Abstract

Integrated surface plasmon resonance biosensors promise to enable compact and portable biosensing at high sensitivities. To replace the far field detector traditionally used to detect surface plasmons we integrate a near field detector below a functionalized gold film. The evanescent field of a surface plasmon at the aqueous-gold interface is converted into photocurrent by a thin film organic heterojunction diode. We demonstrate that use of the near field detector is equivalent to the traditional far field measurement of reflectivity. The sensor is stable and reversible in an aqueous environment for periods of 6 hrs. For specific binding of neutravidin, the detection limit is 4 μg/cm2. The sensitivity can be improved by reducing surface roughness of the gold layers and optimization of the device design. From simulations, we predict a maximum sensitivity that is two times lower than a comparable conventional SPR biosensor.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films," Langmuir 14, 5636-5648 (1998).
    [CrossRef]
  2. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
    [CrossRef]
  3. R. L. Rich and D. G. Myszka, "Survey of the year 2006 commercial optical biosensor literature," J. Mol. Recognit. 20, 300-366 (2007).
    [CrossRef] [PubMed]
  4. J. K. Mapel, M. Singh, M. A. Baldo, and K. Celebi, "Plasmonic excitation of organic double heterostructure solar cells," Appl. Phys. Lett. 90, 3, (2007).
    [CrossRef]
  5. K. Celebi, T. D. Heidel, and M. A. Baldo, "Simplified calculation of dipole energy transport in a multilayer stack using dyadic Green's functions," Opt. Express 15, 1762-1772 (2007).
    [CrossRef] [PubMed]
  6. C. L. Mulder, K. Celebi, K. M. Milaninia, and M. A. Baldo, "Saturated and efficient blue phosphorescent organic light emitting devices with Lambertian angular emission," Appl. Phys. Lett. 90, 3 (2007).
    [CrossRef]
  7. K. Iga, "Surface-emitting laser - Its birth and generation of new optoelectronics field," IEEE J. Sel. Top. Quantum Electron. 6, 1201-1215 (2000).
    [CrossRef]
  8. B. Johnsson, S. Löfås, and G. Lindquist, "Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors," Anal. Biochem. 198, 268-277 (1991).
    [CrossRef] [PubMed]
  9. S. Zhang, L. Berguiga, J. Elezgaray, T. Roland, C. Faivre-Moskalenko, and F. Argoul, "Surface plasmon resonance characterization of thermally evaporated thin gold films," Surf. Sci. 601, 5445-5458 (2007).
    [CrossRef]
  10. E. T. Castellana, S. Kataoka, F. Albertorio, and P. S. Cremer, "Direct writing of metal nanoparticle films inside sealed microfluidic channels," Anal. Chem. 78, 107-112 (2006).
    [CrossRef]
  11. P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, "Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption," J. Phys. Chem. B 102, 426-436 (1998).
    [CrossRef]
  12. E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama, and G. M. Whitesides, "A survey of structure-property relationships of surfaces that resist the adsorption of protein," Langmuir 17, 5605-5620 (2001).
    [CrossRef]
  13. S. Lofas and B. Johnsson, "A novel hydrogel matrix on gold surfaces in surface-plasmon resonance sensors for fast and efficient covalent immobilization of ligands," J. Chem. Soc., Chem. Commun., 1526-1528 (1990).
  14. A. Akkoyun and U. Bilitewski, "Optimisation of glass surfaces for optical immunosensors," Biosens. Bioelectron. 17, 655-664 (2002).
    [CrossRef] [PubMed]
  15. W. J. Potscavage, S. Yoo, B. Domercq, and B. Kippelen, "Encapsulation of pentacene/C-60 organic solar cells with Al2O3 deposited by atomic layer deposition," Appl. Phys. Lett. 90, 3 (2007).
    [CrossRef]
  16. A. Hamed, Y. Y. Sun, Y. K. Tao, R. L. Meng, and P. H. Hor, "Effects of oxygen and illumination on the in situ conductivity of C-60 thin-films," Phys. Rev. B 47, 10873-10880 (1993).
    [CrossRef]
  17. S. R. Forrest, "Ultrathin organic films grown by organic molecular beam deposition and related techniques," Chem. Rev. 97, 1793-1896 (1997).
    [CrossRef]

2007 (6)

