Abstract

In this paper a new silver (Ag) nanoparticle-based structure is presented which shows potential as a device for front end applications, in nano-interconnects or power dividers. A novel oxide bar ensures waveguiding and control of the signal strength with promising results. The structure is simulated by the two dimensional finite difference time domain (FDTD) method considering TM polarization and the Drude model. The effect of different wavelengths, material loss, gaps and particle sizes on the overall performance is discussed. It is found that the maximum signal strength remains along the Ag metallic nanoparticles and can be guided to targeted end points.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Brongersma and G. Kik, Surface Plasmon Nanophotonics; Springer series in optical science, (2007).
  2. M. Gerken, N. K. Dhar, A. K. Dutta, and M. S. Islam, Nanophotonics for Communication: Materials, Devices, and Systems III, SPIE Society (2006).
  3. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333, (1998).
    [CrossRef]
  4. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002).
    [CrossRef]
  5. S. A. Maier and H. A. J. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101-011110 (2005).
    [CrossRef]
  6. Z. Y. Zhang and Y. P. Zhao, "Tuning the optical absorption properties of Ag nanorods by their topologic shapes: A discrete dipole approximation calculation," Appl. Phys. Lett. 89, 023110 - 023113 (2006).
    [CrossRef]
  7. Y. Xia and N. J. Halas, "Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures," MRS Bulletin 30, 338 - 348 (2005).
  8. D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, "Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters," Phys. Rev. Lett. 72, 4149 - 4152 (1994).
    [CrossRef]
  9. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single "bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
    [CrossRef]
  10. P. J. Kottmann and O. J. F. Martin, "Retardation-induced plasmon resonances in coupled nanoparticles," Opt. Lett. 26, 1096-1098 (2001).
    [CrossRef]
  11. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408- 193411 (2002).
    [CrossRef]
  12. K. Song and P. Mazmuder, "Surface plasmon dynamics of a metallic nano-particle," IEEE Inter. Conf. on Nanotecchnology, August 2-5, Hong Kong, 637-643 (2007).
  13. E. Hao and G. J. Schatz, "Electromagnetic fields around silver nanoparticles and dimmers," J. Chem. Phys. 120, 357-366 (2004).
    [CrossRef]
  14. S. A. Maier and H. A. J. Atwater, "Energy transport in metal nanoparticle plasmon waveguides," Mat. Res. Soc. Symp. Proc.  777. T7.1.1- T7.1.12 (2003).
  15. J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068(1999).
    [CrossRef]
  16. H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, "Surface plasmon polariton propagation and combination in Y-shaped metallic channels," Opt. Express 13, 10795-10800 (2005).
    [CrossRef]
  17. R. Sainidou and F. J. García de Abajo, "Plasmon guided modes in nanoparticle metamaterials," Opt. Express 16, 4499-4506 (2008).
    [CrossRef]
  18. N.C. Panoiu and R. M. Osgood, "Subwavelength nonlinear plasmonic nanowire," Nano Lett. 4, 2427-2430 (2004).
    [CrossRef]
  19. S. A. Maier, P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Appl. Phys. Lett. 81, 1714-1716 (2002).
    [CrossRef]
  20. D. S. Citrin, "Coherent excitation transport in metal-nanoparticle chains," Nano Lett. 4, 1562- 1565 (2004).
    [CrossRef]
  21. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons,"Appl. Phys. Lett. 81, 1762 - 1764 (2002).
    [CrossRef]
  22. W. Namura, M. Ohtsu, T. and Yatusi, "Nanodot coupler wih a surface plasmon polariton condenser for optical far/near-field conversion," App Phys Lett. 86, 181108 -181110 (2005).
    [CrossRef]
  23. R. Zia, and M. L. Brongersma, "Surface plasmon polariton analogue to Young’s double-slit experiment," Nature Nanotech. 2, 426- 429 (2007).
    [CrossRef]
  24. A. Taflove and S. G. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Boston, Artech House, 2005).
  25. W. M. Saj, "FDTD simulation of 2D Plasmon waveguide on silver nanorods in hexagonal lattice," Opt. Express,  13, 4818-4827 (2006)
    [CrossRef]
  26. T. Grosges, A. Vial, and D. Barchiesi, "Models of near-field spectroscopic studies: comparison between Finite-Element and Finite-Difference methods," Opt. Express,  13, 8483-8497 (2005).
    [CrossRef]
  27. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185 - 200 (1994).
    [CrossRef]

