaging of Transient Molecular Structures with Ultrafast Diffraction," Science 291, 458-462 (2001).
[CrossRef] [PubMed]

Zhang, L.

Q. Wu, L. Yu, Y. Ma, Y. Liao, R. Fang, L. Zhang, X. Chen, and K. Wang, "Raman investigation of amorphous carbon in diamond film treated by laser," J. Appl. Phys. 93, 94-100 (2003).
[CrossRef]

Zhang, X. -C.

B. B. Hu, X. -C. Zhang, and D. H. Auston, "Terahertz radiation induced by subband-gap femtosecond optical excitation of GaAs," Phys. Rev. Lett. 67, 2709-2712 (1991).
[CrossRef] [PubMed]

Appl. Phys. A (1)

H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, "Theory for laser-induced ultrafast phase transitions in carbon," Appl. Phys. A 69, S49-S53 (1999).

Appl. Phys. Lett. (5)

G. A. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, "Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch," Appl. Phys. Lett. 39, 295-296 (1981).
[CrossRef]

S. Preuss and M. Stuke, "Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics," Appl. Phys. Lett. 67, 338-340 (1995).
[CrossRef]

G. J. Lee, S. H. Song, Y. P. Lee, H. Cheong, C. S. Yoon, Y. D. Son, and J. Jang, "Arbitrary surface structuring of amorphous silicon films based on femtosecond-laser-induced crystallization," Appl. Phys. Lett. 89, 15190-7-3 (2006).
[CrossRef]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

E. N. Glezer and E. Mazur, "Ultrafast-laser driven micro-explosions in transparent materials," Appl. Phys. Lett. 71, 882-884 (1997).
[CrossRef]

Appl. Surf. Sci. (1)

K. Nakamura, Y. Sora, H. Y. Yoshikawa, Y. Hosokawa, R. Murai, H. Adachi, Y. Mori, T. Sasaki, and H. Masuhara, "Femtosecond laser-induced crystallization of protein in gel medium," Appl. Surf. Sci. 253, 6425-6429 (2007).
[CrossRef]

J. Appl. Phys. (1)

Q. Wu, L. Yu, Y. Ma, Y. Liao, R. Fang, L. Zhang, X. Chen, and K. Wang, "Raman investigation of amorphous carbon in diamond film treated by laser," J. Appl. Phys. 93, 94-100 (2003).
[CrossRef]

J. Chem. Phys. (1)

F. Tuinstra and J. L. Koenig, " Raman Spectrum of Graphite," J. Chem. Phys. 53, 1126-1130 (1970).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Adachi, K. Takano, Y. Hosokawa, T. Inoue, Y. Mori, H. Matsumura, M. Yoshimura, Y. Tsunaka, M. Morikawa, S. Kanaya, H. Masuhara, Y. Kai, and T. Sasaki, "Laser Irradiated Growth of Protein Crystal," Jpn. J. Appl. Phys. 42, L798-L800 (2003).
[CrossRef]

Nature (4)

M. F. Yanik, H. N. Cinar, A. Chisholm, Y. Jin, and A. Ben-Yakar, "Functional regeneration after laser axotomy," Nature 432, 822 (2004).
[CrossRef] [PubMed]

C. G. R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, "High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding," Nature 431, 538-541 (2004).
[CrossRef] [PubMed]

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Rksi, J. A. Squier, B. C. Walker, K. R. Wilson, and C. P. J. Barty, "Picosecond-milliångström lattice dynamics measured by ultrafast X-ray diffraction," Nature 398, 310-312 (1999).
[CrossRef]

Nature Mater. (1)

S. K. Sundaram and E. Mazur, "Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses," Nature Mater. 1, 217-224 (2002).
[CrossRef]

Nature Nanotechnol. (1)

J. Henzie, M. H. Lee, and T. W. Odom, "Multiscale patterning of plasmonic metamaterials," Nature Nanotechnol. 2, 549-554 (2007).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

H. Ma, G. Guo, J. Yang, Y. Guo, and N. Ma, "Femtosecond laser irradiation-induced phase transformation on titanium dioxide crystal surface," Nucl. Instrum. Methods Phys. Res. B 264, 61-65 (2007).
[CrossRef]

Opt. Exp. (1)

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, "Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass," Opt. Exp. 15, 5674-5686 (2007).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. B (5)

H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, "Microscopic analysis of the laser-induced femtosecond graphitization of diamond," Phys. Rev. B 60, R3701-R3704 (1999).
[CrossRef]

A. C. Ferrari and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon," Phys. Rev. B 61, 14095-14107 (2000).
[CrossRef]

S. V. Govorkov, T. Schröder, I. L. Shumay, and P. Heist, "Transient gratings and second-harmonic probing of the phase transformation of a GaAs surface under femtosecond laser irradiation," Phys. Rev. B 46, 6864-6868 (1992).
[CrossRef]

I. L. Shumay and U. Höfer, "Phase transformations of an InSb surface induced by strong femtosecond laser pulses," Phys. Rev. B 53, 15878-15884 (1996).
[CrossRef]

D. H. Reitze, H. Ahn, and M. C. Downer, "Optical properties of liquid carbon measured by femtosecond spectroscopy," Phys. Rev. B 45, 2677-2693 (1992).
[CrossRef]