R. L. Rich and D. G. Myszka, "Survey of the year 2006 commercial optical biosensor literature," J. Mol. Recognit. 20, 300-366 (2007).
[CrossRef] [PubMed]

J. K. Mapel, M. Singh, M. A. Baldo, and K. Celebi, "Plasmonic excitation of organic double heterostructure solar cells," Appl. Phys. Lett. 90, 3, (2007).
[CrossRef]

K. Celebi, T. D. Heidel, and M. A. Baldo, "Simplified calculation of dipole energy transport in a multilayer stack using dyadic Green's functions," Opt. Express 15, 1762-1772 (2007).
[CrossRef] [PubMed]

C. L. Mulder, K. Celebi, K. M. Milaninia, and M. A. Baldo, "Saturated and efficient blue phosphorescent organic light emitting devices with Lambertian angular emission," Appl. Phys. Lett. 90, 3 (2007).
[CrossRef]

S. Zhang, L. Berguiga, J. Elezgaray, T. Roland, C. Faivre-Moskalenko, and F. Argoul, "Surface plasmon resonance characterization of thermally evaporated thin gold films," Surf. Sci. 601, 5445-5458 (2007).
[CrossRef]

W. J. Potscavage, S. Yoo, B. Domercq, and B. Kippelen, "Encapsulation of pentacene/C-60 organic solar cells with Al2O3 deposited by atomic layer deposition," Appl. Phys. Lett. 90, 3 (2007).
[CrossRef]

2006 (1)

E. T. Castellana, S. Kataoka, F. Albertorio, and P. S. Cremer, "Direct writing of metal nanoparticle films inside sealed microfluidic channels," Anal. Chem. 78, 107-112 (2006).
[CrossRef]

2002 (1)

A. Akkoyun and U. Bilitewski, "Optimisation of glass surfaces for optical immunosensors," Biosens. Bioelectron. 17, 655-664 (2002).
[CrossRef] [PubMed]

2001 (1)

E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama, and G. M. Whitesides, "A survey of structure-property relationships of surfaces that resist the adsorption of protein," Langmuir 17, 5605-5620 (2001).
[CrossRef]

2000 (1)

K. Iga, "Surface-emitting laser - Its birth and generation of new optoelectronics field," IEEE J. Sel. Top. Quantum Electron. 6, 1201-1215 (2000).
[CrossRef]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

1998 (2)

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, "Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption," J. Phys. Chem. B 102, 426-436 (1998).
[CrossRef]

1997 (1)

S. R. Forrest, "Ultrathin organic films grown by organic molecular beam deposition and related techniques," Chem. Rev. 97, 1793-1896 (1997).
[CrossRef]

1993 (1)

A. Hamed, Y. Y. Sun, Y. K. Tao, R. L. Meng, and P. H. Hor, "Effects of oxygen and illumination on the in situ conductivity of C-60 thin-films," Phys. Rev. B 47, 10873-10880 (1993).
[CrossRef]

1991 (1)

B. Johnsson, S. Löfås, and G. Lindquist, "Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors," Anal. Biochem. 198, 268-277 (1991).
[CrossRef] [PubMed]

1990 (1)

S. Lofas and B. Johnsson, "A novel hydrogel matrix on gold surfaces in surface-plasmon resonance sensors for fast and efficient covalent immobilization of ligands," J. Chem. Soc., Chem. Commun., 1526-1528 (1990).

Akkoyun, A.

A. Akkoyun and U. Bilitewski, "Optimisation of glass surfaces for optical immunosensors," Biosens. Bioelectron. 17, 655-664 (2002).
[CrossRef] [PubMed]

Albertorio, F.

E. T. Castellana, S. Kataoka, F. Albertorio, and P. S. Cremer, "Direct writing of metal nanoparticle films inside sealed microfluidic channels," Anal. Chem. 78, 107-112 (2006).
[CrossRef]

Argoul, F.

S. Zhang, L. Berguiga, J. Elezgaray, T. Roland, C. Faivre-Moskalenko, and F. Argoul, "Surface plasmon resonance characterization of thermally evaporated thin gold films," Surf. Sci. 601, 5445-5458 (2007).
[CrossRef]

Baldo, M. A.

