Abstract

We report the successful application of low-power (~30 mW) laser radiation as an optical heating source for high-speed real-time polymerase chain reaction (PCR) amplification of DNA in nanoliter droplets dispersed in an oil phase. Light provides the heating, temperature measurement, and Taqman real-time readout in nanoliter droplets on a disposable plastic substrate. A selective heating scheme using an infrared laser appears ideal for driving PCR because it heats only the droplet, not the oil or plastic substrate, providing fast heating and completing the 40 cycles of PCR in 370 seconds. No microheaters or microfluidic circuitry were deposited on the substrate, and PCR was performed in one droplet without affecting neighboring droplets. The assay performance was quantitative and its amplification efficiency was comparable to that of a commercial instrument.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, "Optofluidic control using photothermal nanoparticles," Nature Mater. 5, 27-32 (2006).
    [CrossRef]
  2. C. N. Baroud, J. P. Delville, F. Gallaire, and R. Wunenburger, "Thermocapillary valve for droplet production and sorting," Phys. Rev. E 75, 046302 (2007).
    [CrossRef]
  3. K. T. Kotz, K. A. Noble, and G. W. Faris, "Optical microfluidics," Appl. Phys. Lett. 85, 2658-2660 (2004).
    [CrossRef]
  4. S. Rybalko, N. Magome, and K. Yoshikawa, "Forward and backward laser-guided motion of an oil droplet," Phys. Rev. E 70, 046301 (2004).
    [CrossRef]
  5. A. D. Griffiths and D. S. Tawfik, "Miniaturising the laboratory in emulsion droplets," Trends Biotech. 24, 395-402 (2006).
    [CrossRef]
  6. S. Haeberle and R. Zengerle, "Microfluidic platforms for lab-on-a-chip applications," Lab Chip 7, 1094-1110 (2007).
    [CrossRef] [PubMed]
  7. S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, "Droplet microfluidics," Lab Chip 8, 198-220 (2008).
    [CrossRef] [PubMed]
  8. K. T. Kotz, Y. Gu, and G. W. Faris, "Optically addressed droplet-based protein assay," J. Am. Chem. Soc. 127, 5736-5737 (2005).
    [CrossRef] [PubMed]
  9. C. N. Baroud, M. R. de Saint Vincent, and J. P. Delville, "An optical toolbox for total control of droplet microfluidics," Lab Chip 7, 1029-1033 (2007).
    [CrossRef] [PubMed]
  10. N. R. Beer, B. J. Hindson, E. K. Wheeler, S. B. Hall, K. A. Rose, I. M. Kennedy, and B. W. Colston, "On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets," Anal. Chem. 79, 8471-8475 (2007).
    [CrossRef] [PubMed]
  11. K. D. Dorfman, M. Chabert, J. H. Codarbox, G. Rousseau, P. de Cremoux, and J. L. Viovy, "Contamination-free continuous flow microfluidic polymerase chain reaction for quantitative and clinical applications," Anal. Chem. 77, 3700-3704 (2005).
    [CrossRef] [PubMed]
  12. Z. Guttenberg, H. Müller, H. Habermüller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, and A. Wixforth, "Planar chip device for PCR and hybridization with surface acoustic wave pump," Lab Chip 5, 308-317 (2005).
    [CrossRef] [PubMed]
  13. P. Neuzil, C. Zhang, J. Pipper, S. Oh, and L. Zhuo, "Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes," Nucleic Acids Res. 34, e77 (2006).
    [CrossRef]
  14. K. Sun, A. Yamaguchi, Y. Ishida, S. Matsuo, and H. Misawa, "A heater-integrated transparent microchannel chip for continuous-flow PCR," Sens. Actuators B 84, 283-289 (2002).
    [CrossRef]
  15. B. C. Giordano, J. Ferrance, S. Swedberg, A. F. R. Hühmer, and J. P. Landers, "Polymerase chain reaction in polymeric Microchips:DNA amplification in less than 240 seconds," Anal. Biochem. 291, 124-132 (2001).
    [CrossRef] [PubMed]
  16. R. P. Oda, M. A. Strausbauch, A. F. R. Huhmer, N. Borson, S. R. Jurrens, J. Craighead, P. J. Wettstein, B. Eckloff, B. Kline, and J. P. Landers, "Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA," Anal. Chem. 70, 4361-4368 (1998).
    [CrossRef] [PubMed]
  17. M. He, J. S. Edgar, G. D. M. Jeffries, R. M. Lorenz, J. P. Shelby, and D. T. Chiu, "Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets," Anal. Chem. 77, 1539-1544 (2005).
    [CrossRef] [PubMed]
  18. M. He, C. Sun, and D. Chiu, "Concentrating solutes and nanoparticles within individual aqueous microdroplets," Anal. Chem. 76, 1222-1227 (2004).
    [CrossRef] [PubMed]
  19. H. Terazono, A. Hattori, H. Takei, K. Takeda, and K. Yasuda, "Development of 1480nm photothermal high-speed real-time polymerase chain reaction system for rapid nucleotide recognition," Jpn. J. Appl. Phys. 47, 5212-5216 (2008).
    [CrossRef]
  20. H. Kim, S. Vishniakou, and G. W. Faris, "Petri dish PCR: Laser-heated reactions in nanoliter droplet arrays" Lab Chip (to be published).
  21. L. Kou, D. Labrie, and P. Chylek, "Refractive indices of water and ice in the 0.65- to 2.5-?m spectral range," Appl. Opt. 32, 3531-3540 (1993).
    [CrossRef] [PubMed]
  22. J. Coppeta and C. Rogers, "Dual emission laser induced fluorescence for direct planar scalar behavior measurements," Exp. Fluids 25, 1-15 (1998).
    [CrossRef]
  23. D. Ross, M. Gaitan, and L. E. Locascio, "Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye," Anal. Chem. 73, 4117-4123 (2001).
    [CrossRef] [PubMed]
  24. M. N. Slyadnev, Y. Tanaka, M. Tokeshi, and T. Kitamori, "Photothermal temperature control of a chemical reaction on a microchip using an infrared diode laser," Anal. Chem. 73, 4037-4044 (2001).
    [CrossRef] [PubMed]
  25. B. Vogelstein and K. W. Kinzler, "Digital PCR," Proc. Natl. Acad. Sci. USA 96, 9236-9241 (1999).
    [CrossRef] [PubMed]
  26. K. Bross and W. Krone, "On the number of ribosomal RNA genes in man," Human Genet. 14, 137-141 (1972).
    [CrossRef]
  27. R. G. Worton, J. Sutherland, J. E. Sylvester, H. F. Willard, S. Bodrug, I. Dubé, C. Duff, V. Kean, P. N. Ray, and R. D. Schmickel, "Human ribosomal RNA genes: orientation of the tandem array and conservation of the 5' end," Science. 239, 64-68. (1988).
    [CrossRef] [PubMed]
  28. P. H. Dear and P. R. Cook, "Cellular gels. Purifying and mapping long DNA molecules," Biochem J. 273, 695-699. (1991).
    [PubMed]
  29. B. C. Delidow, J. P. Lynch, J. J. Peluso, and B. A. White, "Polymerase chain reaction," in Basic DNA and RNA Protocols, A. Harwood, ed. (Humana Press, Totowa, NJ, 1996), pp. 275-292.
    [CrossRef]
  30. H. A. Druett, "Equilibrium temperature of a small sphere suspended in air and exposed to solar radiation," Nature 201, 611 (1964).
    [CrossRef]
  31. S. Goodhew and R. Griffiths, "Analysis of thermal-probe measurements using an iterative method to give sample conductivity and diffusivity data," Applied Energy 77, 205-223 (2004).
    [CrossRef]
  32. M. M. Kiss, L. Ortoleva-Donnelly, N. R. Beer, J. Warner, C. G. Bailey, B. W. Colston, J. M. Rothberg, D. R. Link, and J. H. Leamon, "High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets," Anal Chem 80, 8975-8981 (2008).
    [CrossRef]
  33. J. Clausell-Tormos, D. Lieber, J. C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, "Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms," Chem. Biol. 15, 427-437 (2008).
    [CrossRef] [PubMed]
  34. S. Köster, F. E. Angilè, H. Duan, J. J. Agrestil, A. Wintner, C. Schmitz, A. C. Rowat, C. A. Merten, D. Pisignano, A. D. Griffiths, and D. A. Weitz, "Drop-based microfluidic devices for encapsulation of single cells," Lab Chip 8, 1110-1115 (2008).
    [CrossRef] [PubMed]

