Abstract

We demonstrate numerically that acoustooptic interaction between two co-propagating modes in an optical fiber can be utilized to obtain optical delays. Both positive and negative delays of several pulse lengths can be obtained. Based on the simulations we consider relevant experimental parameters.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, "Optical Delay Lines Based on Optical Filters," IEEE J. Quantum Electron. 37, 525-532 (2001).
    [CrossRef]
  2. J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis," J. Opt. Soc. Am. B 22, 1062-1074 (2005).
    [CrossRef]
  3. R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, "Slow-Light Optical Buffers: Capabilities and Fundamental Limitations," J. Lightwave Technol. 23, 4046-4066 (2005).
    [CrossRef]
  4. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, "Applications of Slow Light in Telecommunications," OPN 19-23 (2006). April issue.
  5. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397, 594-598 (1999).
    [CrossRef]
  6. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature (London) 409, 490-493 (2001).
    [CrossRef]
  7. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of Ulstraslow Light Propagation in a Ruby Crystal at Room Temperature," Phys. Rev. Lett. 90 (2003). Article no. 113903.
    [CrossRef] [PubMed]
  8. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999).
    [CrossRef]
  9. R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, "Wide-Bandwidth, Tunable, Multiple-Pulse-Width Optical Delays Using Slow Light in Cesium Vapor," Phys. Rev. Lett. 98 (2007). Article no. 153601.
    [CrossRef] [PubMed]
  10. L. Thévenaz, "Slow and fast light in optical fibres," Nature Photon. 2, 474-481 (2008).
    [CrossRef]
  11. K. Y. Song, M. G. Herráez, and L. Thévenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13, 82-88 (2005).
    [CrossRef] [PubMed]
  12. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94 (2005). Article no. 153902.
    [CrossRef] [PubMed]
  13. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005).
    [CrossRef] [PubMed]
  14. D. Dahan and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Express 13, 6234-6249 (2005).
    [CrossRef] [PubMed]
  15. Z. Zhu, D. J. Gauthier, and R. W. Boyd, "Stored Light in an Optical Fiber via Stimulated Brillouin Scattering," Science 318, 1748-1750 (2007).
    [CrossRef] [PubMed]
  16. T. Erdogan, "Fiber Grating Spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
    [CrossRef]
  17. S. Longhi, M. Marano, M. Belmonte, and P. Laporta, "Superluminal Pulse Propagation in Linear and Nonlinear Photonic Grating Structures," IEEE J. Sel. Top. Quantum Electron. 9, 4-16 (2003).
    [CrossRef]
  18. D. Janner, G. Galzerano, G. Della Valle, P. Laporta, S. Longhi, and M. Belmonte, "Slow light in periodic superstructure Bragg gratings," Phys. Rev. E (2005). Article no. 056605.
  19. J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, "Dispersionless slow light using gap solitons," Nature Physics 2, 775 - 780 (2006).
    [CrossRef]
  20. B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, "All-fiber acousto-optic frequency shifter," Opt. Lett. 11, 389-391 (1986).
    [CrossRef] [PubMed]
  21. H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, "Propagation and Optical Interaction of Guided Acoustic Waves in Two-Mode Optical Fibers," J. Lightwave Technol. 6, 428-436 (1988).
    [CrossRef]
  22. K. J. Lee, H. C. Park, H. S. Park, and B. Y. Kim, "Highly efficient all-fiber tunable polarization filter using torsional acoustic wave," Opt. Express 15, 12,362-12,367 (2007).
  23. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  24. C. G. B. Garrett and D. E. McCumber, "Propagation of a Gaussian Light Pulse through an Anomalous Dispersion Medium," Phys. Rev. A 1, 305-313 (1970).
  25. S. Chu and S. Wong, "Linear Pulse Propagation in an AbsorbingMedium," Phys. Rev. Lett. 48, 738-741 (1982).
    [CrossRef]
  26. D. R. Solli, C. F. McCormick, C. Ropers, J. J. Morehead, R. Y. Chiao, and J. M. Hickmann, "Demonstration of Superluminal Effects in an Absorptionless, Nonreflective System," Phys. Rev. Lett. 91 (2003). Article no. 143906.
    [CrossRef] [PubMed]
  27. N. Brunner, V. Scarani, M. Wegmüller, M. Legré, and N. Gisin, "Direct measurement of superluminal group velocity and signal velocity in an optical fiber," Phys. Rev. Lett. 93 (2004). Article no. 203902.
    [CrossRef] [PubMed]
  28. A. B. Matsko, D. V. Strekalov, and L. Maleki, "On the dynamic range of optical delay lines based on coherent atomic media," Opt. Express 13, 2210-2223 (2005).
    [CrossRef] [PubMed]
  29. D. A. B. Miller, "Fundamental Limit to Linear One-Dimensional Slow Light Structures," Phys. Rev. Lett. 99 (2007). Article no. 203903.
    [CrossRef] [PubMed]
  30. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continous Media (Elsevier, Amsterdam, 1984).
  31. J. S. Toll, "Causality and the Dispersion Relation: Logical Foundations," Phys. Rev. 104, 1760-1770 (1956).
    [CrossRef]
  32. R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, "Maximum time delay achievable on propagation through a slow-light medium," Phys. Rev. A 71 (2005). Article no. 023801.
  33. R. W. Boyd and P. Narum, "Slow- and fast-light: fundamental limitations," J. Mod. Opt. 54, 2403-2411 (2007).
    [CrossRef]
  34. A. Papoulis, The Fourier Integral and Its Applications (McGraw-Hill, New York, 1962).
  35. J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion," Opt. Express 13, 7872-7877 (2005).
    [CrossRef] [PubMed]
  36. S. Ramachandran, "Dispersion-Tailored Few-Mode Fibers: A Versatile Platform for In-Fiber Photonic Devices," J. Lightwave Technol. 23, 3426-3443 (2005).
    [CrossRef]