C. L. Mulder, K. Celebi, K. M. Milaninia, and M. A. Baldo, "Saturated and efficient blue phosphorescent organic light emitting devices with Lambertian angular emission," Appl. Phys. Lett. 90, 3 (2007).
[CrossRef]

J. K. Mapel, M. Singh, M. A. Baldo, and K. Celebi, "Plasmonic excitation of organic double heterostructure solar cells," Appl. Phys. Lett. 90, 3, (2007).
[CrossRef]

K. Celebi, T. D. Heidel, and M. A. Baldo, "Simplified calculation of dipole energy transport in a multilayer stack using dyadic Green's functions," Opt. Express 15, 1762-1772 (2007).
[CrossRef] [PubMed]

Berguiga, L.

S. Zhang, L. Berguiga, J. Elezgaray, T. Roland, C. Faivre-Moskalenko, and F. Argoul, "Surface plasmon resonance characterization of thermally evaporated thin gold films," Surf. Sci. 601, 5445-5458 (2007).
[CrossRef]

Bilitewski, U.

A. Akkoyun and U. Bilitewski, "Optimisation of glass surfaces for optical immunosensors," Biosens. Bioelectron. 17, 655-664 (2002).
[CrossRef] [PubMed]

Campbell, C. T.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

Castellana, E. T.

E. T. Castellana, S. Kataoka, F. Albertorio, and P. S. Cremer, "Direct writing of metal nanoparticle films inside sealed microfluidic channels," Anal. Chem. 78, 107-112 (2006).
[CrossRef]

Celebi, K.

C. L. Mulder, K. Celebi, K. M. Milaninia, and M. A. Baldo, "Saturated and efficient blue phosphorescent organic light emitting devices with Lambertian angular emission," Appl. Phys. Lett. 90, 3 (2007).
[CrossRef]

J. K. Mapel, M. Singh, M. A. Baldo, and K. Celebi, "Plasmonic excitation of organic double heterostructure solar cells," Appl. Phys. Lett. 90, 3, (2007).
[CrossRef]

K. Celebi, T. D. Heidel, and M. A. Baldo, "Simplified calculation of dipole energy transport in a multilayer stack using dyadic Green's functions," Opt. Express 15, 1762-1772 (2007).
[CrossRef] [PubMed]

Chapman, R. G.

E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama, and G. M. Whitesides, "A survey of structure-property relationships of surfaces that resist the adsorption of protein," Langmuir 17, 5605-5620 (2001).
[CrossRef]

Chinowsky, T. M.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

Cremer, P. S.

E. T. Castellana, S. Kataoka, F. Albertorio, and P. S. Cremer, "Direct writing of metal nanoparticle films inside sealed microfluidic channels," Anal. Chem. 78, 107-112 (2006).
[CrossRef]

Dahint, R.

P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, "Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption," J. Phys. Chem. B 102, 426-436 (1998).
[CrossRef]

Domercq, B.

W. J. Potscavage, S. Yoo, B. Domercq, and B. Kippelen, "Encapsulation of pentacene/C-60 organic solar cells with Al2O3 deposited by atomic layer deposition," Appl. Phys. Lett. 90, 3 (2007).
[CrossRef]

Elezgaray, J.

S. Zhang, L. Berguiga, J. Elezgaray, T. Roland, C. Faivre-Moskalenko, and F. Argoul, "Surface plasmon resonance characterization of thermally evaporated thin gold films," Surf. Sci. 601, 5445-5458 (2007).
[CrossRef]

Faivre-Moskalenko, C.

S. Zhang, L. Berguiga, J. Elezgaray, T. Roland, C. Faivre-Moskalenko, and F. Argoul, "Surface plasmon resonance characterization of thermally evaporated thin gold films," Surf. Sci. 601, 5445-5458 (2007).
[CrossRef]

Forrest, S. R.

S. R. Forrest, "Ultrathin organic films grown by organic molecular beam deposition and related techniques," Chem. Rev. 97, 1793-1896 (1997).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Grunze, M.

P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, "Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption," J. Phys. Chem. B 102, 426-436 (1998).
[CrossRef]

Hamed, A.

A. Hamed, Y. Y. Sun, Y. K. Tao, R. L. Meng, and P. H. Hor, "Effects of oxygen and illumination on the in situ conductivity of C-60 thin-films," Phys. Rev. B 47, 10873-10880 (1993).
[CrossRef]

Harder, P.

