Abstract

The use of a two-dimensional (2D) high-index-contrast grating (HCG) with square periodic lattice is proposed to realize surface-emitting lasers. This is possible because the use of 2D HCG, in which multiple resonant leaky modes are excited by the 2 orthogonal directions of the grating, causes the high reflective zone to be split into two regions. Hence, a dip of the reflectivity is formed to support the excitation of a resonant cavity-mode inside the 2D HCG. With suitable design on the dimensions of the 2D HCGs, Q factor as high as 1032 can be achieved.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Willner, "All mirrors are not created equal," Nature Photon. 1, 87-88 (2007).
    [CrossRef]
  2. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
    [CrossRef]
  3. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photon. 2, 180 (2008).
    [CrossRef]
  4. Y. Ding and R. Magnusson, "Resonant leaky-mode spectral-band engineering and device applications," Opt. Express 12, 5661-5674 (2004).
    [CrossRef] [PubMed]
  5. A. Hardy, D. F. Welch, and W. Streifer, "Analysis of second-order gratings," IEEE J. Quantum Electron. 25, 2096-2105 (1989).
    [CrossRef]
  6. Y. Ding and R. Magnusson, "Band gaps and leaky-wave effects in resonant photonic-crystal waveguides," Opt. Express 15, 680-694 (2007).
    [CrossRef] [PubMed]
  7. R. Magnusson and M. Shokooh-Saremi, "Physical basis for wideband resonant reflectors," Opt. Express 16, 3456-3462 (2008).
    [CrossRef] [PubMed]
  8. A. Taflove and S. C. Hagness, Computational Electrodynamics: the finite difference time-domain method (Artech House, Boston, 2005).
  9. D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
    [CrossRef]
  10. S. S. Wang and R. Magnusson, "Theory and applications of guided-mode resonance filters," Appl. Opt. 32, 2606-2613 (1993).
    [CrossRef] [PubMed]
  11. T. Kobayashi, Y. Kanamori, and K. Hane, "Surface laser emission from solid polymer dye in a guided mode resonant grating filter structure," Appl. Phys. Lett. 87, 151106 (2005).
    [CrossRef]
  12. D. Sauder, A. Minassian, and M. J. Damzen, "Laser operation at 1.3 ?m of 2at% doped crystalline Nd:YAG in a bounce geometry," Opt. Express 15, 3230-3235 (2007).
    [CrossRef] [PubMed]

2008 (2)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photon. 2, 180 (2008).
[CrossRef]

R. Magnusson and M. Shokooh-Saremi, "Physical basis for wideband resonant reflectors," Opt. Express 16, 3456-3462 (2008).
[CrossRef] [PubMed]

2007 (3)

2005 (1)

T. Kobayashi, Y. Kanamori, and K. Hane, "Surface laser emission from solid polymer dye in a guided mode resonant grating filter structure," Appl. Phys. Lett. 87, 151106 (2005).
[CrossRef]

2004 (2)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

Y. Ding and R. Magnusson, "Resonant leaky-mode spectral-band engineering and device applications," Opt. Express 12, 5661-5674 (2004).
[CrossRef] [PubMed]

1997 (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

1993 (1)

1989 (1)

A. Hardy, D. F. Welch, and W. Streifer, "Analysis of second-order gratings," IEEE J. Quantum Electron. 25, 2096-2105 (1989).
[CrossRef]

Chang-Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photon. 2, 180 (2008).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

Damzen, M. J.

Deng, Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

Ding, Y.

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

Hane, K.

T. Kobayashi, Y. Kanamori, and K. Hane, "Surface laser emission from solid polymer dye in a guided mode resonant grating filter structure," Appl. Phys. Lett. 87, 151106 (2005).
[CrossRef]

Hardy, A.

A. Hardy, D. F. Welch, and W. Streifer, "Analysis of second-order gratings," IEEE J. Quantum Electron. 25, 2096-2105 (1989).
[CrossRef]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photon. 2, 180 (2008).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

Kanamori, Y.