2008

L. Thévenaz, "Slow and fast light in optical fibres," Nature Photon. 2, 474-481 (2008).
[CrossRef]

2007

Z. Zhu, D. J. Gauthier, and R. W. Boyd, "Stored Light in an Optical Fiber via Stimulated Brillouin Scattering," Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, "Wide-Bandwidth, Tunable, Multiple-Pulse-Width Optical Delays Using Slow Light in Cesium Vapor," Phys. Rev. Lett. 98 (2007). Article no. 153601.
[CrossRef] [PubMed]

K. J. Lee, H. C. Park, H. S. Park, and B. Y. Kim, "Highly efficient all-fiber tunable polarization filter using torsional acoustic wave," Opt. Express 15, 12,362-12,367 (2007).

R. W. Boyd and P. Narum, "Slow- and fast-light: fundamental limitations," J. Mod. Opt. 54, 2403-2411 (2007).
[CrossRef]

2006

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, "Dispersionless slow light using gap solitons," Nature Physics 2, 775 - 780 (2006).
[CrossRef]

2005

D. Janner, G. Galzerano, G. Della Valle, P. Laporta, S. Longhi, and M. Belmonte, "Slow light in periodic superstructure Bragg gratings," Phys. Rev. E (2005). Article no. 056605.

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, "Maximum time delay achievable on propagation through a slow-light medium," Phys. Rev. A 71 (2005). Article no. 023801.

K. Y. Song, M. G. Herráez, and L. Thévenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13, 82-88 (2005).
[CrossRef] [PubMed]

A. B. Matsko, D. V. Strekalov, and L. Maleki, "On the dynamic range of optical delay lines based on coherent atomic media," Opt. Express 13, 2210-2223 (2005).
[CrossRef] [PubMed]

J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis," J. Opt. Soc. Am. B 22, 1062-1074 (2005).
[CrossRef]

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005).
[CrossRef] [PubMed]

D. Dahan and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Express 13, 6234-6249 (2005).
[CrossRef] [PubMed]

J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion," Opt. Express 13, 7872-7877 (2005).
[CrossRef] [PubMed]

S. Ramachandran, "Dispersion-Tailored Few-Mode Fibers: A Versatile Platform for In-Fiber Photonic Devices," J. Lightwave Technol. 23, 3426-3443 (2005).
[CrossRef]

R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, "Slow-Light Optical Buffers: Capabilities and Fundamental Limitations," J. Lightwave Technol. 23, 4046-4066 (2005).
[CrossRef]