2008 (5)

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, "Droplet microfluidics," Lab Chip 8, 198-220 (2008).
[CrossRef] [PubMed]

H. Terazono, A. Hattori, H. Takei, K. Takeda, and K. Yasuda, "Development of 1480nm photothermal high-speed real-time polymerase chain reaction system for rapid nucleotide recognition," Jpn. J. Appl. Phys. 47, 5212-5216 (2008).
[CrossRef]

M. M. Kiss, L. Ortoleva-Donnelly, N. R. Beer, J. Warner, C. G. Bailey, B. W. Colston, J. M. Rothberg, D. R. Link, and J. H. Leamon, "High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets," Anal Chem 80, 8975-8981 (2008).
[CrossRef]

J. Clausell-Tormos, D. Lieber, J. C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, "Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms," Chem. Biol. 15, 427-437 (2008).
[CrossRef] [PubMed]

S. Köster, F. E. Angilè, H. Duan, J. J. Agrestil, A. Wintner, C. Schmitz, A. C. Rowat, C. A. Merten, D. Pisignano, A. D. Griffiths, and D. A. Weitz, "Drop-based microfluidic devices for encapsulation of single cells," Lab Chip 8, 1110-1115 (2008).
[CrossRef] [PubMed]

2007 (4)

S. Haeberle and R. Zengerle, "Microfluidic platforms for lab-on-a-chip applications," Lab Chip 7, 1094-1110 (2007).
[CrossRef] [PubMed]

C. N. Baroud, J. P. Delville, F. Gallaire, and R. Wunenburger, "Thermocapillary valve for droplet production and sorting," Phys. Rev. E 75, 046302 (2007).
[CrossRef]

C. N. Baroud, M. R. de Saint Vincent, and J. P. Delville, "An optical toolbox for total control of droplet microfluidics," Lab Chip 7, 1029-1033 (2007).
[CrossRef] [PubMed]

N. R. Beer, B. J. Hindson, E. K. Wheeler, S. B. Hall, K. A. Rose, I. M. Kennedy, and B. W. Colston, "On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets," Anal. Chem. 79, 8471-8475 (2007).
[CrossRef] [PubMed]

2006 (3)

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, "Optofluidic control using photothermal nanoparticles," Nature Mater. 5, 27-32 (2006).
[CrossRef]

A. D. Griffiths and D. S. Tawfik, "Miniaturising the laboratory in emulsion droplets," Trends Biotech. 24, 395-402 (2006).
[CrossRef]

P. Neuzil, C. Zhang, J. Pipper, S. Oh, and L. Zhuo, "Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes," Nucleic Acids Res. 34, e77 (2006).
[CrossRef]

2005 (4)

K. T. Kotz, Y. Gu, and G. W. Faris, "Optically addressed droplet-based protein assay," J. Am. Chem. Soc. 127, 5736-5737 (2005).
[CrossRef] [PubMed]