P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, "Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption," J. Phys. Chem. B 102, 426-436 (1998).
[CrossRef]

Heidel, T. D.

Holmlin, R. E.

E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama, and G. M. Whitesides, "A survey of structure-property relationships of surfaces that resist the adsorption of protein," Langmuir 17, 5605-5620 (2001).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Hor, P. H.

A. Hamed, Y. Y. Sun, Y. K. Tao, R. L. Meng, and P. H. Hor, "Effects of oxygen and illumination on the in situ conductivity of C-60 thin-films," Phys. Rev. B 47, 10873-10880 (1993).
[CrossRef]

Iga, K.

K. Iga, "Surface-emitting laser - Its birth and generation of new optoelectronics field," IEEE J. Sel. Top. Quantum Electron. 6, 1201-1215 (2000).
[CrossRef]

Johnsson, B.

B. Johnsson, S. Löfås, and G. Lindquist, "Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors," Anal. Biochem. 198, 268-277 (1991).
[CrossRef] [PubMed]

S. Lofas and B. Johnsson, "A novel hydrogel matrix on gold surfaces in surface-plasmon resonance sensors for fast and efficient covalent immobilization of ligands," J. Chem. Soc., Chem. Commun., 1526-1528 (1990).

Jung, L. S.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

Kataoka, S.

E. T. Castellana, S. Kataoka, F. Albertorio, and P. S. Cremer, "Direct writing of metal nanoparticle films inside sealed microfluidic channels," Anal. Chem. 78, 107-112 (2006).
[CrossRef]

Kippelen, B.

W. J. Potscavage, S. Yoo, B. Domercq, and B. Kippelen, "Encapsulation of pentacene/C-60 organic solar cells with Al2O3 deposited by atomic layer deposition," Appl. Phys. Lett. 90, 3 (2007).
[CrossRef]

Laibinis, P. E.

P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, "Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption," J. Phys. Chem. B 102, 426-436 (1998).
[CrossRef]

Lindquist, G.

B. Johnsson, S. Löfås, and G. Lindquist, "Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors," Anal. Biochem. 198, 268-277 (1991).
[CrossRef] [PubMed]

Lofas, S.

S. Lofas and B. Johnsson, "A novel hydrogel matrix on gold surfaces in surface-plasmon resonance sensors for fast and efficient covalent immobilization of ligands," J. Chem. Soc., Chem. Commun., 1526-1528 (1990).

Löfås, S.

B. Johnsson, S. Löfås, and G. Lindquist, "Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors," Anal. Biochem. 198, 268-277 (1991).
[CrossRef] [PubMed]

Mapel, J. K.

J. K. Mapel, M. Singh, M. A. Baldo, and K. Celebi, "Plasmonic excitation of organic double heterostructure solar cells," Appl. Phys. Lett. 90, 3, (2007).
[CrossRef]

Mar, M. N.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

Meng, R. L.

A. Hamed, Y. Y. Sun, Y. K. Tao, R. L. Meng, and P. H. Hor, "Effects of oxygen and illumination on the in situ conductivity of C-60 thin-films," Phys. Rev. B 47, 10873-10880 (1993).
[CrossRef]

Milaninia, K. M.

C. L. Mulder, K. Celebi, K. M. Milaninia, and M. A. Baldo, "Saturated and efficient blue phosphorescent organic light emitting devices with Lambertian angular emission," Appl. Phys. Lett. 90, 3 (2007).
[CrossRef]

Mulder, C. L.

C. L. Mulder, K. Celebi, K. M. Milaninia, and M. A. Baldo, "Saturated and efficient blue phosphorescent organic light emitting devices with Lambertian angular emission," Appl. Phys. Lett. 90, 3 (2007).
[CrossRef]

Myszka, D. G.

R. L. Rich and D. G. Myszka, "Survey of the year 2006 commercial optical biosensor literature," J. Mol. Recognit. 20, 300-366 (2007).
[CrossRef] [PubMed]

Ostuni, E.

E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama, and G. M. Whitesides, "A survey of structure-property relationships of surfaces that resist the adsorption of protein," Langmuir 17, 5605-5620 (2001).
[CrossRef]

Potscavage, W. J.

