Abstract

We analyze the electromagnetic spatital distributions and address an important issue of the transmission properties of spherical transverse-electric (TE) and transverse-magnetic (TM) eigenmodes within a tapered hollow metallic waveguide in detail. Explicit analytical expressions for the spatital distributions of electromagnetic field components, attenuation constant, phase constant and wave impedance are derived. Accurate eigenvalues obtained numerically are used to study the dependences of the transmission properties on the taper angle, the mode as well as the length of the waveguide. It is shown that all modes run continuously from a propagating through a transition to an evanescent region and the value of the attenuation increases as the distance from the cone vertex and the cone angle decrease. A strict distinction between pure propagating and pure evanescent modes cannot be achieved. One mode after the other reaches cutoff in the tapered hollow metallic waveguide as the distance from the cone vertex desreases.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Wang, M. Dai, and J. Yin, "Atomic (or molecular) guiding using a blue-detuned doughnut mode in a hollow metallic waveguide," Opt. Express 13, 8406-8423 (2005).
    [CrossRef] [PubMed]
  2. S. S. Lo and C. C. Chen, "1×2 multimode interference couplers based on semiconductor hollow waveguides formed from omnidirectional reflectors," Opt. Lett. 32, 1803-1805 (2007).
    [CrossRef] [PubMed]
  3. N. Ponnampalam and R. G. DeCorby, "Out-of-plane coupling at mode cutoff in tapered hollow waveguides with omnidirectional reflector claddings," Opt. Express 16, 2894-2908 (2008).
    [CrossRef] [PubMed]
  4. P. D. Potter, "A new horn antenna with suppressed sides lobes and equal beamwidth," Microwave J. 6, 71-78 (1963).
  5. M. S. Narasimhan and K. S. Balasubramanya, "Transmission characteristics of spherical TE and TM modes in conical waveguides," IEEE Trans. Microwave Theory and Techniques 17, 965-970 (1974).
    [CrossRef]
  6. J. Kim and K. B. Song, "Recent progress of nano-technilogy with NSOM," Micron 38, 409-426 (2007).
    [CrossRef]
  7. T. J. Antosiewicz and T. Szoplik, "Corrugated metal-coatedtapered tip for scanning near-field optical microscope," Opt. Express 15, 10920-10928 (2007).
    [CrossRef] [PubMed]
  8. M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
    [CrossRef]
  9. Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, "Laser light and hot electron micro focusing using a conical target," Phys. Plasma 11, 3083-3087 (2004).
    [CrossRef]
  10. L. Novotny and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function," Phys. Rev. E 50, 4094-4106 (1994).
    [CrossRef]
  11. R. F. Harrington, Time-harmonic electomagnetic fields (Wiley-IEEE, 2001), Chap. 6.
    [CrossRef]
  12. S. Narita, Y. Matsuura, and M. Miyagi, "Tapered hollow waveguide for focusing infrared laser beams," Opt. Lett. 32, 930-932 (2007).
    [CrossRef] [PubMed]
  13. E. X. Jin and X. Xu, "Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture," Appl. Phys. Lett. 86, 111106 (2005).
    [CrossRef]

2008 (2)

N. Ponnampalam and R. G. DeCorby, "Out-of-plane coupling at mode cutoff in tapered hollow waveguides with omnidirectional reflector claddings," Opt. Express 16, 2894-2908 (2008).
[CrossRef] [PubMed]

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

2007 (4)

2005 (2)

E. X. Jin and X. Xu, "Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture," Appl. Phys. Lett. 86, 111106 (2005).
[CrossRef]

Z. Wang, M. Dai, and J. Yin, "Atomic (or molecular) guiding using a blue-detuned doughnut mode in a hollow metallic waveguide," Opt. Express 13, 8406-8423 (2005).
[CrossRef] [PubMed]

2004 (1)

Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, "Laser light and hot electron micro focusing using a conical target," Phys. Plasma 11, 3083-3087 (2004).
[CrossRef]

1994 (1)

L. Novotny and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function," Phys. Rev. E 50, 4094-4106 (1994).
[CrossRef]

1974 (1)

M. S. Narasimhan and K. S. Balasubramanya, "Transmission characteristics of spherical TE and TM modes in conical waveguides," IEEE Trans. Microwave Theory and Techniques 17, 965-970 (1974).
[CrossRef]

1963 (1)

P. D. Potter, "A new horn antenna with suppressed sides lobes and equal beamwidth," Microwave J. 6, 71-78 (1963).

Adam, J. C.

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Akli, K. U.

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Antosiewicz, T. J.

Balasubramanya, K. S.

M. S. Narasimhan and K. S. Balasubramanya, "Transmission characteristics of spherical TE and TM modes in conical waveguides," IEEE Trans. Microwave Theory and Techniques 17, 965-970 (1974).
[CrossRef]

Borghesi, M.

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Chen, C. C.

Chen, M. H.