Phys. Rev. Lett. (10)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, "Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses," Phys. Rev. Lett. 91, 247405-1-4 (2003).
[CrossRef] [PubMed]

K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. von der Linde, "Dynamics of Ultrafast Phase Changes in Amorphous GeSb Films," Phys. Rev. Lett. 81, 3679-3682 (1998).
[CrossRef]

C. V. Shank, R. Yen, and C. Hirlimann, "Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon," Phys. Rev. Lett. 50, 454-457 (1983).
[CrossRef]

H. W. K. Tom, G. D. Aumiller, and C. H. Brito-Cruz, "Time-resolved study of laser-induced disorder of Si surfaces," Phys. Rev. Lett. 60, 1438-1441 (1988).
[CrossRef] [PubMed]

P. Saeta, J.-K. Wang, Y. Siegal, N. Bloembergen, and E. Mazur, "Ultrafast electronic disordering during femtosecond laser melting of GaAs," Phys. Rev. Lett. 67, 1023-1026 (1991).
[CrossRef] [PubMed]

Z. Chang, A. Rundquist, H. Wang, M.M. Murnane, and H. Kapteyn, "Generation of Coherent Soft X Rays at 2.7 nm Using High Harmonics," Phys. Rev. Lett. 79, 2967-2970 (1997).
[CrossRef]

C. Z. Wang, K. M. Ho, M. D. Shirk, and P. A. Molian, "Laser-Induced Graphitization on a Diamond (111) Surface," Phys. Rev. Lett. 85, 4092-4095 (2000).
[CrossRef] [PubMed]

H. O. Jeschke, M. E. Garcia and K. H. Bennemann, "Theory for the Ultrafast Ablation of Graphite Films," Phys. Rev. Lett. 87, 015003-1-4 (2001).
[CrossRef] [PubMed]

B. B. Hu, X. -C. Zhang, and D. H. Auston, "Terahertz radiation induced by subband-gap femtosecond optical excitation of GaAs," Phys. Rev. Lett. 67, 2709-2712 (1991).
[CrossRef] [PubMed]

G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, "Organizing Multiple Femtosecond Filaments in Air," Phys. Rev. Lett. 93, 035003-1-4 (2004).
[CrossRef] [PubMed]

Science (2)

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C. -Y. Ruan, and A. H. Zewail, "Direct Imaging of Transient Molecular Structures with Ultrafast Diffraction," Science 291, 458-462 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Optical microphotograph being taken in an oblique direction (a) and a side view (b). Secondary electron image of the cross-sectional surface including the laser-processed region was also shown (c). The double-headed arrow d and the points marked P 1 and P 2 represent the laser-induced area, the typical points of the laser-irradiated and the unirradiated region, respectively. (d) Micro-Raman spectra at P 1 and P 2 points on the cross-sectional surface. The components of the G peak (broken line), D peak (dotted line), and diamond peak (dashed-dotted line) deduced from the peak fittings (solid line) are also shown.

Fig. 2.
Fig. 2.

Schematic illustration (a) and equivalent circuit (b) of the four-terminal method, where R is the electrical resistance of a modified cylindrical structure, VA , VC is the electric potential of the anode and cathode, Isup is the supply current, respectively. Scanning electron micrograph during the measurements with four-point probe was also shown in (c). (d) Specific electrical conductivity (unfilled red circle) and radius (unfilled blue triangle) of the cylinder as a function of the laser energy fluence.

Fig. 3.
Fig. 3.

Optical microphotograph and Raman spectra mapping on the cross-sectional surface after the laser writing with laser energy fluence of 200 J/cm2 (a, b) and 427 J/cm2 (c, d) at the same scanning speed of 20 μm/s. Scale bars are 5 μm. Arrows show the direction of the laser incidence (kph ) and the scanning of the focus (ks ). Color bar indicates the normalized Raman G peak intensity.

Fig. 4.
Fig. 4.

(a) Sequential Raman spectra taken as a function of laser scanning speed. (b) Profiles of electrical conductivity (red filled triangle) and Raman peak intensity ratio of ID/IG (blue filled circle) in the modified structures as a function of laser scanning speed. The Raman spectra are vertically displayed for clarity. The laser energy fluence was set at 28.5 J/cm2 in all experiments.

Fig. 5.
Fig. 5.

Comparison between measured (red line) and calculated (blue line) transmission intensity and phase shift of the square metallo-dielectric photonic crystal with lattice constant of Λ = 80 μm. The calculation model (enclosed area with dotted line) and the two polarization configurations (E) are shown on the side of the graphs, where (εg , σg ) and (εd , σd ) represent a set of the specific permittivity and the specific electrical conductivity of the modified cylindrical structure and the initial diamond, respectively. The direction of incidence, which was polarized parallel (a, b) or perpendicular (c, d) to the longitudinal axis of a cylinder with a diameter of d = 25 μm, was set along the <10> direction of the square lattice.

Fig. 6.
Fig. 6.

Transmission spectra of the square metallo-dielectric photonic crystal with lattice constant of Λ = 60 μm (red), 80 μm (blue), and 100 μm (green), respectively. The horizontal axis is a normalized frequency (nωΛ/2πc), where n is the refractive index of diamond (= 2.35). Dotted lines indicate the characteristic peak positions.

Metrics