W. J. Potscavage, S. Yoo, B. Domercq, and B. Kippelen, "Encapsulation of pentacene/C-60 organic solar cells with Al2O3 deposited by atomic layer deposition," Appl. Phys. Lett. 90, 3 (2007).
[CrossRef]

Rich, R. L.

R. L. Rich and D. G. Myszka, "Survey of the year 2006 commercial optical biosensor literature," J. Mol. Recognit. 20, 300-366 (2007).
[CrossRef] [PubMed]

Roland, T.

S. Zhang, L. Berguiga, J. Elezgaray, T. Roland, C. Faivre-Moskalenko, and F. Argoul, "Surface plasmon resonance characterization of thermally evaporated thin gold films," Surf. Sci. 601, 5445-5458 (2007).
[CrossRef]

Singh, M.

J. K. Mapel, M. Singh, M. A. Baldo, and K. Celebi, "Plasmonic excitation of organic double heterostructure solar cells," Appl. Phys. Lett. 90, 3, (2007).
[CrossRef]

Sun, Y. Y.

A. Hamed, Y. Y. Sun, Y. K. Tao, R. L. Meng, and P. H. Hor, "Effects of oxygen and illumination on the in situ conductivity of C-60 thin-films," Phys. Rev. B 47, 10873-10880 (1993).
[CrossRef]

Takayama, S.

E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama, and G. M. Whitesides, "A survey of structure-property relationships of surfaces that resist the adsorption of protein," Langmuir 17, 5605-5620 (2001).
[CrossRef]

Tao, Y. K.

A. Hamed, Y. Y. Sun, Y. K. Tao, R. L. Meng, and P. H. Hor, "Effects of oxygen and illumination on the in situ conductivity of C-60 thin-films," Phys. Rev. B 47, 10873-10880 (1993).
[CrossRef]

Whitesides, G. M.

E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama, and G. M. Whitesides, "A survey of structure-property relationships of surfaces that resist the adsorption of protein," Langmuir 17, 5605-5620 (2001).
[CrossRef]

P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, "Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption," J. Phys. Chem. B 102, 426-436 (1998).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

Yoo, S.

W. J. Potscavage, S. Yoo, B. Domercq, and B. Kippelen, "Encapsulation of pentacene/C-60 organic solar cells with Al2O3 deposited by atomic layer deposition," Appl. Phys. Lett. 90, 3 (2007).
[CrossRef]

Zhang, S.

S. Zhang, L. Berguiga, J. Elezgaray, T. Roland, C. Faivre-Moskalenko, and F. Argoul, "Surface plasmon resonance characterization of thermally evaporated thin gold films," Surf. Sci. 601, 5445-5458 (2007).
[CrossRef]

Anal. Biochem. (1)

B. Johnsson, S. Löfås, and G. Lindquist, "Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors," Anal. Biochem. 198, 268-277 (1991).
[CrossRef] [PubMed]

Anal. Chem. (1)

E. T. Castellana, S. Kataoka, F. Albertorio, and P. S. Cremer, "Direct writing of metal nanoparticle films inside sealed microfluidic channels," Anal. Chem. 78, 107-112 (2006).
[CrossRef]

Appl. Phys. Lett. (3)

W. J. Potscavage, S. Yoo, B. Domercq, and B. Kippelen, "Encapsulation of pentacene/C-60 organic solar cells with Al2O3 deposited by atomic layer deposition," Appl. Phys. Lett. 90, 3 (2007).
[CrossRef]

C. L. Mulder, K. Celebi, K. M. Milaninia, and M. A. Baldo, "Saturated and efficient blue phosphorescent organic light emitting devices with Lambertian angular emission," Appl. Phys. Lett. 90, 3 (2007).
[CrossRef]

J. K. Mapel, M. Singh, M. A. Baldo, and K. Celebi, "Plasmonic excitation of organic double heterostructure solar cells," Appl. Phys. Lett. 90, 3, (2007).
[CrossRef]

Biosens. Bioelectron. (1)

A. Akkoyun and U. Bilitewski, "Optimisation of glass surfaces for optical immunosensors," Biosens. Bioelectron. 17, 655-664 (2002).
[CrossRef] [PubMed]

Chem. Rev. (1)

S. R. Forrest, "Ultrathin organic films grown by organic molecular beam deposition and related techniques," Chem. Rev. 97, 1793-1896 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Iga, "Surface-emitting laser - Its birth and generation of new optoelectronics field," IEEE J. Sel. Top. Quantum Electron. 6, 1201-1215 (2000).
[CrossRef]

J. Chem. Soc., Chem. Commun. (1)

S. Lofas and B. Johnsson, "A novel hydrogel matrix on gold surfaces in surface-plasmon resonance sensors for fast and efficient covalent immobilization of ligands," J. Chem. Soc., Chem. Commun., 1526-1528 (1990).