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Cowan, T. E.

Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, "Laser light and hot electron micro focusing using a conical target," Phys. Plasma 11, 3083-3087 (2004).
[CrossRef]

Dai, M.

DeCorby, R. G.

Evans, R. G

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Freeman, R. R.

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Habara, H.

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Hafner, C.

L. Novotny and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function," Phys. Rev. E 50, 4094-4106 (1994).
[CrossRef]

Hatchett, S. P.

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Heron, A.

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Hill, J. M.

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Jin, E. X.

E. X. Jin and X. Xu, "Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture," Appl. Phys. Lett. 86, 111106 (2005).
[CrossRef]

Key, M. H.

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Kim, J.

J. Kim and K. B. Song, "Recent progress of nano-technilogy with NSOM," Micron 38, 409-426 (2007).
[CrossRef]

King, J. A.

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Kodama, R.

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, "Laser light and hot electron micro focusing using a conical target," Phys. Plasma 11, 3083-3087 (2004).
[CrossRef]

Lancaster, K. L.

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Lo, S. S.

MacKinnon, A. J.

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Matsuura, Y.

Mima, K.

Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, "Laser light and hot electron micro focusing using a conical target," Phys. Plasma 11, 3083-3087 (2004).
[CrossRef]

Miyagi, M.

Narasimhan, M. S.

M. S. Narasimhan and K. S. Balasubramanya, "Transmission characteristics of spherical TE and TM modes in conical waveguides," IEEE Trans. Microwave Theory and Techniques 17, 965-970 (1974).
[CrossRef]

Narita, S.

Novotny, L.

L. Novotny and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function," Phys. Rev. E 50, 4094-4106 (1994).
[CrossRef]

Nrreys, P. A.

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Patel, P.

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Phillips, T.

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Ponnampalam, N.

Potter, P. D.

P. D. Potter, "A new horn antenna with suppressed sides lobes and equal beamwidth," Microwave J. 6, 71-78 (1963).

Romagnani, L.

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Ruhl, H.

Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, "Laser light and hot electron micro focusing using a conical target," Phys. Plasma 11, 3083-3087 (2004).
[CrossRef]

Sentoku, Y.

Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, "Laser light and hot electron micro focusing using a conical target," Phys. Plasma 11, 3083-3087 (2004).
[CrossRef]

Snavely, R. A.

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Song, K. B.

J. Kim and K. B. Song, "Recent progress of nano-technilogy with NSOM," Micron 38, 409-426 (2007).
[CrossRef]

Stephens, R.

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Stoeckl, C.

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Szoplik, T.

Town, R.

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Toyama, Y.

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, "Laser light and hot electron micro focusing using a conical target," Phys. Plasma 11, 3083-3087 (2004).
[CrossRef]

Wang, Z.

Xu, X.

E. X. Jin and X. Xu, "Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture," Appl. Phys. Lett. 86, 111106 (2005).
[CrossRef]

Yin, J.

Zepf, M.

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Zhang, B.

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

E. X. Jin and X. Xu, "Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture," Appl. Phys. Lett. 86, 111106 (2005).
[CrossRef]

IEEE Trans. Microwave Theory and Techniques (1)

M. S. Narasimhan and K. S. Balasubramanya, "Transmission characteristics of spherical TE and TM modes in conical waveguides," IEEE Trans. Microwave Theory and Techniques 17, 965-970 (1974).
[CrossRef]

Micron (1)

J. Kim and K. B. Song, "Recent progress of nano-technilogy with NSOM," Micron 38, 409-426 (2007).
[CrossRef]

Microwave J. (1)

P. D. Potter, "A new horn antenna with suppressed sides lobes and equal beamwidth," Microwave J. 6, 71-78 (1963).

Opt. Express (3)

Opt. Lett. (2)

Phys. Plasma (2)

M. H. Key, J. C. Adam, K. U. Akli, M. Borghesi, M. H. Chen, R. G Evans, R. R. Freeman, H. Habara, S. P. Hatchett, J. M. Hill, A. Heron, J. A. King, R. Kodama, K. L. Lancaster, A. J. MacKinnon, P. Patel, T. Phillips, L. Romagnani, R. A. Snavely, R. Stephens, C. Stoeckl, R. Town, Y. Toyama, B. Zhang, M. Zepf, and P. A. Nrreys, "Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma," Phys. Plasma 15, 022701 (2008).
[CrossRef]

Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, and T. E. Cowan, "Laser light and hot electron micro focusing using a conical target," Phys. Plasma 11, 3083-3087 (2004).
[CrossRef]

Phys. Rev. E (1)

L. Novotny and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function," Phys. Rev. E 50, 4094-4106 (1994).
[CrossRef]

Other (1)

R. F. Harrington, Time-harmonic electomagnetic fields (Wiley-IEEE, 2001), Chap. 6.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic illustrating a conical hollow metallic waveguide. (a) Meridional section of hollow metallic waveguide with a taper. The apex of the cone coincides with the origin of the spherical coordinate system. 2θ 0 is the cone angle, z 0 is the longitudinal coordinate at the waveguide exit, 2R 0 is the aperture diameter in the exit plane, rin and zin = rin cos θ 0 are the radial and longitudinal coordinates at the waveguide entrance, respectively. (b) Transverse section of hollow metallic waveguide with a taper. R presents transverse section radius and R = r sin θ 0.