M. He, J. S. Edgar, G. D. M. Jeffries, R. M. Lorenz, J. P. Shelby, and D. T. Chiu, "Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets," Anal. Chem. 77, 1539-1544 (2005).
[CrossRef] [PubMed]

K. D. Dorfman, M. Chabert, J. H. Codarbox, G. Rousseau, P. de Cremoux, and J. L. Viovy, "Contamination-free continuous flow microfluidic polymerase chain reaction for quantitative and clinical applications," Anal. Chem. 77, 3700-3704 (2005).
[CrossRef] [PubMed]

Z. Guttenberg, H. Müller, H. Habermüller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, and A. Wixforth, "Planar chip device for PCR and hybridization with surface acoustic wave pump," Lab Chip 5, 308-317 (2005).
[CrossRef] [PubMed]

2004 (4)

K. T. Kotz, K. A. Noble, and G. W. Faris, "Optical microfluidics," Appl. Phys. Lett. 85, 2658-2660 (2004).
[CrossRef]

S. Rybalko, N. Magome, and K. Yoshikawa, "Forward and backward laser-guided motion of an oil droplet," Phys. Rev. E 70, 046301 (2004).
[CrossRef]

M. He, C. Sun, and D. Chiu, "Concentrating solutes and nanoparticles within individual aqueous microdroplets," Anal. Chem. 76, 1222-1227 (2004).
[CrossRef] [PubMed]

S. Goodhew and R. Griffiths, "Analysis of thermal-probe measurements using an iterative method to give sample conductivity and diffusivity data," Applied Energy 77, 205-223 (2004).
[CrossRef]

2002 (1)

K. Sun, A. Yamaguchi, Y. Ishida, S. Matsuo, and H. Misawa, "A heater-integrated transparent microchannel chip for continuous-flow PCR," Sens. Actuators B 84, 283-289 (2002).
[CrossRef]

2001 (3)

B. C. Giordano, J. Ferrance, S. Swedberg, A. F. R. Hühmer, and J. P. Landers, "Polymerase chain reaction in polymeric Microchips:DNA amplification in less than 240 seconds," Anal. Biochem. 291, 124-132 (2001).
[CrossRef] [PubMed]

D. Ross, M. Gaitan, and L. E. Locascio, "Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye," Anal. Chem. 73, 4117-4123 (2001).
[CrossRef] [PubMed]

M. N. Slyadnev, Y. Tanaka, M. Tokeshi, and T. Kitamori, "Photothermal temperature control of a chemical reaction on a microchip using an infrared diode laser," Anal. Chem. 73, 4037-4044 (2001).
[CrossRef] [PubMed]

1999 (1)

B. Vogelstein and K. W. Kinzler, "Digital PCR," Proc. Natl. Acad. Sci. USA 96, 9236-9241 (1999).
[CrossRef] [PubMed]

1998 (2)

J. Coppeta and C. Rogers, "Dual emission laser induced fluorescence for direct planar scalar behavior measurements," Exp. Fluids 25, 1-15 (1998).
[CrossRef]

R. P. Oda, M. A. Strausbauch, A. F. R. Huhmer, N. Borson, S. R. Jurrens, J. Craighead, P. J. Wettstein, B. Eckloff, B. Kline, and J. P. Landers, "Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA," Anal. Chem. 70, 4361-4368 (1998).
[CrossRef] [PubMed]

1993 (1)

1991 (1)

P. H. Dear and P. R. Cook, "Cellular gels. Purifying and mapping long DNA molecules," Biochem J. 273, 695-699. (1991).
[PubMed]

1988 (1)

R. G. Worton, J. Sutherland, J. E. Sylvester, H. F. Willard, S. Bodrug, I. Dubé, C. Duff, V. Kean, P. N. Ray, and R. D. Schmickel, "Human ribosomal RNA genes: orientation of the tandem array and conservation of the 5' end," Science. 239, 64-68. (1988).
[CrossRef] [PubMed]

1972 (1)

K. Bross and W. Krone, "On the number of ribosomal RNA genes in man," Human Genet. 14, 137-141 (1972).
[CrossRef]

1964 (1)

H. A. Druett, "Equilibrium temperature of a small sphere suspended in air and exposed to solar radiation," Nature 201, 611 (1964).
[CrossRef]

Agrestil, J. J.

S. Köster, F. E. Angilè, H. Duan, J. J. Agrestil, A. Wintner, C. Schmitz, A. C. Rowat, C. A. Merten, D. Pisignano, A. D. Griffiths, and D. A. Weitz, "Drop-based microfluidic devices for encapsulation of single cells," Lab Chip 8, 1110-1115 (2008).
[CrossRef] [PubMed]

Angilè, F. E.

S. Köster, F. E. Angilè, H. Duan, J. J. Agrestil, A. Wintner, C. Schmitz, A. C. Rowat, C. A. Merten, D. Pisignano, A. D. Griffiths, and D. A. Weitz, "Drop-based microfluidic devices for encapsulation of single cells," Lab Chip 8, 1110-1115 (2008).
[CrossRef] [PubMed]

Bailey, C. G.

M. M. Kiss, L. Ortoleva-Donnelly, N. R. Beer, J. Warner, C. G. Bailey, B. W. Colston, J. M. Rothberg, D. R. Link, and J. H. Leamon, "High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets," Anal Chem 80, 8975-8981 (2008).
[CrossRef]

Baret, J. C.

J. Clausell-Tormos, D. Lieber, J. C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, "Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms," Chem. Biol. 15, 427-437 (2008).
[CrossRef] [PubMed]

Baroud, C. N.