J. Mol. Recognit. (1)

R. L. Rich and D. G. Myszka, "Survey of the year 2006 commercial optical biosensor literature," J. Mol. Recognit. 20, 300-366 (2007).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, and P. E. Laibinis, "Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption," J. Phys. Chem. B 102, 426-436 (1998).
[CrossRef]

Langmuir (2)

E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama, and G. M. Whitesides, "A survey of structure-property relationships of surfaces that resist the adsorption of protein," Langmuir 17, 5605-5620 (2001).
[CrossRef]

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

A. Hamed, Y. Y. Sun, Y. K. Tao, R. L. Meng, and P. H. Hor, "Effects of oxygen and illumination on the in situ conductivity of C-60 thin-films," Phys. Rev. B 47, 10873-10880 (1993).
[CrossRef]

Sens. Actuators B (1)

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Surf. Sci. (1)

S. Zhang, L. Berguiga, J. Elezgaray, T. Roland, C. Faivre-Moskalenko, and F. Argoul, "Surface plasmon resonance characterization of thermally evaporated thin gold films," Surf. Sci. 601, 5445-5458 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Device structure and experimental setup. The near-field surface plasmon detector consists of a thin layer of a semiconductor sandwiched between two thin gold electrodes. The top gold electrode is circular with a radius of 1 mm. The top gold electrode defines the area of the detector and acts as the analyte binding surface. Biological materials are supplied by an autosampler through a microfluidic circuit. A p-polarized beam from a 1 mW laser at λ=670 nm is aligned with the detector. The incident angle of the beam is adjusted by rotating the hemi-cylindrical lens with the detector attached. The reflected light and device photocurrent are monitored as a function of the incident angle and binding events on the top gold surface. (b) Photograph of a device integrated with a PDMS microuidic chamber and connecting tubing. A US 5 cent coin is also shown to illustrate the scale of the detector.

Fig. 2.
Fig. 2.

(a) Simulation of the sensitivity of a near field surface plasmon detector as a function of the refractive index of the semiconductor material. The sensitivity is estimated from the change in photocurrent following the simulated binding of a thin protein layer on top of the device. It is plotted as a function of incidence angle of the optical source for a 50-nm-thick semiconductor with extinction coefficient k=0.2 sandwiched between two 20-nm-thick gold layers. Higher sensitivity is achieved for lower refractive index materials, making organics a suitable candidate for plasmon detector applications. The maximum absorption in the photovoltaic is 0.4, hence the relative change in absorbance is 30% (b) Structure of the near field surface plasmon detector and simulated amplitude of the electric field for the transverse magnetic mode within the device. Surface plasmon excitations have the highest amplitude on the top surface of the cathode layer but they also extend into the organic layers of the photovoltaic. Energy from the plasmonic mode is channeled into formation of excitonic states that dissociate at the hole and electron transport layer interface.

Fig. 3.
Fig. 3.

The angular dependence of the photocurrent from the device (red circles) and reflectivity (blue circles). The solid lines represent transfer matrix numerical simulation for photocurrent (red) and reflectivity (blue) using n and k data measured for the materials used in device fabrication. The discrepancy between simulation and the data is most likely due to surface roughness in the gold electrodes.

Fig. 4.
Fig. 4.

Sensor exposure to two water pulses in HEPES buffer flow. Both reflectivity and photocurrent are modulated when the bulk dielectric constant of the medium above the device is decreased. The sensor shows excellent reversibility and stability.

Fig. 4.
Fig. 4.

Sensor response to casein and neutravidin. Green arrow: exposure to casein to block non-specific binding sites, orange arrow: specific detection of neutravidin. Both species bind irreversibly to the surface. The data demonstrates that the photocurrent response of the near field surface plasmon detector is equivalent to the conventional measurement of reflectivity.

Metrics