2008 (1)

2007 (1)

R. Zia, and M. L. Brongersma, "Surface plasmon polariton analogue to Young’s double-slit experiment," Nature Nanotech. 2, 426- 429 (2007).
[CrossRef]

2006 (2)

Z. Y. Zhang and Y. P. Zhao, "Tuning the optical absorption properties of Ag nanorods by their topologic shapes: A discrete dipole approximation calculation," Appl. Phys. Lett. 89, 023110 - 023113 (2006).
[CrossRef]

W. M. Saj, "FDTD simulation of 2D Plasmon waveguide on silver nanorods in hexagonal lattice," Opt. Express,  13, 4818-4827 (2006)
[CrossRef]

2005 (5)

T. Grosges, A. Vial, and D. Barchiesi, "Models of near-field spectroscopic studies: comparison between Finite-Element and Finite-Difference methods," Opt. Express,  13, 8483-8497 (2005).
[CrossRef]

H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, "Surface plasmon polariton propagation and combination in Y-shaped metallic channels," Opt. Express 13, 10795-10800 (2005).
[CrossRef]

Y. Xia and N. J. Halas, "Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures," MRS Bulletin 30, 338 - 348 (2005).

S. A. Maier and H. A. J. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101-011110 (2005).
[CrossRef]

W. Namura, M. Ohtsu, T. and Yatusi, "Nanodot coupler wih a surface plasmon polariton condenser for optical far/near-field conversion," App Phys Lett. 86, 181108 -181110 (2005).
[CrossRef]

2004 (4)

N.C. Panoiu and R. M. Osgood, "Subwavelength nonlinear plasmonic nanowire," Nano Lett. 4, 2427-2430 (2004).
[CrossRef]

D. S. Citrin, "Coherent excitation transport in metal-nanoparticle chains," Nano Lett. 4, 1562- 1565 (2004).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single "bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

E. Hao and G. J. Schatz, "Electromagnetic fields around silver nanoparticles and dimmers," J. Chem. Phys. 120, 357-366 (2004).
[CrossRef]

2002 (4)

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408- 193411 (2002).
[CrossRef]

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002).
[CrossRef]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons,"Appl. Phys. Lett. 81, 1762 - 1764 (2002).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Appl. Phys. Lett. 81, 1714-1716 (2002).
[CrossRef]

2001 (1)

1999 (1)

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068(1999).
[CrossRef]

1998 (1)

1994 (2)

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185 - 200 (1994).
[CrossRef]

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, "Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters," Phys. Rev. Lett. 72, 4149 - 4152 (1994).
[CrossRef]

Atwater, H. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408- 193411 (2002).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Appl. Phys. Lett. 81, 1714-1716 (2002).
[CrossRef]

Atwater, H. A. J.

S. A. Maier and H. A. J. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101-011110 (2005).
[CrossRef]

Aussenegg, F. R.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002).
[CrossRef]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons,"Appl. Phys. Lett. 81, 1762 - 1764 (2002).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333, (1998).
[CrossRef]

Barchiesi, D.

Berenger, J. P.

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185 - 200 (1994).
[CrossRef]

Botet, R.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, "Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters," Phys. Rev. Lett. 72, 4149 - 4152 (1994).
[CrossRef]

Brongersma, M. L.

R. Zia, and M. L. Brongersma, "Surface plasmon polariton analogue to Young’s double-slit experiment," Nature Nanotech. 2, 426- 429 (2007).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408- 193411 (2002).
[CrossRef]

Citrin, D. S.