C. N. Baroud, J. P. Delville, F. Gallaire, and R. Wunenburger, "Thermocapillary valve for droplet production and sorting," Phys. Rev. E 75, 046302 (2007).
[CrossRef]

C. N. Baroud, M. R. de Saint Vincent, and J. P. Delville, "An optical toolbox for total control of droplet microfluidics," Lab Chip 7, 1029-1033 (2007).
[CrossRef] [PubMed]

Beer, N. R.

M. M. Kiss, L. Ortoleva-Donnelly, N. R. Beer, J. Warner, C. G. Bailey, B. W. Colston, J. M. Rothberg, D. R. Link, and J. H. Leamon, "High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets," Anal Chem 80, 8975-8981 (2008).
[CrossRef]

N. R. Beer, B. J. Hindson, E. K. Wheeler, S. B. Hall, K. A. Rose, I. M. Kennedy, and B. W. Colston, "On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets," Anal. Chem. 79, 8471-8475 (2007).
[CrossRef] [PubMed]

Blouwolff, J.

J. Clausell-Tormos, D. Lieber, J. C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, "Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms," Chem. Biol. 15, 427-437 (2008).
[CrossRef] [PubMed]

Bodrug, S.

R. G. Worton, J. Sutherland, J. E. Sylvester, H. F. Willard, S. Bodrug, I. Dubé, C. Duff, V. Kean, P. N. Ray, and R. D. Schmickel, "Human ribosomal RNA genes: orientation of the tandem array and conservation of the 5' end," Science. 239, 64-68. (1988).
[CrossRef] [PubMed]

Borson, N.

R. P. Oda, M. A. Strausbauch, A. F. R. Huhmer, N. Borson, S. R. Jurrens, J. Craighead, P. J. Wettstein, B. Eckloff, B. Kline, and J. P. Landers, "Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA," Anal. Chem. 70, 4361-4368 (1998).
[CrossRef] [PubMed]

Bross, K.

K. Bross and W. Krone, "On the number of ribosomal RNA genes in man," Human Genet. 14, 137-141 (1972).
[CrossRef]

Chabert, M.

K. D. Dorfman, M. Chabert, J. H. Codarbox, G. Rousseau, P. de Cremoux, and J. L. Viovy, "Contamination-free continuous flow microfluidic polymerase chain reaction for quantitative and clinical applications," Anal. Chem. 77, 3700-3704 (2005).
[CrossRef] [PubMed]

Chiu, D.

M. He, C. Sun, and D. Chiu, "Concentrating solutes and nanoparticles within individual aqueous microdroplets," Anal. Chem. 76, 1222-1227 (2004).
[CrossRef] [PubMed]

Chiu, D. T.

M. He, J. S. Edgar, G. D. M. Jeffries, R. M. Lorenz, J. P. Shelby, and D. T. Chiu, "Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets," Anal. Chem. 77, 1539-1544 (2005).
[CrossRef] [PubMed]

Chylek, P.

Clausell-Tormos, J.

J. Clausell-Tormos, D. Lieber, J. C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, "Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms," Chem. Biol. 15, 427-437 (2008).
[CrossRef] [PubMed]

Codarbox, J. H.

K. D. Dorfman, M. Chabert, J. H. Codarbox, G. Rousseau, P. de Cremoux, and J. L. Viovy, "Contamination-free continuous flow microfluidic polymerase chain reaction for quantitative and clinical applications," Anal. Chem. 77, 3700-3704 (2005).
[CrossRef] [PubMed]

Colston, B. W.

M. M. Kiss, L. Ortoleva-Donnelly, N. R. Beer, J. Warner, C. G. Bailey, B. W. Colston, J. M. Rothberg, D. R. Link, and J. H. Leamon, "High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets," Anal Chem 80, 8975-8981 (2008).
[CrossRef]

N. R. Beer, B. J. Hindson, E. K. Wheeler, S. B. Hall, K. A. Rose, I. M. Kennedy, and B. W. Colston, "On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets," Anal. Chem. 79, 8471-8475 (2007).
[CrossRef] [PubMed]

Cook, P. R.

P. H. Dear and P. R. Cook, "Cellular gels. Purifying and mapping long DNA molecules," Biochem J. 273, 695-699. (1991).
[PubMed]

Coppeta, J.

J. Coppeta and C. Rogers, "Dual emission laser induced fluorescence for direct planar scalar behavior measurements," Exp. Fluids 25, 1-15 (1998).
[CrossRef]

Craighead, J.

R. P. Oda, M. A. Strausbauch, A. F. R. Huhmer, N. Borson, S. R. Jurrens, J. Craighead, P. J. Wettstein, B. Eckloff, B. Kline, and J. P. Landers, "Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA," Anal. Chem. 70, 4361-4368 (1998).
[CrossRef] [PubMed]

de Cremoux, P.

K. D. Dorfman, M. Chabert, J. H. Codarbox, G. Rousseau, P. de Cremoux, and J. L. Viovy, "Contamination-free continuous flow microfluidic polymerase chain reaction for quantitative and clinical applications," Anal. Chem. 77, 3700-3704 (2005).
[CrossRef] [PubMed]

de Saint Vincent, M. R.

C. N. Baroud, M. R. de Saint Vincent, and J. P. Delville, "An optical toolbox for total control of droplet microfluidics," Lab Chip 7, 1029-1033 (2007).
[CrossRef] [PubMed]

Dear, P. H.

P. H. Dear and P. R. Cook, "Cellular gels. Purifying and mapping long DNA molecules," Biochem J. 273, 695-699. (1991).
[PubMed]

Delville, J. P.

C. N. Baroud, M. R. de Saint Vincent, and J. P. Delville, "An optical toolbox for total control of droplet microfluidics," Lab Chip 7, 1029-1033 (2007).
[CrossRef] [PubMed]

C. N. Baroud, J. P. Delville, F. Gallaire, and R. Wunenburger, "Thermocapillary valve for droplet production and sorting," Phys. Rev. E 75, 046302 (2007).
[CrossRef]

Dorfman, K. D.

K. D. Dorfman, M. Chabert, J. H. Codarbox, G. Rousseau, P. de Cremoux, and J. L. Viovy, "Contamination-free continuous flow microfluidic polymerase chain reaction for quantitative and clinical applications," Anal. Chem. 77, 3700-3704 (2005).
[CrossRef] [PubMed]

Druett, H. A.

H. A. Druett, "Equilibrium temperature of a small sphere suspended in air and exposed to solar radiation," Nature 201, 611 (1964).
[CrossRef]

Duan, H.

J. Clausell-Tormos, D. Lieber, J. C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, "Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms," Chem. Biol. 15, 427-437 (2008).
[CrossRef] [PubMed]

S. Köster, F. E. Angilè, H. Duan, J. J. Agrestil, A. Wintner, C. Schmitz, A. C. Rowat, C. A. Merten, D. Pisignano, A. D. Griffiths, and D. A. Weitz, "Drop-based microfluidic devices for encapsulation of single cells," Lab Chip 8, 1110-1115 (2008).
[CrossRef] [PubMed]

Dubé, I.

R. G. Worton, J. Sutherland, J. E. Sylvester, H. F. Willard, S. Bodrug, I. Dubé, C. Duff, V. Kean, P. N. Ray, and R. D. Schmickel, "Human ribosomal RNA genes: orientation of the tandem array and conservation of the 5' end," Science. 239, 64-68. (1988).
[CrossRef] [PubMed]

Duff, C.

R. G. Worton, J. Sutherland, J. E. Sylvester, H. F. Willard, S. Bodrug, I. Dubé, C. Duff, V. Kean, P. N. Ray, and R. D. Schmickel, "Human ribosomal RNA genes: orientation of the tandem array and conservation of the 5' end," Science. 239, 64-68. (1988).
[CrossRef] [PubMed]

Eckloff, B.

R. P. Oda, M. A. Strausbauch, A. F. R. Huhmer, N. Borson, S. R. Jurrens, J. Craighead, P. J. Wettstein, B. Eckloff, B. Kline, and J. P. Landers, "Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA," Anal. Chem. 70, 4361-4368 (1998).
[CrossRef] [PubMed]

Edgar, J. S.

M. He, J. S. Edgar, G. D. M. Jeffries, R. M. Lorenz, J. P. Shelby, and D. T. Chiu, "Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets," Anal. Chem. 77, 1539-1544 (2005).
[CrossRef] [PubMed]

El-Harrak, A.

J. Clausell-Tormos, D. Lieber, J. C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, "Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms," Chem. Biol. 15, 427-437 (2008).
[CrossRef] [PubMed]

Faris, G. W.

K. T. Kotz, Y. Gu, and G. W. Faris, "Optically addressed droplet-based protein assay," J. Am. Chem. Soc. 127, 5736-5737 (2005).
[CrossRef] [PubMed]

K. T. Kotz, K. A. Noble, and G. W. Faris, "Optical microfluidics," Appl. Phys. Lett. 85, 2658-2660 (2004).
[CrossRef]

H. Kim, S. Vishniakou, and G. W. Faris, "Petri dish PCR: Laser-heated reactions in nanoliter droplet arrays" Lab Chip (to be published).

Felbel, J.

Z. Guttenberg, H. Müller, H. Habermüller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, and A. Wixforth, "Planar chip device for PCR and hybridization with surface acoustic wave pump," Lab Chip 5, 308-317 (2005).
[CrossRef] [PubMed]

Ferrance, J.

B. C. Giordano, J. Ferrance, S. Swedberg, A. F. R. Hühmer, and J. P. Landers, "Polymerase chain reaction in polymeric Microchips:DNA amplification in less than 240 seconds," Anal. Biochem. 291, 124-132 (2001).
[CrossRef] [PubMed]

Frenz, L.

J. Clausell-Tormos, D. Lieber, J. C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, "Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms," Chem. Biol. 15, 427-437 (2008).
[CrossRef] [PubMed]

Gaitan, M.

D. Ross, M. Gaitan, and L. E. Locascio, "Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye," Anal. Chem. 73, 4117-4123 (2001).
[CrossRef] [PubMed]

Gallaire, F.

C. N. Baroud, J. P. Delville, F. Gallaire, and R. Wunenburger, "Thermocapillary valve for droplet production and sorting," Phys. Rev. E 75, 046302 (2007).
[CrossRef]

Geisbauer, A.

Z. Guttenberg, H. Müller, H. Habermüller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, and A. Wixforth, "Planar chip device for PCR and hybridization with surface acoustic wave pump," Lab Chip 5, 308-317 (2005).
[CrossRef] [PubMed]

Giordano, B. C.

B. C. Giordano, J. Ferrance, S. Swedberg, A. F. R. Hühmer, and J. P. Landers, "Polymerase chain reaction in polymeric Microchips:DNA amplification in less than 240 seconds," Anal. Biochem. 291, 124-132 (2001).
[CrossRef] [PubMed]

Goodhew, S.

S. Goodhew and R. Griffiths, "Analysis of thermal-probe measurements using an iterative method to give sample conductivity and diffusivity data," Applied Energy 77, 205-223 (2004).
[CrossRef]

Griffiths, A. D.