2004

N. Brunner, V. Scarani, M. Wegmüller, M. Legré, and N. Gisin, "Direct measurement of superluminal group velocity and signal velocity in an optical fiber," Phys. Rev. Lett. 93 (2004). Article no. 203902.
[CrossRef] [PubMed]

2003

D. R. Solli, C. F. McCormick, C. Ropers, J. J. Morehead, R. Y. Chiao, and J. M. Hickmann, "Demonstration of Superluminal Effects in an Absorptionless, Nonreflective System," Phys. Rev. Lett. 91 (2003). Article no. 143906.
[CrossRef] [PubMed]

S. Longhi, M. Marano, M. Belmonte, and P. Laporta, "Superluminal Pulse Propagation in Linear and Nonlinear Photonic Grating Structures," IEEE J. Sel. Top. Quantum Electron. 9, 4-16 (2003).
[CrossRef]

2001

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature (London) 409, 490-493 (2001).
[CrossRef]

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, "Optical Delay Lines Based on Optical Filters," IEEE J. Quantum Electron. 37, 525-532 (2001).
[CrossRef]

1999

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397, 594-598 (1999).
[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999).
[CrossRef]

1997

T. Erdogan, "Fiber Grating Spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

1988

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, "Propagation and Optical Interaction of Guided Acoustic Waves in Two-Mode Optical Fibers," J. Lightwave Technol. 6, 428-436 (1988).
[CrossRef]

1986

1982

S. Chu and S. Wong, "Linear Pulse Propagation in an AbsorbingMedium," Phys. Rev. Lett. 48, 738-741 (1982).
[CrossRef]

1970

C. G. B. Garrett and D. E. McCumber, "Propagation of a Gaussian Light Pulse through an Anomalous Dispersion Medium," Phys. Rev. A 1, 305-313 (1970).

1956

J. S. Toll, "Causality and the Dispersion Relation: Logical Foundations," Phys. Rev. 104, 1760-1770 (1956).
[CrossRef]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature (London) 409, 490-493 (2001).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397, 594-598 (1999).
[CrossRef]

Belmonte, M.

D. Janner, G. Galzerano, G. Della Valle, P. Laporta, S. Longhi, and M. Belmonte, "Slow light in periodic superstructure Bragg gratings," Phys. Rev. E (2005). Article no. 056605.

S. Longhi, M. Marano, M. Belmonte, and P. Laporta, "Superluminal Pulse Propagation in Linear and Nonlinear Photonic Grating Structures," IEEE J. Sel. Top. Quantum Electron. 9, 4-16 (2003).
[CrossRef]

Blake, J. N.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, "Propagation and Optical Interaction of Guided Acoustic Waves in Two-Mode Optical Fibers," J. Lightwave Technol. 6, 428-436 (1988).
[CrossRef]

B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, "All-fiber acousto-optic frequency shifter," Opt. Lett. 11, 389-391 (1986).
[CrossRef] [PubMed]

Boyd, R. W.

R. W. Boyd and P. Narum, "Slow- and fast-light: fundamental limitations," J. Mod. Opt. 54, 2403-2411 (2007).
[CrossRef]

Z. Zhu, D. J. Gauthier, and R. W. Boyd, "Stored Light in an Optical Fiber via Stimulated Brillouin Scattering," Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, "Wide-Bandwidth, Tunable, Multiple-Pulse-Width Optical Delays Using Slow Light in Cesium Vapor," Phys. Rev. Lett. 98 (2007). Article no. 153601.
[CrossRef] [PubMed]

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, "Maximum time delay achievable on propagation through a slow-light medium," Phys. Rev. A 71 (2005). Article no. 023801.

Brunner, N.

N. Brunner, V. Scarani, M. Wegmüller, M. Legré, and N. Gisin, "Direct measurement of superluminal group velocity and signal velocity in an optical fiber," Phys. Rev. Lett. 93 (2004). Article no. 203902.
[CrossRef] [PubMed]

Camacho, R. M.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, "Wide-Bandwidth, Tunable, Multiple-Pulse-Width Optical Delays Using Slow Light in Cesium Vapor," Phys. Rev. Lett. 98 (2007). Article no. 153601.
[CrossRef] [PubMed]

Chang-Hasnain, C. J.