D. S. Citrin, "Coherent excitation transport in metal-nanoparticle chains," Nano Lett. 4, 1562- 1565 (2004).
[CrossRef]

Deng, Q.

Dereux, A.

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068(1999).
[CrossRef]

Ditlbacher, H.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002).
[CrossRef]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons,"Appl. Phys. Lett. 81, 1762 - 1764 (2002).
[CrossRef]

Du, C.

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single "bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Gao, H.

García de Abajo, F. J.

Girard, C.

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068(1999).
[CrossRef]

Goudonnet, J. P.

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068(1999).
[CrossRef]

Grosges, T.

Halas, N. J.

Y. Xia and N. J. Halas, "Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures," MRS Bulletin 30, 338 - 348 (2005).

Hao, E.

E. Hao and G. J. Schatz, "Electromagnetic fields around silver nanoparticles and dimmers," J. Chem. Phys. 120, 357-366 (2004).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Appl. Phys. Lett. 81, 1714-1716 (2002).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408- 193411 (2002).
[CrossRef]

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single "bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Kottmann, P. J.

Kovacs, J.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, "Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters," Phys. Rev. Lett. 72, 4149 - 4152 (1994).
[CrossRef]

Krenn, J. R.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons,"Appl. Phys. Lett. 81, 1762 - 1764 (2002).
[CrossRef]

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002).
[CrossRef]

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068(1999).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333, (1998).
[CrossRef]

Lamprecht, B.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002).
[CrossRef]

Leitner, A.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002).
[CrossRef]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons,"Appl. Phys. Lett. 81, 1762 - 1764 (2002).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333, (1998).
[CrossRef]

Lin, X.

Luo, X.

Lv, Y.

Maier, S. A.

S. A. Maier and H. A. J. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101-011110 (2005).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408- 193411 (2002).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Appl. Phys. Lett. 81, 1714-1716 (2002).
[CrossRef]

Martin, O. J. F.

Moerner, W. E.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single "bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Moskovits, M.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, "Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters," Phys. Rev. Lett. 72, 4149 - 4152 (1994).
[CrossRef]

Namura, W.

W. Namura, M. Ohtsu, T. and Yatusi, "Nanodot coupler wih a surface plasmon polariton condenser for optical far/near-field conversion," App Phys Lett. 86, 181108 -181110 (2005).
[CrossRef]

Ohtsu, M.

W. Namura, M. Ohtsu, T. and Yatusi, "Nanodot coupler wih a surface plasmon polariton condenser for optical far/near-field conversion," App Phys Lett. 86, 181108 -181110 (2005).
[CrossRef]

Osgood, R. M.

N.C. Panoiu and R. M. Osgood, "Subwavelength nonlinear plasmonic nanowire," Nano Lett. 4, 2427-2430 (2004).
[CrossRef]

Panoiu, N.C.

N.C. Panoiu and R. M. Osgood, "Subwavelength nonlinear plasmonic nanowire," Nano Lett. 4, 2427-2430 (2004).
[CrossRef]

Quinten, M.

Sainidou, R.

Saj, W. M.

Salerno, M.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002).
[CrossRef]

Schatz, G. J.

E. Hao and G. J. Schatz, "Electromagnetic fields around silver nanoparticles and dimmers," J. Chem. Phys. 120, 357-366 (2004).
[CrossRef]

Schider, G.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons,"Appl. Phys. Lett. 81, 1762 - 1764 (2002).
[CrossRef]

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002).
[CrossRef]

Schuck, P. J.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single "bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Shalaev, V. M.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, "Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters," Phys. Rev. Lett. 72, 4149 - 4152 (1994).
[CrossRef]

Shi, H.

Suh, J. S.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, "Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters," Phys. Rev. Lett. 72, 4149 - 4152 (1994).
[CrossRef]

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single "bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Tsai, D. P.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, "Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters," Phys. Rev. Lett. 72, 4149 - 4152 (1994).
[CrossRef]

Vial, A.