J. Clausell-Tormos, D. Lieber, J. C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, "Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms," Chem. Biol. 15, 427-437 (2008).
[CrossRef] [PubMed]

S. Köster, F. E. Angilè, H. Duan, J. J. Agrestil, A. Wintner, C. Schmitz, A. C. Rowat, C. A. Merten, D. Pisignano, A. D. Griffiths, and D. A. Weitz, "Drop-based microfluidic devices for encapsulation of single cells," Lab Chip 8, 1110-1115 (2008).
[CrossRef] [PubMed]

A. D. Griffiths and D. S. Tawfik, "Miniaturising the laboratory in emulsion droplets," Trends Biotech. 24, 395-402 (2006).
[CrossRef]

Griffiths, R.

S. Goodhew and R. Griffiths, "Analysis of thermal-probe measurements using an iterative method to give sample conductivity and diffusivity data," Applied Energy 77, 205-223 (2004).
[CrossRef]

Gu, Y.

K. T. Kotz, Y. Gu, and G. W. Faris, "Optically addressed droplet-based protein assay," J. Am. Chem. Soc. 127, 5736-5737 (2005).
[CrossRef] [PubMed]

Guttenberg, Z.

Z. Guttenberg, H. Müller, H. Habermüller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, and A. Wixforth, "Planar chip device for PCR and hybridization with surface acoustic wave pump," Lab Chip 5, 308-317 (2005).
[CrossRef] [PubMed]

Habermüller, H.

Z. Guttenberg, H. Müller, H. Habermüller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, and A. Wixforth, "Planar chip device for PCR and hybridization with surface acoustic wave pump," Lab Chip 5, 308-317 (2005).
[CrossRef] [PubMed]

Haeberle, S.

S. Haeberle and R. Zengerle, "Microfluidic platforms for lab-on-a-chip applications," Lab Chip 7, 1094-1110 (2007).
[CrossRef] [PubMed]

Hall, S. B.

N. R. Beer, B. J. Hindson, E. K. Wheeler, S. B. Hall, K. A. Rose, I. M. Kennedy, and B. W. Colston, "On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets," Anal. Chem. 79, 8471-8475 (2007).
[CrossRef] [PubMed]

Hattori, A.

H. Terazono, A. Hattori, H. Takei, K. Takeda, and K. Yasuda, "Development of 1480nm photothermal high-speed real-time polymerase chain reaction system for rapid nucleotide recognition," Jpn. J. Appl. Phys. 47, 5212-5216 (2008).
[CrossRef]

He, M.

M. He, J. S. Edgar, G. D. M. Jeffries, R. M. Lorenz, J. P. Shelby, and D. T. Chiu, "Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets," Anal. Chem. 77, 1539-1544 (2005).
[CrossRef] [PubMed]

M. He, C. Sun, and D. Chiu, "Concentrating solutes and nanoparticles within individual aqueous microdroplets," Anal. Chem. 76, 1222-1227 (2004).
[CrossRef] [PubMed]

Hindson, B. J.

N. R. Beer, B. J. Hindson, E. K. Wheeler, S. B. Hall, K. A. Rose, I. M. Kennedy, and B. W. Colston, "On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets," Anal. Chem. 79, 8471-8475 (2007).
[CrossRef] [PubMed]

Holtze, C.

J. Clausell-Tormos, D. Lieber, J. C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, "Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms," Chem. Biol. 15, 427-437 (2008).
[CrossRef] [PubMed]

Huhmer, A. F. R.

R. P. Oda, M. A. Strausbauch, A. F. R. Huhmer, N. Borson, S. R. Jurrens, J. Craighead, P. J. Wettstein, B. Eckloff, B. Kline, and J. P. Landers, "Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA," Anal. Chem. 70, 4361-4368 (1998).
[CrossRef] [PubMed]

Hühmer, A. F. R.

B. C. Giordano, J. Ferrance, S. Swedberg, A. F. R. Hühmer, and J. P. Landers, "Polymerase chain reaction in polymeric Microchips:DNA amplification in less than 240 seconds," Anal. Biochem. 291, 124-132 (2001).
[CrossRef] [PubMed]

Humphry, K. J.

J. Clausell-Tormos, D. Lieber, J. C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, "Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms," Chem. Biol. 15, 427-437 (2008).
[CrossRef] [PubMed]

Hung, L. H.

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, "Droplet microfluidics," Lab Chip 8, 198-220 (2008).
[CrossRef] [PubMed]

Ishida, Y.

K. Sun, A. Yamaguchi, Y. Ishida, S. Matsuo, and H. Misawa, "A heater-integrated transparent microchannel chip for continuous-flow PCR," Sens. Actuators B 84, 283-289 (2002).
[CrossRef]

Jeffries, G. D. M.

M. He, J. S. Edgar, G. D. M. Jeffries, R. M. Lorenz, J. P. Shelby, and D. T. Chiu, "Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets," Anal. Chem. 77, 1539-1544 (2005).
[CrossRef] [PubMed]

Jurrens, S. R.

R. P. Oda, M. A. Strausbauch, A. F. R. Huhmer, N. Borson, S. R. Jurrens, J. Craighead, P. J. Wettstein, B. Eckloff, B. Kline, and J. P. Landers, "Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA," Anal. Chem. 70, 4361-4368 (1998).
[CrossRef] [PubMed]

Kean, V.

R. G. Worton, J. Sutherland, J. E. Sylvester, H. F. Willard, S. Bodrug, I. Dubé, C. Duff, V. Kean, P. N. Ray, and R. D. Schmickel, "Human ribosomal RNA genes: orientation of the tandem array and conservation of the 5' end," Science. 239, 64-68. (1988).
[CrossRef] [PubMed]

Kennedy, I. M.