Chiao, R. Y.

D. R. Solli, C. F. McCormick, C. Ropers, J. J. Morehead, R. Y. Chiao, and J. M. Hickmann, "Demonstration of Superluminal Effects in an Absorptionless, Nonreflective System," Phys. Rev. Lett. 91 (2003). Article no. 143906.
[CrossRef] [PubMed]

Chu, S.

S. Chu and S. Wong, "Linear Pulse Propagation in an AbsorbingMedium," Phys. Rev. Lett. 48, 738-741 (1982).
[CrossRef]

Dahan, D.

de Sterke, C. M.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, "Dispersionless slow light using gap solitons," Nature Physics 2, 775 - 780 (2006).
[CrossRef]

Della Valle, G.

D. Janner, G. Galzerano, G. Della Valle, P. Laporta, S. Longhi, and M. Belmonte, "Slow light in periodic superstructure Bragg gratings," Phys. Rev. E (2005). Article no. 056605.

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature (London) 409, 490-493 (2001).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397, 594-598 (1999).
[CrossRef]

Eggleton, B. J.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, "Dispersionless slow light using gap solitons," Nature Physics 2, 775 - 780 (2006).
[CrossRef]

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, "Optical Delay Lines Based on Optical Filters," IEEE J. Quantum Electron. 37, 525-532 (2001).
[CrossRef]

Eisenstein, G.

Engan, H. E.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, "Propagation and Optical Interaction of Guided Acoustic Waves in Two-Mode Optical Fibers," J. Lightwave Technol. 6, 428-436 (1988).
[CrossRef]

B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, "All-fiber acousto-optic frequency shifter," Opt. Lett. 11, 389-391 (1986).
[CrossRef] [PubMed]

Erdogan, T.

T. Erdogan, "Fiber Grating Spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

Gaeta, A. L.

Galzerano, G.

D. Janner, G. Galzerano, G. Della Valle, P. Laporta, S. Longhi, and M. Belmonte, "Slow light in periodic superstructure Bragg gratings," Phys. Rev. E (2005). Article no. 056605.

Garrett, C. G. B.

C. G. B. Garrett and D. E. McCumber, "Propagation of a Gaussian Light Pulse through an Anomalous Dispersion Medium," Phys. Rev. A 1, 305-313 (1970).

Gauthier, D. J.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, "Stored Light in an Optical Fiber via Stimulated Brillouin Scattering," Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, "Maximum time delay achievable on propagation through a slow-light medium," Phys. Rev. A 71 (2005). Article no. 023801.

Gisin, N.

N. Brunner, V. Scarani, M. Wegmüller, M. Legré, and N. Gisin, "Direct measurement of superluminal group velocity and signal velocity in an optical fiber," Phys. Rev. Lett. 93 (2004). Article no. 203902.
[CrossRef] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397, 594-598 (1999).
[CrossRef]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature (London) 409, 490-493 (2001).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397, 594-598 (1999).
[CrossRef]

Herráez, M. G.

Hickmann, J. M.

D. R. Solli, C. F. McCormick, C. Ropers, J. J. Morehead, R. Y. Chiao, and J. M. Hickmann, "Demonstration of Superluminal Effects in an Absorptionless, Nonreflective System," Phys. Rev. Lett. 91 (2003). Article no. 143906.
[CrossRef] [PubMed]

Howell, J. C.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, "Wide-Bandwidth, Tunable, Multiple-Pulse-Width Optical Delays Using Slow Light in Cesium Vapor," Phys. Rev. Lett. 98 (2007). Article no. 153601.
[CrossRef] [PubMed]

Janner, D.

D. Janner, G. Galzerano, G. Della Valle, P. Laporta, S. Longhi, and M. Belmonte, "Slow light in periodic superstructure Bragg gratings," Phys. Rev. E (2005). Article no. 056605.

Khurgin, J. B.

Kim, B. Y.

K. J. Lee, H. C. Park, H. S. Park, and B. Y. Kim, "Highly efficient all-fiber tunable polarization filter using torsional acoustic wave," Opt. Express 15, 12,362-12,367 (2007).

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, "Propagation and Optical Interaction of Guided Acoustic Waves in Two-Mode Optical Fibers," J. Lightwave Technol. 6, 428-436 (1988).
[CrossRef]

B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, "All-fiber acousto-optic frequency shifter," Opt. Lett. 11, 389-391 (1986).
[CrossRef] [PubMed]

Ku, P.-C.

Laporta, P.

D. Janner, G. Galzerano, G. Della Valle, P. Laporta, S. Longhi, and M. Belmonte, "Slow light in periodic superstructure Bragg gratings," Phys. Rev. E (2005). Article no. 056605.

S. Longhi, M. Marano, M. Belmonte, and P. Laporta, "Superluminal Pulse Propagation in Linear and Nonlinear Photonic Grating Structures," IEEE J. Sel. Top. Quantum Electron. 9, 4-16 (2003).
[CrossRef]

Lee, K. J.

K. J. Lee, H. C. Park, H. S. Park, and B. Y. Kim, "Highly efficient all-fiber tunable polarization filter using torsional acoustic wave," Opt. Express 15, 12,362-12,367 (2007).

Lee, R. K.

Legré, M.

N. Brunner, V. Scarani, M. Wegmüller, M. Legré, and N. Gisin, "Direct measurement of superluminal group velocity and signal velocity in an optical fiber," Phys. Rev. Lett. 93 (2004). Article no. 203902.
[CrossRef] [PubMed]

Lenz, G.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, "Optical Delay Lines Based on Optical Filters," IEEE J. Quantum Electron. 37, 525-532 (2001).
[CrossRef]

Littler, I. C. M.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, "Dispersionless slow light using gap solitons," Nature Physics 2, 775 - 780 (2006).
[CrossRef]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature (London) 409, 490-493 (2001).
[CrossRef]

Longhi, S.

D. Janner, G. Galzerano, G. Della Valle, P. Laporta, S. Longhi, and M. Belmonte, "Slow light in periodic superstructure Bragg gratings," Phys. Rev. E (2005). Article no. 056605.

S. Longhi, M. Marano, M. Belmonte, and P. Laporta, "Superluminal Pulse Propagation in Linear and Nonlinear Photonic Grating Structures," IEEE J. Sel. Top. Quantum Electron. 9, 4-16 (2003).
[CrossRef]

Madsen, C. K.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, "Optical Delay Lines Based on Optical Filters," IEEE J. Quantum Electron. 37, 525-532 (2001).
[CrossRef]

Maleki, L.

Marano, M.

S. Longhi, M. Marano, M. Belmonte, and P. Laporta, "Superluminal Pulse Propagation in Linear and Nonlinear Photonic Grating Structures," IEEE J. Sel. Top. Quantum Electron. 9, 4-16 (2003).
[CrossRef]

Matsko, A. B.

McCormick, C. F.

D. R. Solli, C. F. McCormick, C. Ropers, J. J. Morehead, R. Y. Chiao, and J. M. Hickmann, "Demonstration of Superluminal Effects in an Absorptionless, Nonreflective System," Phys. Rev. Lett. 91 (2003). Article no. 143906.
[CrossRef] [PubMed]

McCumber, D. E.

C. G. B. Garrett and D. E. McCumber, "Propagation of a Gaussian Light Pulse through an Anomalous Dispersion Medium," Phys. Rev. A 1, 305-313 (1970).

Mok, J. T.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, "Dispersionless slow light using gap solitons," Nature Physics 2, 775 - 780 (2006).
[CrossRef]

Morehead, J. J.

D. R. Solli, C. F. McCormick, C. Ropers, J. J. Morehead, R. Y. Chiao, and J. M. Hickmann, "Demonstration of Superluminal Effects in an Absorptionless, Nonreflective System," Phys. Rev. Lett. 91 (2003). Article no. 143906.
[CrossRef] [PubMed]

Narum, P.

R. W. Boyd and P. Narum, "Slow- and fast-light: fundamental limitations," J. Mod. Opt. 54, 2403-2411 (2007).
[CrossRef]

Okawachi, Y.

Pack, M. V.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, "Wide-Bandwidth, Tunable, Multiple-Pulse-Width Optical Delays Using Slow Light in Cesium Vapor," Phys. Rev. Lett. 98 (2007). Article no. 153601.
[CrossRef] [PubMed]

Park, H. C.

K. J. Lee, H. C. Park, H. S. Park, and B. Y. Kim, "Highly efficient all-fiber tunable polarization filter using torsional acoustic wave," Opt. Express 15, 12,362-12,367 (2007).

Park, H. S.

K. J. Lee, H. C. Park, H. S. Park, and B. Y. Kim, "Highly efficient all-fiber tunable polarization filter using torsional acoustic wave," Opt. Express 15, 12,362-12,367 (2007).

Ramachandran, S.

Ropers, C.

D. R. Solli, C. F. McCormick, C. Ropers, J. J. Morehead, R. Y. Chiao, and J. M. Hickmann, "Demonstration of Superluminal Effects in an Absorptionless, Nonreflective System," Phys. Rev. Lett. 91 (2003). Article no. 143906.
[CrossRef] [PubMed]

Scarani, V.

N. Brunner, V. Scarani, M. Wegmüller, M. Legré, and N. Gisin, "Direct measurement of superluminal group velocity and signal velocity in an optical fiber," Phys. Rev. Lett. 93 (2004). Article no. 203902.
[CrossRef] [PubMed]

Scherer, A.

Schweinsberg, A.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, "Wide-Bandwidth, Tunable, Multiple-Pulse-Width Optical Delays Using Slow Light in Cesium Vapor," Phys. Rev. Lett. 98 (2007). Article no. 153601.
[CrossRef] [PubMed]

Sharping, J. E.

Shaw, H. J.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, "Propagation and Optical Interaction of Guided Acoustic Waves in Two-Mode Optical Fibers," J. Lightwave Technol. 6, 428-436 (1988).
[CrossRef]

B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, "All-fiber acousto-optic frequency shifter," Opt. Lett. 11, 389-391 (1986).
[CrossRef] [PubMed]

Slusher, R. E.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, "Optical Delay Lines Based on Optical Filters," IEEE J. Quantum Electron. 37, 525-532 (2001).
[CrossRef]

Solli, D. R.

D. R. Solli, C. F. McCormick, C. Ropers, J. J. Morehead, R. Y. Chiao, and J. M. Hickmann, "Demonstration of Superluminal Effects in an Absorptionless, Nonreflective System," Phys. Rev. Lett. 91 (2003). Article no. 143906.
[CrossRef] [PubMed]

Song, K. Y.

Strekalov, D. V.

Thévenaz, L.

Toll, J. S.

J. S. Toll, "Causality and the Dispersion Relation: Logical Foundations," Phys. Rev. 104, 1760-1770 (1956).
[CrossRef]

Tucker, R. S.

van Howe, J.

Wang, Y.

Wegmüller, M.

N. Brunner, V. Scarani, M. Wegmüller, M. Legré, and N. Gisin, "Direct measurement of superluminal group velocity and signal velocity in an optical fiber," Phys. Rev. Lett. 93 (2004). Article no. 203902.
[CrossRef] [PubMed]

Willner, A. E.

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, "Maximum time delay achievable on propagation through a slow-light medium," Phys. Rev. A 71 (2005). Article no. 023801.

J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion," Opt. Express 13, 7872-7877 (2005).
[CrossRef] [PubMed]

Wong, S.

S. Chu and S. Wong, "Linear Pulse Propagation in an AbsorbingMedium," Phys. Rev. Lett. 48, 738-741 (1982).
[CrossRef]

Xu, C.

Xu, Y.

Yariv, A.