Wang, C.

Wang, Z.

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, "Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters," Phys. Rev. Lett. 72, 4149 - 4152 (1994).
[CrossRef]

Weeber, J. C.

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068(1999).
[CrossRef]

Xia, Y.

Y. Xia and N. J. Halas, "Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures," MRS Bulletin 30, 338 - 348 (2005).

Yao, H.

Zhang, Z. Y.

Z. Y. Zhang and Y. P. Zhao, "Tuning the optical absorption properties of Ag nanorods by their topologic shapes: A discrete dipole approximation calculation," Appl. Phys. Lett. 89, 023110 - 023113 (2006).
[CrossRef]

Zhao, Y. P.

Z. Y. Zhang and Y. P. Zhao, "Tuning the optical absorption properties of Ag nanorods by their topologic shapes: A discrete dipole approximation calculation," Appl. Phys. Lett. 89, 023110 - 023113 (2006).
[CrossRef]

Zia, R.

R. Zia, and M. L. Brongersma, "Surface plasmon polariton analogue to Young’s double-slit experiment," Nature Nanotech. 2, 426- 429 (2007).
[CrossRef]

App Phys Lett. (1)

W. Namura, M. Ohtsu, T. and Yatusi, "Nanodot coupler wih a surface plasmon polariton condenser for optical far/near-field conversion," App Phys Lett. 86, 181108 -181110 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

S. A. Maier, P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Appl. Phys. Lett. 81, 1714-1716 (2002).
[CrossRef]

Z. Y. Zhang and Y. P. Zhao, "Tuning the optical absorption properties of Ag nanorods by their topologic shapes: A discrete dipole approximation calculation," Appl. Phys. Lett. 89, 023110 - 023113 (2006).
[CrossRef]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons,"Appl. Phys. Lett. 81, 1762 - 1764 (2002).
[CrossRef]

Europhys. Lett. (1)

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002).
[CrossRef]

J. Appl. Phys. (1)

S. A. Maier and H. A. J. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101-011110 (2005).
[CrossRef]

J. Chem. Phys. (1)

E. Hao and G. J. Schatz, "Electromagnetic fields around silver nanoparticles and dimmers," J. Chem. Phys. 120, 357-366 (2004).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185 - 200 (1994).
[CrossRef]

MRS Bulletin (1)

Y. Xia and N. J. Halas, "Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures," MRS Bulletin 30, 338 - 348 (2005).

Nano Lett. (3)

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single "bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

D. S. Citrin, "Coherent excitation transport in metal-nanoparticle chains," Nano Lett. 4, 1562- 1565 (2004).
[CrossRef]

N.C. Panoiu and R. M. Osgood, "Subwavelength nonlinear plasmonic nanowire," Nano Lett. 4, 2427-2430 (2004).
[CrossRef]

Nature Nanotech. (1)

R. Zia, and M. L. Brongersma, "Surface plasmon polariton analogue to Young’s double-slit experiment," Nature Nanotech. 2, 426- 429 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (2)

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068(1999).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408- 193411 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, "Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters," Phys. Rev. Lett. 72, 4149 - 4152 (1994).
[CrossRef]

Other (5)

K. Song and P. Mazmuder, "Surface plasmon dynamics of a metallic nano-particle," IEEE Inter. Conf. on Nanotecchnology, August 2-5, Hong Kong, 637-643 (2007).

S. A. Maier and H. A. J. Atwater, "Energy transport in metal nanoparticle plasmon waveguides," Mat. Res. Soc. Symp. Proc.  777. T7.1.1- T7.1.12 (2003).

A. Taflove and S. G. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Boston, Artech House, 2005).

M. L. Brongersma and G. Kik, Surface Plasmon Nanophotonics; Springer series in optical science, (2007).

M. Gerken, N. K. Dhar, A. K. Dutta, and M. S. Islam, Nanophotonics for Communication: Materials, Devices, and Systems III, SPIE Society (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics