Abstract

In this paper a new silver (Ag) nanoparticle-based structure is presented which shows potential as a device for front end applications, in nano-interconnects or power dividers. A novel oxide bar ensures waveguiding and control of the signal strength with promising results. The structure is simulated by the two dimensional finite difference time domain (FDTD) method considering TM polarization and the Drude model. The effect of different wavelengths, material loss, gaps and particle sizes on the overall performance is discussed. It is found that the maximum signal strength remains along the Ag metallic nanoparticles and can be guided to targeted end points.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic crystal power dividers using L-shaped bend based on ring resonators

Mehrdad Djavid, Afshin Ghaffari, Faraz Monifi, and Mohammad Sadegh Abrishamian
J. Opt. Soc. Am. B 25(8) 1231-1235 (2008)

Microring resonators with flow-through nanopores for nanoparticle counting and sizing

Yubo Li and Xudong Fan
Opt. Express 21(1) 229-237 (2013)

Controlling magnetic and electric dipole modes in hollow silicon nanocylinders

Marie Anne van de Haar, Jorik van de Groep, Benjamin J.M. Brenny, and Albert Polman
Opt. Express 24(3) 2047-2064 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. L. Brongersma and G. Kik, Surface Plasmon Nanophotonics; Springer series in optical science, (2007).
  2. M. Gerken, N. K. Dhar, A. K. Dutta, and M. S. Islam, Nanophotonics for Communication: Materials, Devices, and Systems III, SPIE Society (2006).
  3. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333, (1998).
    [Crossref]
  4. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non- diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
    [Crossref]
  5. S. A. Maier and H. A. J. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101–011110 (2005).
    [Crossref]
  6. Z. Y. Zhang and Y. P. Zhao, “Tuning the optical absorption properties of Ag nanorods by their topologic shapes: A discrete dipole approximation calculation,” Appl. Phys. Lett. 89, 023110–023113 (2006).
    [Crossref]
  7. Y. Xia and N. J. Halas, “Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures,” MRS Bulletin 30, 338–348 (2005).
    [Crossref]
  8. D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
    [Crossref] [PubMed]
  9. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner,, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
    [Crossref]
  10. P. J. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. 26, 1096–1098 (2001).
    [Crossref]
  11. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65, 193408–193411 (2002).
    [Crossref]
  12. K. Song and P. Mazmuder, “Surface plasmon dynamics of a metallic nano-particle,” IEEE Inter. Conf. on Nanotecchnology, August 2-5, Hong Kong, 637–643 (2007).
  13. E. Hao and G. J. Schatz, “Electromagnetic fields around silver nanoparticles and dimmers,” J. Chem. Phys. 120, 357–366 (2004).
    [Crossref] [PubMed]
  14. S. A. Maier and H. A. J. Atwater, “Energy transport in metal nanoparticle plasmon waveguides,” Mat. Res. Soc. Symp. Proc. 777.T7.1.1–T7.1.12 (2003).
  15. J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068(1999).
    [Crossref]
  16. H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795–10800 (2005).
    [Crossref] [PubMed]
  17. R. Sainidou and F. J. García de Abajo, “Plasmon guided modes in nanoparticle metamaterials,” Opt. Express 16, 4499–4506 (2008).
    [Crossref] [PubMed]
  18. N.C. Panoiu and R. M. Osgood, “Subwavelength nonlinear plasmonic nanowire,” Nano Lett. 4, 2427–2430 (2004).
    [Crossref]
  19. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714–1716 (2002).
    [Crossref]
  20. D. S. Citrin, “Coherent excitation transport in metal-nanoparticle chains,” Nano Lett. 4, 1562–1565 (2004).
    [Crossref]
  21. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
    [Crossref]
  22. W. Namura, M. Ohtsu, and T. Yatusi, “Nanodot coupler wih a surface plasmon polariton condenser for optical far/near-field conversion,” App Phys Lett. 86, 181108–181110 (2005).
    [Crossref]
  23. R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nature Nanotech. 2, 426–429 (2007).
    [Crossref]
  24. A. Taflove and S. G. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Boston, Artech House, 2005).
  25. W. M. Saj, “FDTD simulation of 2D Plasmon waveguide on silver nanorods in hexagonal lattice,” Opt. Express,  13, 4818–4827 (2006)
    [Crossref]
  26. T. Grosges, A. Vial, and D. Barchiesi, “Models of near-field spectroscopic studies: comparison between Finite-Element and Finite-Difference methods,” Opt. Express,  13, 8483–8497 (2005).
    [Crossref] [PubMed]
  27. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
    [Crossref]

2008 (1)

2007 (2)

K. Song and P. Mazmuder, “Surface plasmon dynamics of a metallic nano-particle,” IEEE Inter. Conf. on Nanotecchnology, August 2-5, Hong Kong, 637–643 (2007).

R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nature Nanotech. 2, 426–429 (2007).
[Crossref]

2006 (2)

W. M. Saj, “FDTD simulation of 2D Plasmon waveguide on silver nanorods in hexagonal lattice,” Opt. Express,  13, 4818–4827 (2006)
[Crossref]

Z. Y. Zhang and Y. P. Zhao, “Tuning the optical absorption properties of Ag nanorods by their topologic shapes: A discrete dipole approximation calculation,” Appl. Phys. Lett. 89, 023110–023113 (2006).
[Crossref]

2005 (5)

Y. Xia and N. J. Halas, “Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures,” MRS Bulletin 30, 338–348 (2005).
[Crossref]

S. A. Maier and H. A. J. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101–011110 (2005).
[Crossref]

T. Grosges, A. Vial, and D. Barchiesi, “Models of near-field spectroscopic studies: comparison between Finite-Element and Finite-Difference methods,” Opt. Express,  13, 8483–8497 (2005).
[Crossref] [PubMed]

H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795–10800 (2005).
[Crossref] [PubMed]

W. Namura, M. Ohtsu, and T. Yatusi, “Nanodot coupler wih a surface plasmon polariton condenser for optical far/near-field conversion,” App Phys Lett. 86, 181108–181110 (2005).
[Crossref]

2004 (4)

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner,, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

E. Hao and G. J. Schatz, “Electromagnetic fields around silver nanoparticles and dimmers,” J. Chem. Phys. 120, 357–366 (2004).
[Crossref] [PubMed]

N.C. Panoiu and R. M. Osgood, “Subwavelength nonlinear plasmonic nanowire,” Nano Lett. 4, 2427–2430 (2004).
[Crossref]

D. S. Citrin, “Coherent excitation transport in metal-nanoparticle chains,” Nano Lett. 4, 1562–1565 (2004).
[Crossref]

2003 (1)

S. A. Maier and H. A. J. Atwater, “Energy transport in metal nanoparticle plasmon waveguides,” Mat. Res. Soc. Symp. Proc. 777.T7.1.1–T7.1.12 (2003).

2002 (4)

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[Crossref]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714–1716 (2002).
[Crossref]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65, 193408–193411 (2002).
[Crossref]

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non- diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[Crossref]

2001 (1)

1999 (1)

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068(1999).
[Crossref]

1998 (1)

1994 (2)

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[Crossref] [PubMed]

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[Crossref]

Atwater, H. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65, 193408–193411 (2002).
[Crossref]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714–1716 (2002).
[Crossref]

Atwater, H. A. J.

S. A. Maier and H. A. J. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101–011110 (2005).
[Crossref]

S. A. Maier and H. A. J. Atwater, “Energy transport in metal nanoparticle plasmon waveguides,” Mat. Res. Soc. Symp. Proc. 777.T7.1.1–T7.1.12 (2003).

Aussenegg, F. R.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non- diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[Crossref]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[Crossref]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333, (1998).
[Crossref]

Barchiesi, D.

