F. Bociort and M.van Turnhout, “Generating saddle points in the merit function landscape of optical systems,” in Optical Design and Engineering II, L. Mazuray and R. Wartmann, eds., Proc. SPIE 5962, 59620S (2005).

[Crossref]

F. Bociort and M.van Turnhout, “Generating saddle points in the merit function landscape of optical systems,” in Optical Design and Engineering II, L. Mazuray and R. Wartmann, eds., Proc. SPIE 5962, 59620S (2005).

[Crossref]

F. Bociort, E. van Driel, and A. Serebriakov, “Networks of local minima in optical system optimization,” Opt. Lett. 29, 189–191 (2004).

[Crossref]
[PubMed]

F. Bociort, “Optical system optimization,” in Encyclopedia of optical engineering, R. G. Driggers, ed. (Marcel Dekker, New York, 2003), 1843–1850.

E. Ott, Chaos in dynamical systems, 2nd ed. (Cambridge University Press, Cambridge, 2002).

H. E. Nusse and J. A. Yorke, “Basins of attraction,” Science 271, 1376–1380 (1996).

[Crossref]

C. Grebogi, E. Kostelich, E. Ott, and J. A. Yorke, “Multi-dimensioned intertwined basin boundaries: basin structure of the kicked double rotor,” Physica D 25, 347–360 (1987).

C. Grebogi, E. Ott, and J. A. Yorke, “Chaos, strange attractors, and fractal basin boundaries in non-linear dynamics,” Science 238, 632–638 (1987).

[Crossref]
[PubMed]

S. W. McDonald, C. Grebogi, E. Ott, and J. A. Yorke, “Fractal basin boundaries,” Physica D 17, 125–153 (1985).

C. Grebogi, S. W. McDonald, E. Ott, and J. A. Yorke, “Final state sensitivity: an obstruction to predictability,” Phys. Lett. A 99, 415–418 (1983).

[Crossref]

D. P. Feder, “Automatic optical design,” Appl. Opt. 2, 1209–1226 (1963).

[Crossref]

H. Gross, H. Zügge, M. Peschka, and F. Blechinger, “Principles of optimization,” in Handbook of Optical Systems, Vol. 3 (Wiley-VCH, Weinheim, 2007), 291–370.

F. Bociort and M.van Turnhout, “Generating saddle points in the merit function landscape of optical systems,” in Optical Design and Engineering II, L. Mazuray and R. Wartmann, eds., Proc. SPIE 5962, 59620S (2005).

[Crossref]

F. Bociort, E. van Driel, and A. Serebriakov, “Networks of local minima in optical system optimization,” Opt. Lett. 29, 189–191 (2004).

[Crossref]
[PubMed]

F. Bociort, “Optical system optimization,” in Encyclopedia of optical engineering, R. G. Driggers, ed. (Marcel Dekker, New York, 2003), 1843–1850.

M. van Turnhout and F. Bociort, “Predictability and unpredictability in optical system optimization,” in Current Developments in Lens Design and Optical Engineering VIII, P. Z. Mouroulis, W. J. Smith, and R. B. Johnson, eds., Proc. SPIE 6667, 666709 (2007).

F. Bociort, E. van Driel, and A. Serebriakov, “Networks of local minima in optical system optimization,” Opt. Lett. 29, 189–191 (2004).

[Crossref]
[PubMed]

D. P. Feder, “Automatic optical design,” Appl. Opt. 2, 1209–1226 (1963).

[Crossref]

C. Grebogi, E. Kostelich, E. Ott, and J. A. Yorke, “Multi-dimensioned intertwined basin boundaries: basin structure of the kicked double rotor,” Physica D 25, 347–360 (1987).

C. Grebogi, E. Ott, and J. A. Yorke, “Chaos, strange attractors, and fractal basin boundaries in non-linear dynamics,” Science 238, 632–638 (1987).

[Crossref]
[PubMed]

S. W. McDonald, C. Grebogi, E. Ott, and J. A. Yorke, “Fractal basin boundaries,” Physica D 17, 125–153 (1985).

C. Grebogi, S. W. McDonald, E. Ott, and J. A. Yorke, “Final state sensitivity: an obstruction to predictability,” Phys. Lett. A 99, 415–418 (1983).