Fig. 2.
Fig. 2.

The attenuation constant (α) of Eθ and Eφ for the TE and TM modes as a function of kr.

Fig. 3.
Fig. 3.

The phase constant (β) of Eθ and Eφ for the TE and TM modes as a function of kr.

Fig. 4.
Fig. 4.

The attenuation constant (α) of Er for TM modes as a function of kr .

Fig. 5.
Fig. 5.

The phase constant (β) of Er for the TM modes as a function of kr .

Fig. 6.
Fig. 6.

Variation of the attenuation α and phase constants β for the first 5 lowest-order modes as a function of kr with cone half-angle θ 0 = π/6 as a parameter.

Fig. 7.
Fig. 7.

The absolute value of the wave impedance ∣Zr TE ∣ and ∣Zr TM ∣ as a function of kr for the spherical TE and TM modes inside the conical hollow metallic waveguide.

Fig. 8.
Fig. 8.

The electric-field time-average engergy density for the first 5 modes is shown in the spherical cross section with the radius r = 20mm. The color scheme is such that the engergy density goes from minimum (green) to maximum (yellow).

Fig. 9.
Fig. 9.

The fields intensities distributions within tapered hollow metal waveguide. The color scheme is such that the engergy density goes from minimum (green) to maximum (yellow). (a) Intensity distributions of TE 11 mode propagating from r = 20mm to r = 15mm inside tapered hollow metal waveguide with θ 0 = π/6 . (b) Intensity distributions of TM 01 mode propagating from r = 20mm to r = 10mm inside tapered hollow metal waveguide with θ 0 = π/6.

Tables (1)

Tables Icon

Table 1. The eigenvalues lmn for the TE11,TM01,TE21,TM11,TE01 modes as functions of the cone half-angle 90.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

2Ur2+1r2 [1sinθθ(sinθUθ)+1sin2θ2Uφ2] +k2U=0.
Er=0
Eθ=1rsinθ U(r,θ,φ)φ=1rR(r)msinθPlm(cosθ)sin,
Eφ=1r U(r,θ,φ)θ=1r R (r) θ [Plm(cosθ)] cos
Hr=1jωμ (k2+2r2) U (r,θ,φ) =1jωμ (k2+2r2) R (r) Plm (cosθ) cos
Hθ=1jωμ2U(r,θ,φ)rrθ=1jωμ [1rrR(r)] θ [Plm(cosθ)] cos
Hφ=1jωμ1rsinθ2U(r,θ,φ)rφ=1jωμ [1rrR(r)] msinθ Plm (cosθ) sin
d[Plm(cosθ)]θ=θ0=0.
Er=1jωε (k2+2r2) U (r,θ,φ)=1jωε(k2+2r2) R (r) Plm (cosθ) cos
Eθ=1jωε2U(r,θ,φ)rrθ=1jωε[1rrR(r)] θ [Plm(cosθ)] cos ,
Eφ=1jωε 1rsinθ 2U(r,θ,φ)rφ=1jωε [1rrR(r)]msinθ Plm (cosθ) sin
Hr=0
Hθ=1rsinθ U(r,θ,φ)φ=1rR(r) msinθ Plm (cosθ) sin .
Hφ=1rU(r,θ,φ)θ=1rR(r)[θPlm(cosθ)]cos
Plm(cosθ)θ=θ0=0.
E(r,θ,φ)=A(θ,φ)ejkrr,
jkr=1E Er .
γαβ=α+=1EEr.
E(r,θ,φ)=A(θ,φ)ej(β+)r=Aθφeαrjβr,
γθ,φTErl=k[121krHl+12(1)/Hl+l2(1)] ,
γθ,φTMrl=k341krHl+12(1)krHl+12(1)12Hl+12(1)+krHl+12(1),
γrTMrl=k[4krHl+12(1)+8k2r2Hl+12(1)+3krHl+12(1)6Hl+12(1)+12krHl+12(1)+8k2r2Hl+12(1)]8k2r2Hl+12(1)2Hl+12(1)+8krHl+12(1)+8k2r2Hl+12(1).
ZrTE=EθEφ=EφEθ,
ZrTM=EθEφ=EφEθ.
ZrTE=Hl+12(1)(kr)121krHl+12(1)(kr)+Hl+12(1)(kr),
ZrTM= 122krHl+12(1)(kr)+Hl+12(1)(kr)Hl+12(1)(kr) ,

Metrics