T. Kobayashi, Y. Kanamori, and K. Hane, "Surface laser emission from solid polymer dye in a guided mode resonant grating filter structure," Appl. Phys. Lett. 87, 151106 (2005).
[CrossRef]

Kobayashi, T.

T. Kobayashi, Y. Kanamori, and K. Hane, "Surface laser emission from solid polymer dye in a guided mode resonant grating filter structure," Appl. Phys. Lett. 87, 151106 (2005).
[CrossRef]

Magnusson, R.

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

Minassian, A.

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

Sauder, D.

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

Shokooh-Saremi, M.

Streifer, W.

A. Hardy, D. F. Welch, and W. Streifer, "Analysis of second-order gratings," IEEE J. Quantum Electron. 25, 2096-2105 (1989).
[CrossRef]

Wang, S. S.

Welch, D. F.

A. Hardy, D. F. Welch, and W. Streifer, "Analysis of second-order gratings," IEEE J. Quantum Electron. 25, 2096-2105 (1989).
[CrossRef]

Willner, A. E.

A. E. Willner, "All mirrors are not created equal," Nature Photon. 1, 87-88 (2007).
[CrossRef]

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photon. 2, 180 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. Kobayashi, Y. Kanamori, and K. Hane, "Surface laser emission from solid polymer dye in a guided mode resonant grating filter structure," Appl. Phys. Lett. 87, 151106 (2005).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. Hardy, D. F. Welch, and W. Streifer, "Analysis of second-order gratings," IEEE J. Quantum Electron. 25, 2096-2105 (1989).
[CrossRef]

D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

Nat. Photon. (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photon. 2, 180 (2008).
[CrossRef]

Nature Photon. (1)

A. E. Willner, "All mirrors are not created equal," Nature Photon. 1, 87-88 (2007).
[CrossRef]

Opt. Express (4)

Other (1)

A. Taflove and S. C. Hagness, Computational Electrodynamics: the finite difference time-domain method (Artech House, Boston, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of a 2D HCG. Thickness of grating layer, t g, was set to 460 nm. The refractive indices of grating layer, buffer layers and substrate were set to n H = 3.48, n L = 1.45 and n sub = 3.48 respectively.

Fig. 2.
Fig. 2.

Plot of (a) reflection and (b) transmission spectra of 1D and 2D HCGs. The HCGs have same period (∧ = 700 nm) and thickness of gratings (t g = 460 nm) and were supported by an infinite thick buffer layer (i.e., t buf = ∞).

Fig. 3.
Fig. 3.

Reflection spectra of 2D HCGs with varying thickness of buffer layer (i.e., t buf varies between 775 and 925 nm).

Fig. 4.
Fig. 4.

Plot of the reflection spectra of the HCGs versus normalized wavelength (i.e., normalized to the wavelength of the reflection dip). For the reflection dip at 1.343 μm, the dimensions of 2D HCG were set to ∧ = 700 nm, fill factor = 65%, t g = 460 nm and t buf = 825 nm. For a reflection dip at 1.55 and 2 μm, the corresponding dimensions of 2D HCG were scaled by a factor of 1.157 and 1.489 respectively

Fig. 5.
Fig. 5.

Surface emission spectra of 2D HCG lasers with t buf of 725 nm and infinite thick. The inset shows the reflectivity and 10% linewidth (defined as the width of the dip spectrum at a level 10% above the reflection dip, see Fig. 3) of the reflection dip, as well as the Q factor of the 2D HCGs versus t buf.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

tan(κitg)=κi(γi+δi) / (κi2γiδi) (TEmode)
tan(κitg)=ng2κi(nL2γi+δi) / (nL2κi2ng4γiδi) (TMmode)
ε(f)=εo+εlorωo2/(ωo2+22πf(2πf)2)

Metrics