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[Crossref]

Botet, R.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[Crossref] [PubMed]

Brongersma, M. L.

R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nature Nanotech. 2, 426–429 (2007).
[Crossref]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65, 193408–193411 (2002).
[Crossref]

M. L. Brongersma and G. Kik, Surface Plasmon Nanophotonics; Springer series in optical science, (2007).

Citrin, D. S.

D. S. Citrin, “Coherent excitation transport in metal-nanoparticle chains,” Nano Lett. 4, 1562–1565 (2004).
[Crossref]

Deng, Q.

Dereux, A.

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068(1999).
[Crossref]

Dhar, N. K.

M. Gerken, N. K. Dhar, A. K. Dutta, and M. S. Islam, Nanophotonics for Communication: Materials, Devices, and Systems III, SPIE Society (2006).

Ditlbacher, H.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[Crossref]

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non- diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[Crossref]

Du, C.

Dutta, A. K.

M. Gerken, N. K. Dhar, A. K. Dutta, and M. S. Islam, Nanophotonics for Communication: Materials, Devices, and Systems III, SPIE Society (2006).

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner,, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

Gao, H.

García de Abajo, F. J.

Gerken, M.

M. Gerken, N. K. Dhar, A. K. Dutta, and M. S. Islam, Nanophotonics for Communication: Materials, Devices, and Systems III, SPIE Society (2006).

Girard, C.

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068(1999).
[Crossref]

Goudonnet, J. P.

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068(1999).
[Crossref]

Grosges, T.

Hagness, S. G.

A. Taflove and S. G. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Boston, Artech House, 2005).

Halas, N. J.

Y. Xia and N. J. Halas, “Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures,” MRS Bulletin 30, 338–348 (2005).
[Crossref]

Hao, E.

E. Hao and G. J. Schatz, “Electromagnetic fields around silver nanoparticles and dimmers,” J. Chem. Phys. 120, 357–366 (2004).
[Crossref] [PubMed]

Islam, M. S.

M. Gerken, N. K. Dhar, A. K. Dutta, and M. S. Islam, Nanophotonics for Communication: Materials, Devices, and Systems III, SPIE Society (2006).

Kik, G.

M. L. Brongersma and G. Kik, Surface Plasmon Nanophotonics; Springer series in optical science, (2007).

Kik, P. G.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714–1716 (2002).
[Crossref]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65, 193408–193411 (2002).
[Crossref]

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner,, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

Kottmann, P. J.

Kovacs, J.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[Crossref] [PubMed]

Krenn, J. R.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non- diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[Crossref]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[Crossref]

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068(1999).
[Crossref]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333, (1998).
[Crossref]

Lamprecht, B.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non- diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[Crossref]

Leitner, A.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non- diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[Crossref]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[Crossref]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333, (1998).
[Crossref]

Lin, X.

Luo, X.

Lv, Y.

Maier, S. A.

S. A. Maier and H. A. J. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101–011110 (2005).
[Crossref]

S. A. Maier and H. A. J. Atwater, “Energy transport in metal nanoparticle plasmon waveguides,” Mat. Res. Soc. Symp. Proc. 777.T7.1.1–T7.1.12 (2003).

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714–1716 (2002).
[Crossref]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65, 193408–193411 (2002).
[Crossref]

Martin, O. J. F.

Mazmuder, P.

K. Song and P. Mazmuder, “Surface plasmon dynamics of a metallic nano-particle,” IEEE Inter. Conf. on Nanotecchnology, August 2-5, Hong Kong, 637–643 (2007).

Moerner, W. E.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner,, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

Moskovits, M.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[Crossref] [PubMed]

Namura, W.

W. Namura, M. Ohtsu, and T. Yatusi, “Nanodot coupler wih a surface plasmon polariton condenser for optical far/near-field conversion,” App Phys Lett. 86, 181108–181110 (2005).
[Crossref]

Ohtsu, M.

W. Namura, M. Ohtsu, and T. Yatusi, “Nanodot coupler wih a surface plasmon polariton condenser for optical far/near-field conversion,” App Phys Lett. 86, 181108–181110 (2005).
[Crossref]

Osgood, R. M.

N.C. Panoiu and R. M. Osgood, “Subwavelength nonlinear plasmonic nanowire,” Nano Lett. 4, 2427–2430 (2004).
[Crossref]

Panoiu, N.C.

N.C. Panoiu and R. M. Osgood, “Subwavelength nonlinear plasmonic nanowire,” Nano Lett. 4, 2427–2430 (2004).
[Crossref]

Quinten, M.

Sainidou, R.

Saj, W. M.

Salerno, M.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non- diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[Crossref]

Schatz, G. J.

E. Hao and G. J. Schatz, “Electromagnetic fields around silver nanoparticles and dimmers,” J. Chem. Phys. 120, 357–366 (2004).
[Crossref] [PubMed]

Schider, G.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non- diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[Crossref]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[Crossref]

Schuck, P. J.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner,, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

Shalaev, V. M.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[Crossref] [PubMed]

Shi, H.

Song, K.

K. Song and P. Mazmuder, “Surface plasmon dynamics of a metallic nano-particle,” IEEE Inter. Conf. on Nanotecchnology, August 2-5, Hong Kong, 637–643 (2007).

Suh, J. S.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[Crossref] [PubMed]

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner,, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

Taflove, A.

A. Taflove and S. G. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Boston, Artech House, 2005).

Tsai, D. P.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[Crossref] [PubMed]

Vial, A.

Wang, C.

Wang, Z.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[Crossref] [PubMed]

Weeber, J. C.

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068(1999).
[Crossref]

Xia, Y.

Y. Xia and N. J. Halas, “Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures,” MRS Bulletin 30, 338–348 (2005).
[Crossref]

Yao, H.

Yatusi, T.

W. Namura, M. Ohtsu, and T. Yatusi, “Nanodot coupler wih a surface plasmon polariton condenser for optical far/near-field conversion,” App Phys Lett. 86, 181108–181110 (2005).
[Crossref]

Zhang, Z. Y.

Z. Y. Zhang and Y. P. Zhao, “Tuning the optical absorption properties of Ag nanorods by their topologic shapes: A discrete dipole approximation calculation,” Appl. Phys. Lett. 89, 023110–023113 (2006).
[Crossref]

Zhao, Y. P.

Z. Y. Zhang and Y. P. Zhao, “Tuning the optical absorption properties of Ag nanorods by their topologic shapes: A discrete dipole approximation calculation,” Appl. Phys. Lett. 89, 023110–023113 (2006).
[Crossref]

Zia, R.

R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nature Nanotech. 2, 426–429 (2007).
[Crossref]

App Phys Lett. (1)

W. Namura, M. Ohtsu, and T. Yatusi, “Nanodot coupler wih a surface plasmon polariton condenser for optical far/near-field conversion,” App Phys Lett. 86, 181108–181110 (2005).
[Crossref]

Appl. Phys. Lett. (3)

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714–1716 (2002).
[Crossref]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[Crossref]

Z. Y. Zhang and Y. P. Zhao, “Tuning the optical absorption properties of Ag nanorods by their topologic shapes: A discrete dipole approximation calculation,” Appl. Phys. Lett. 89, 023110–023113 (2006).
[Crossref]

Europhys. Lett. (1)

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non- diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[Crossref]

IEEE Inter. Conf. on Nanotecchnology (1)

K. Song and P. Mazmuder, “Surface plasmon dynamics of a metallic nano-particle,” IEEE Inter. Conf. on Nanotecchnology, August 2-5, Hong Kong, 637–643 (2007).

J. Appl. Phys. (1)

S. A. Maier and H. A. J. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101–011110 (2005).
[Crossref]

J. Chem. Phys. (1)

E. Hao and G. J. Schatz, “Electromagnetic fields around silver nanoparticles and dimmers,” J. Chem. Phys. 120, 357–366 (2004).
[Crossref] [PubMed]

J. Comput. Phys. (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[Crossref]

Mat. Res. Soc. Symp. Proc. (1)

S. A. Maier and H. A. J. Atwater, “Energy transport in metal nanoparticle plasmon waveguides,” Mat. Res. Soc. Symp. Proc. 777.T7.1.1–T7.1.12 (2003).

MRS Bulletin (1)

Y. Xia and N. J. Halas, “Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures,” MRS Bulletin 30, 338–348 (2005).
[Crossref]

Nano Lett. (3)

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner,, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

N.C. Panoiu and R. M. Osgood, “Subwavelength nonlinear plasmonic nanowire,” Nano Lett. 4, 2427–2430 (2004).
[Crossref]

D. S. Citrin, “Coherent excitation transport in metal-nanoparticle chains,” Nano Lett. 4, 1562–1565 (2004).
[Crossref]

Nature Nanotech. (1)

R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nature Nanotech. 2, 426–429 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (2)

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65, 193408–193411 (2002).
[Crossref]

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068(1999).
[Crossref]

Phys. Rev. Lett. (1)

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
[Crossref] [PubMed]

Other (3)

M. L. Brongersma and G. Kik, Surface Plasmon Nanophotonics; Springer series in optical science, (2007).

M. Gerken, N. K. Dhar, A. K. Dutta, and M. S. Islam, Nanophotonics for Communication: Materials, Devices, and Systems III, SPIE Society (2006).

A. Taflove and S. G. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Boston, Artech House, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The generic structure under study with specific points of monitor at U, L and C. The particle diameter and gap size are 10 nm and 5 nm respectively. For the scale of both axis total size is not added because it is variable and is dependent on gap size and particle size.

Fig. 2.
Fig. 2.

Electric field intensity (from Ey component) snapshots for the proposed structure. (a) Electric field intensity snapshot without oxide bar (λ = 785 nm, with four nanoparticles in collector) demonstrating stray field being unimpeded. (b) Wave propagation along the structure by considering an oxide bar (λ = 785 nm, with eight nanoparticles in collector). The condenser has 8 particles in both cases.

Fig. 3.
Fig. 3.

The electric field ratio between the input and output signals of the waveguide with different size and gap distance between nanoparticles at λ = 785 nm).

Fig. 4.
Fig. 4.

Electric field intensity for different wavelengths at three different locations C, U and L as shown in Fig. 1. The particle diameter and gap size are 10nm and 5 nm respectively for the analysis

Fig. 5.
Fig. 5.

Effect of different gap sizes between nanoparticles of waveguide and divider. (a) The normalized electric field at the T-junction (C) with respect to time for different gap sizes and constant wavelength λ o=785 nm. (b) Time delay at center of the divider and electric field intensity vs. gap size with same parameters as in (a).

Fig. 6.
Fig. 6.

Effect of different nanoparticle sizes of waveguide and divider. (a) Electric field vs. time for different particle diameters at a wavelength of 785 nm. (b)Time delay and width of wave at T-junction (C) vs. particle diameter at a wavelength of 785nm.

Fig. 7.
Fig. 7.

Relative loss of the proposed structure for different size (8 nm to 15 nm) of nanoparticles and gap size (3 nm to 10 nm) in between nanoparticles at a wavelength of 785 nm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)=εωp2ω2+iΓω
Dt=×H,Bt=×E
Dx|i+12,jn+1=Dx|i+12,jn+ΔtΔy [Hz|i+12,j+12n+12Hz|i+12,j12n+12]
Dx=ε (ω)Ex
Dx=ε Ex +β[11z1]Exβ[11αz1]Ex
RelativeLoss=ArefereceAmeasuredAreference

Metrics