N. R. Beer, B. J. Hindson, E. K. Wheeler, S. B. Hall, K. A. Rose, I. M. Kennedy, and B. W. Colston, "On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets," Anal. Chem. 79, 8471-8475 (2007).
[CrossRef] [PubMed]

Kielpinski, M.

Z. Guttenberg, H. Müller, H. Habermüller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, and A. Wixforth, "Planar chip device for PCR and hybridization with surface acoustic wave pump," Lab Chip 5, 308-317 (2005).
[CrossRef] [PubMed]

Kim, H.

H. Kim, S. Vishniakou, and G. W. Faris, "Petri dish PCR: Laser-heated reactions in nanoliter droplet arrays" Lab Chip (to be published).

Kim, J.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, "Optofluidic control using photothermal nanoparticles," Nature Mater. 5, 27-32 (2006).
[CrossRef]

Kinzler, K. W.

B. Vogelstein and K. W. Kinzler, "Digital PCR," Proc. Natl. Acad. Sci. USA 96, 9236-9241 (1999).
[CrossRef] [PubMed]

Kiss, M. M.

M. M. Kiss, L. Ortoleva-Donnelly, N. R. Beer, J. Warner, C. G. Bailey, B. W. Colston, J. M. Rothberg, D. R. Link, and J. H. Leamon, "High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets," Anal Chem 80, 8975-8981 (2008).
[CrossRef]

Kitamori, T.

M. N. Slyadnev, Y. Tanaka, M. Tokeshi, and T. Kitamori, "Photothermal temperature control of a chemical reaction on a microchip using an infrared diode laser," Anal. Chem. 73, 4037-4044 (2001).
[CrossRef] [PubMed]

Kline, B.

R. P. Oda, M. A. Strausbauch, A. F. R. Huhmer, N. Borson, S. R. Jurrens, J. Craighead, P. J. Wettstein, B. Eckloff, B. Kline, and J. P. Landers, "Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA," Anal. Chem. 70, 4361-4368 (1998).
[CrossRef] [PubMed]

Köster, S.

J. Clausell-Tormos, D. Lieber, J. C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, "Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms," Chem. Biol. 15, 427-437 (2008).
[CrossRef] [PubMed]

S. Köster, F. E. Angilè, H. Duan, J. J. Agrestil, A. Wintner, C. Schmitz, A. C. Rowat, C. A. Merten, D. Pisignano, A. D. Griffiths, and D. A. Weitz, "Drop-based microfluidic devices for encapsulation of single cells," Lab Chip 8, 1110-1115 (2008).
[CrossRef] [PubMed]

Kotz, K. T.

K. T. Kotz, Y. Gu, and G. W. Faris, "Optically addressed droplet-based protein assay," J. Am. Chem. Soc. 127, 5736-5737 (2005).
[CrossRef] [PubMed]

K. T. Kotz, K. A. Noble, and G. W. Faris, "Optical microfluidics," Appl. Phys. Lett. 85, 2658-2660 (2004).
[CrossRef]

Kou, L.

Krone, W.

K. Bross and W. Krone, "On the number of ribosomal RNA genes in man," Human Genet. 14, 137-141 (1972).
[CrossRef]

Labrie, D.

Landers, J. P.

B. C. Giordano, J. Ferrance, S. Swedberg, A. F. R. Hühmer, and J. P. Landers, "Polymerase chain reaction in polymeric Microchips:DNA amplification in less than 240 seconds," Anal. Biochem. 291, 124-132 (2001).
[CrossRef] [PubMed]

R. P. Oda, M. A. Strausbauch, A. F. R. Huhmer, N. Borson, S. R. Jurrens, J. Craighead, P. J. Wettstein, B. Eckloff, B. Kline, and J. P. Landers, "Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA," Anal. Chem. 70, 4361-4368 (1998).
[CrossRef] [PubMed]

Leamon, J. H.

M. M. Kiss, L. Ortoleva-Donnelly, N. R. Beer, J. Warner, C. G. Bailey, B. W. Colston, J. M. Rothberg, D. R. Link, and J. H. Leamon, "High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets," Anal Chem 80, 8975-8981 (2008).
[CrossRef]

Lee, A. P.

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, "Droplet microfluidics," Lab Chip 8, 198-220 (2008).
[CrossRef] [PubMed]

Lee, L. P.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, "Optofluidic control using photothermal nanoparticles," Nature Mater. 5, 27-32 (2006).
[CrossRef]

Lieber, D.

J. Clausell-Tormos, D. Lieber, J. C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, "Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms," Chem. Biol. 15, 427-437 (2008).
[CrossRef] [PubMed]

Lin, R.

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, "Droplet microfluidics," Lab Chip 8, 198-220 (2008).
[CrossRef] [PubMed]

Link, D. R.

M. M. Kiss, L. Ortoleva-Donnelly, N. R. Beer, J. Warner, C. G. Bailey, B. W. Colston, J. M. Rothberg, D. R. Link, and J. H. Leamon, "High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets," Anal Chem 80, 8975-8981 (2008).
[CrossRef]

Liu, G. L.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, "Optofluidic control using photothermal nanoparticles," Nature Mater. 5, 27-32 (2006).
[CrossRef]

Locascio, L. E.

D. Ross, M. Gaitan, and L. E. Locascio, "Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye," Anal. Chem. 73, 4117-4123 (2001).
[CrossRef] [PubMed]

Lorenz, R. M.

M. He, J. S. Edgar, G. D. M. Jeffries, R. M. Lorenz, J. P. Shelby, and D. T. Chiu, "Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets," Anal. Chem. 77, 1539-1544 (2005).
[CrossRef] [PubMed]

Lu, Y.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, "Optofluidic control using photothermal nanoparticles," Nature Mater. 5, 27-32 (2006).
[CrossRef]

Magome, N.