[Crossref]

H. Gross, H. Zügge, M. Peschka, and F. Blechinger, “Principles of optimization,” in Handbook of Optical Systems, Vol. 3 (Wiley-VCH, Weinheim, 2007), 291–370.

H.-O. Peitgen, H. Jürgens, and D. Saupe, Chaos and fractals: New frontiers of science, 2nd ed. (Springer-Verlag, New York, 2004).

C. Grebogi, E. Kostelich, E. Ott, and J. A. Yorke, “Multi-dimensioned intertwined basin boundaries: basin structure of the kicked double rotor,” Physica D 25, 347–360 (1987).

F. Bociort and M.van Turnhout, “Generating saddle points in the merit function landscape of optical systems,” in Optical Design and Engineering II, L. Mazuray and R. Wartmann, eds., Proc. SPIE 5962, 59620S (2005).

[Crossref]

S. W. McDonald, C. Grebogi, E. Ott, and J. A. Yorke, “Fractal basin boundaries,” Physica D 17, 125–153 (1985).

C. Grebogi, S. W. McDonald, E. Ott, and J. A. Yorke, “Final state sensitivity: an obstruction to predictability,” Phys. Lett. A 99, 415–418 (1983).

[Crossref]

H. E. Nusse and J. A. Yorke, “Basins of attraction,” Science 271, 1376–1380 (1996).

[Crossref]

E. Ott, Chaos in dynamical systems, 2nd ed. (Cambridge University Press, Cambridge, 2002).

C. Grebogi, E. Kostelich, E. Ott, and J. A. Yorke, “Multi-dimensioned intertwined basin boundaries: basin structure of the kicked double rotor,” Physica D 25, 347–360 (1987).

C. Grebogi, E. Ott, and J. A. Yorke, “Chaos, strange attractors, and fractal basin boundaries in non-linear dynamics,” Science 238, 632–638 (1987).

[Crossref]
[PubMed]

S. W. McDonald, C. Grebogi, E. Ott, and J. A. Yorke, “Fractal basin boundaries,” Physica D 17, 125–153 (1985).

C. Grebogi, S. W. McDonald, E. Ott, and J. A. Yorke, “Final state sensitivity: an obstruction to predictability,” Phys. Lett. A 99, 415–418 (1983).

[Crossref]

H.-O. Peitgen, H. Jürgens, and D. Saupe, Chaos and fractals: New frontiers of science, 2nd ed. (Springer-Verlag, New York, 2004).

H. Gross, H. Zügge, M. Peschka, and F. Blechinger, “Principles of optimization,” in Handbook of Optical Systems, Vol. 3 (Wiley-VCH, Weinheim, 2007), 291–370.

S. N. Rasband, Chaotic dynamics of nonlinear systems (Wiley, New York, 1990).

H.-O. Peitgen, H. Jürgens, and D. Saupe, Chaos and fractals: New frontiers of science, 2nd ed. (Springer-Verlag, New York, 2004).

F. Bociort, E. van Driel, and A. Serebriakov, “Networks of local minima in optical system optimization,” Opt. Lett. 29, 189–191 (2004).

[Crossref]
[PubMed]

D. C. Sinclair, “Optical design software,” in Handbook of Optics, Fundamentals, Techniques, and Design, Vol. 1, 2nd ed., M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), 34.1–34.26.

M. van Turnhout and F. Bociort, “Predictability and unpredictability in optical system optimization,” in Current Developments in Lens Design and Optical Engineering VIII, P. Z. Mouroulis, W. J. Smith, and R. B. Johnson, eds., Proc. SPIE 6667, 666709 (2007).

F. Bociort and M.van Turnhout, “Generating saddle points in the merit function landscape of optical systems,” in Optical Design and Engineering II, L. Mazuray and R. Wartmann, eds., Proc. SPIE 5962, 59620S (2005).

[Crossref]

F. Bociort and M.van Turnhout, “Generating saddle points in the merit function landscape of optical systems,” in Optical Design and Engineering II, L. Mazuray and R. Wartmann, eds., Proc. SPIE 5962, 59620S (2005).

[Crossref]

H. E. Nusse and J. A. Yorke, “Basins of attraction,” Science 271, 1376–1380 (1996).

[Crossref]

C. Grebogi, E. Ott, and J. A. Yorke, “Chaos, strange attractors, and fractal basin boundaries in non-linear dynamics,” Science 238, 632–638 (1987).

[Crossref]
[PubMed]

C. Grebogi, E. Kostelich, E. Ott, and J. A. Yorke, “Multi-dimensioned intertwined basin boundaries: basin structure of the kicked double rotor,” Physica D 25, 347–360 (1987).

S. W. McDonald, C. Grebogi, E. Ott, and J. A. Yorke, “Fractal basin boundaries,” Physica D 17, 125–153 (1985).

C. Grebogi, S. W. McDonald, E. Ott, and J. A. Yorke, “Final state sensitivity: an obstruction to predictability,” Phys. Lett. A 99, 415–418 (1983).

[Crossref]

H. Gross, H. Zügge, M. Peschka, and F. Blechinger, “Principles of optimization,” in Handbook of Optical Systems, Vol. 3 (Wiley-VCH, Weinheim, 2007), 291–370.

D. P. Feder, “Automatic optical design,” Appl. Opt. 2, 1209–1226 (1963).

[Crossref]

F. Bociort, E. van Driel, and A. Serebriakov, “Networks of local minima in optical system optimization,” Opt. Lett. 29, 189–191 (2004).

[Crossref]
[PubMed]

C. Grebogi, S. W. McDonald, E. Ott, and J. A. Yorke, “Final state sensitivity: an obstruction to predictability,” Phys. Lett. A 99, 415–418 (1983).

[Crossref]

S. W. McDonald, C. Grebogi, E. Ott, and J. A. Yorke, “Fractal basin boundaries,” Physica D 17, 125–153 (1985).

C. Grebogi, E. Kostelich, E. Ott, and J. A. Yorke, “Multi-dimensioned intertwined basin boundaries: basin structure of the kicked double rotor,” Physica D 25, 347–360 (1987).

F. Bociort and M.van Turnhout, “Generating saddle points in the merit function landscape of optical systems,” in Optical Design and Engineering II, L. Mazuray and R. Wartmann, eds., Proc. SPIE 5962, 59620S (2005).

[Crossref]

C. Grebogi, E. Ott, and J. A. Yorke, “Chaos, strange attractors, and fractal basin boundaries in non-linear dynamics,” Science 238, 632–638 (1987).

[Crossref]
[PubMed]

H. E. Nusse and J. A. Yorke, “Basins of attraction,” Science 271, 1376–1380 (1996).

[Crossref]

M. van Turnhout and F. Bociort, “Predictability and unpredictability in optical system optimization,” in Current Developments in Lens Design and Optical Engineering VIII, P. Z. Mouroulis, W. J. Smith, and R. B. Johnson, eds., Proc. SPIE 6667, 666709 (2007).

Optical Research Associates, CODE V, Pasadena, CA.

ZEMAX Development Corporation, ZEMAX, Bellevue, WA.

S. N. Rasband, Chaotic dynamics of nonlinear systems (Wiley, New York, 1990).

H.-O. Peitgen, H. Jürgens, and D. Saupe, Chaos and fractals: New frontiers of science, 2nd ed. (Springer-Verlag, New York, 2004).

E. Ott, Chaos in dynamical systems, 2nd ed. (Cambridge University Press, Cambridge, 2002).

H. Gross, H. Zügge, M. Peschka, and F. Blechinger, “Principles of optimization,” in Handbook of Optical Systems, Vol. 3 (Wiley-VCH, Weinheim, 2007), 291–370.

D. C. Sinclair, “Optical design software,” in Handbook of Optics, Fundamentals, Techniques, and Design, Vol. 1, 2nd ed., M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), 34.1–34.26.

F. Bociort, “Optical system optimization,” in Encyclopedia of optical engineering, R. G. Driggers, ed. (Marcel Dekker, New York, 2003), 1843–1850.