Zhu, Z.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, "Stored Light in an Optical Fiber via Stimulated Brillouin Scattering," Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, "Optical Delay Lines Based on Optical Filters," IEEE J. Quantum Electron. 37, 525-532 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. Longhi, M. Marano, M. Belmonte, and P. Laporta, "Superluminal Pulse Propagation in Linear and Nonlinear Photonic Grating Structures," IEEE J. Sel. Top. Quantum Electron. 9, 4-16 (2003).
[CrossRef]

J. Lightwave Technol.

T. Erdogan, "Fiber Grating Spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

S. Ramachandran, "Dispersion-Tailored Few-Mode Fibers: A Versatile Platform for In-Fiber Photonic Devices," J. Lightwave Technol. 23, 3426-3443 (2005).
[CrossRef]

R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, "Slow-Light Optical Buffers: Capabilities and Fundamental Limitations," J. Lightwave Technol. 23, 4046-4066 (2005).
[CrossRef]

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, "Propagation and Optical Interaction of Guided Acoustic Waves in Two-Mode Optical Fibers," J. Lightwave Technol. 6, 428-436 (1988).
[CrossRef]

J. Mod. Opt.

R. W. Boyd and P. Narum, "Slow- and fast-light: fundamental limitations," J. Mod. Opt. 54, 2403-2411 (2007).
[CrossRef]

J. Opt. Soc. Am. B

Nature (London)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397, 594-598 (1999).
[CrossRef]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature (London) 409, 490-493 (2001).
[CrossRef]

Nature Photon.

L. Thévenaz, "Slow and fast light in optical fibres," Nature Photon. 2, 474-481 (2008).
[CrossRef]

Nature Physics

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, "Dispersionless slow light using gap solitons," Nature Physics 2, 775 - 780 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

J. S. Toll, "Causality and the Dispersion Relation: Logical Foundations," Phys. Rev. 104, 1760-1770 (1956).
[CrossRef]

Phys. Rev. A

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, "Maximum time delay achievable on propagation through a slow-light medium," Phys. Rev. A 71 (2005). Article no. 023801.

C. G. B. Garrett and D. E. McCumber, "Propagation of a Gaussian Light Pulse through an Anomalous Dispersion Medium," Phys. Rev. A 1, 305-313 (1970).

Phys. Rev. E

D. Janner, G. Galzerano, G. Della Valle, P. Laporta, S. Longhi, and M. Belmonte, "Slow light in periodic superstructure Bragg gratings," Phys. Rev. E (2005). Article no. 056605.

Phys. Rev. Lett.

S. Chu and S. Wong, "Linear Pulse Propagation in an AbsorbingMedium," Phys. Rev. Lett. 48, 738-741 (1982).
[CrossRef]

D. R. Solli, C. F. McCormick, C. Ropers, J. J. Morehead, R. Y. Chiao, and J. M. Hickmann, "Demonstration of Superluminal Effects in an Absorptionless, Nonreflective System," Phys. Rev. Lett. 91 (2003). Article no. 143906.
[CrossRef] [PubMed]

N. Brunner, V. Scarani, M. Wegmüller, M. Legré, and N. Gisin, "Direct measurement of superluminal group velocity and signal velocity in an optical fiber," Phys. Rev. Lett. 93 (2004). Article no. 203902.
[CrossRef] [PubMed]

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, "Wide-Bandwidth, Tunable, Multiple-Pulse-Width Optical Delays Using Slow Light in Cesium Vapor," Phys. Rev. Lett. 98 (2007). Article no. 153601.
[CrossRef] [PubMed]

Science

Z. Zhu, D. J. Gauthier, and R. W. Boyd, "Stored Light in an Optical Fiber via Stimulated Brillouin Scattering," Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

Other

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94 (2005). Article no. 153902.
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of Ulstraslow Light Propagation in a Ruby Crystal at Room Temperature," Phys. Rev. Lett. 90 (2003). Article no. 113903.
[CrossRef] [PubMed]

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, "Applications of Slow Light in Telecommunications," OPN 19-23 (2006). April issue.

D. A. B. Miller, "Fundamental Limit to Linear One-Dimensional Slow Light Structures," Phys. Rev. Lett. 99 (2007). Article no. 203903.
[CrossRef] [PubMed]

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continous Media (Elsevier, Amsterdam, 1984).

A. Papoulis, The Fourier Integral and Its Applications (McGraw-Hill, New York, 1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic overview of a setup for acoustooptic coupling.

Fig. 2.
Fig. 2.

Transmission spectrum (a), phase (b), and group delay (c) for acoustooptic coupling in a single interaction region. The normalized coupling coefficient is α = 0.8.

Fig. 3.
Fig. 3.

Propagation of a pulse through a single acoustooptic interaction region. The normalized coupling constant is α = 0.8 and the normalized pulse duration is τ p /∆tg = 1. (a) Input and output pulse. (b) Power transmission and normalized input pulse spectrum.

Fig. 4.
Fig. 4.

Transmission spectrum (a), phase (b), and group delay (c) for acoustooptic coupling in a single interaction region. The normalized coupling coefficient is α = 2.

Fig. 5.
Fig. 5.

Propagation of a pulse through a single acoustooptic interaction region. The normalized coupling constant is α = 2 and the normalized pulse duration is τ p /∆tg = 1. (a) Input and output pulse. (b) Power transmission and normalized input pulse spectrum.

Fig. 6.
Fig. 6.

Propagation of a pulse through two acoustooptic interaction regions, separated by an unperturbed fiber section. The normalized pulse duration is τp /∆tg = 1 and the normalized length of the unperturbed fiber section is ∆z 2/∆z 1 = 5. (a) Input and output pulse. (b) Power transmission and normalized input pulse spectrum.

Fig. 7.
Fig. 7.

Propagation of a pulse through two acoustooptic interaction regions, separated by an unperturbed fiber section. The normalized pulse duration is τp /∆tg =10 and the normalized length of the unperturbed fiber section is ∆z 2/∆z 1 = 50. (a) Input and output pulse. (b) Power transmission and normalized input pulse spectrum.

Fig. 8.
Fig. 8.

Propagation of a pulse through two acoustooptic interaction regions, separated by an unperturbed fiber section. The normalized pulse duration is τp /∆tg = 10 and the normalized length of the unperturbed fiber section is ∆z 2/∆z 1 = 150. (a) Input and output pulse. (b) Power transmission and normalized input pulse spectrum.

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

Ψl(r,t)=Ψl(r)al(z)exp(iβlziωlt),
vl=dωldβl.
da1(z)dz=a2(z) exp (iΔβz)
da2(z)dz=iκ*a1(z) exp (iΔβz) ,
Δβ=β1β2K
a1(L)=[iΔβ2γsin(γL)+cos(γL)] exp (iΔβL/2) a1 (0),
γ=κ2+(Δβ2)2.
Δβ(ω)β(ω0)dω(ωω0)=ΔtgL (ωω0) ,
ΔtgLv2Lv1
α=2κLπ
x=Δtgπ (ωω0) .
Ta1(L)a1(0)=[cos(π2α2+x2)ixα2+x2sin(π2α2+x2)] exp (iπx/2).
Δx2
τd==Δtgπ dx ,
[a1(zn+1)a2(zn+1)]=[T11T12T21T22][a1(zn)a2(zn)]Tn[a1(zn)a2(zn)],
T11=exp(iΔβnΔzn/2) [cos(γnΔzn)+iΔβn2γnsin(γnΔzn)]
T12=exp(iΔβnΔzn/2)iknϕγn sin (γnΔzn)
T21=exp(iΔβnΔzn/2)i(knϕ)*γn sin (γnΔzn)
T22=exp(iΔβnΔzn/2) [cos(γnΔzn)iΔβn2γnsin(γnΔzn)] .
κnϕ=exp(iϕn) κn ,
ϕn={0ifn=1l=1n1ΔβlΔzlifn>1.
[a1(z4)a2(z4)]=T3T2 T1 [a1(z1)a2(z1)] ,
T=[cos(π21+x2)ix1+x2sin(π21+x2)]2 exp (iπx)
11+x2 sin2 ( π2 1+x2 ) exp [iπx(1+Δz2/Δz1)] .
Texp ( iπxΔz2/Δ z1 ) .
τd=Δz2Δz1 Δ tg .
u(0,t)=12π A (ω) exp (iωt) d ω ,
A(ω)=12π u (0,t) exp (iωt) d t .
u(0,t)=exp[(t/τp)2iω0t]
A(ω)=τp2exp[(ωω0)2τp24]=τp2exp[(π2τpΔtgx)2] .
u(L,t)=12π T (ω) A (ω)exp(iωt)dω
=π2τpΔtgexp(iω0Δtgτ) T (x) exp [(π2τpΔtgx)2] exp (iπxτ) d x ,
τ=tΔtg .

Metrics