S. Rybalko, N. Magome, and K. Yoshikawa, "Forward and backward laser-guided motion of an oil droplet," Phys. Rev. E 70, 046301 (2004).
[CrossRef]

Matsuo, S.

K. Sun, A. Yamaguchi, Y. Ishida, S. Matsuo, and H. Misawa, "A heater-integrated transparent microchannel chip for continuous-flow PCR," Sens. Actuators B 84, 283-289 (2002).
[CrossRef]

Merten, C. A.

J. Clausell-Tormos, D. Lieber, J. C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, "Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms," Chem. Biol. 15, 427-437 (2008).
[CrossRef] [PubMed]

S. Köster, F. E. Angilè, H. Duan, J. J. Agrestil, A. Wintner, C. Schmitz, A. C. Rowat, C. A. Merten, D. Pisignano, A. D. Griffiths, and D. A. Weitz, "Drop-based microfluidic devices for encapsulation of single cells," Lab Chip 8, 1110-1115 (2008).
[CrossRef] [PubMed]

Miller, O. J.

J. Clausell-Tormos, D. Lieber, J. C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, "Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms," Chem. Biol. 15, 427-437 (2008).
[CrossRef] [PubMed]

Misawa, H.

K. Sun, A. Yamaguchi, Y. Ishida, S. Matsuo, and H. Misawa, "A heater-integrated transparent microchannel chip for continuous-flow PCR," Sens. Actuators B 84, 283-289 (2002).
[CrossRef]

Müller, H.

Z. Guttenberg, H. Müller, H. Habermüller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, and A. Wixforth, "Planar chip device for PCR and hybridization with surface acoustic wave pump," Lab Chip 5, 308-317 (2005).
[CrossRef] [PubMed]

Neuzil, P.

P. Neuzil, C. Zhang, J. Pipper, S. Oh, and L. Zhuo, "Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes," Nucleic Acids Res. 34, e77 (2006).
[CrossRef]

Noble, K. A.

K. T. Kotz, K. A. Noble, and G. W. Faris, "Optical microfluidics," Appl. Phys. Lett. 85, 2658-2660 (2004).
[CrossRef]

Oda, R. P.

R. P. Oda, M. A. Strausbauch, A. F. R. Huhmer, N. Borson, S. R. Jurrens, J. Craighead, P. J. Wettstein, B. Eckloff, B. Kline, and J. P. Landers, "Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA," Anal. Chem. 70, 4361-4368 (1998).
[CrossRef] [PubMed]

Oh, S.

P. Neuzil, C. Zhang, J. Pipper, S. Oh, and L. Zhuo, "Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes," Nucleic Acids Res. 34, e77 (2006).
[CrossRef]

Ortoleva-Donnelly, L.

M. M. Kiss, L. Ortoleva-Donnelly, N. R. Beer, J. Warner, C. G. Bailey, B. W. Colston, J. M. Rothberg, D. R. Link, and J. H. Leamon, "High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets," Anal Chem 80, 8975-8981 (2008).
[CrossRef]

Pipper, J.

P. Neuzil, C. Zhang, J. Pipper, S. Oh, and L. Zhuo, "Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes," Nucleic Acids Res. 34, e77 (2006).
[CrossRef]

Z. Guttenberg, H. Müller, H. Habermüller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, and A. Wixforth, "Planar chip device for PCR and hybridization with surface acoustic wave pump," Lab Chip 5, 308-317 (2005).
[CrossRef] [PubMed]

Pisignano, D.

S. Köster, F. E. Angilè, H. Duan, J. J. Agrestil, A. Wintner, C. Schmitz, A. C. Rowat, C. A. Merten, D. Pisignano, A. D. Griffiths, and D. A. Weitz, "Drop-based microfluidic devices for encapsulation of single cells," Lab Chip 8, 1110-1115 (2008).
[CrossRef] [PubMed]

Ray, P. N.

R. G. Worton, J. Sutherland, J. E. Sylvester, H. F. Willard, S. Bodrug, I. Dubé, C. Duff, V. Kean, P. N. Ray, and R. D. Schmickel, "Human ribosomal RNA genes: orientation of the tandem array and conservation of the 5' end," Science. 239, 64-68. (1988).
[CrossRef] [PubMed]

Rogers, C.

J. Coppeta and C. Rogers, "Dual emission laser induced fluorescence for direct planar scalar behavior measurements," Exp. Fluids 25, 1-15 (1998).
[CrossRef]

Rose, K. A.

N. R. Beer, B. J. Hindson, E. K. Wheeler, S. B. Hall, K. A. Rose, I. M. Kennedy, and B. W. Colston, "On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets," Anal. Chem. 79, 8471-8475 (2007).
[CrossRef] [PubMed]

Ross, D.

D. Ross, M. Gaitan, and L. E. Locascio, "Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye," Anal. Chem. 73, 4117-4123 (2001).
[CrossRef] [PubMed]

Rothberg, J. M.

M. M. Kiss, L. Ortoleva-Donnelly, N. R. Beer, J. Warner, C. G. Bailey, B. W. Colston, J. M. Rothberg, D. R. Link, and J. H. Leamon, "High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets," Anal Chem 80, 8975-8981 (2008).
[CrossRef]

Rousseau, G.

K. D. Dorfman, M. Chabert, J. H. Codarbox, G. Rousseau, P. de Cremoux, and J. L. Viovy, "Contamination-free continuous flow microfluidic polymerase chain reaction for quantitative and clinical applications," Anal. Chem. 77, 3700-3704 (2005).
[CrossRef] [PubMed]

Rowat, A. C.

S. Köster, F. E. Angilè, H. Duan, J. J. Agrestil, A. Wintner, C. Schmitz, A. C. Rowat, C. A. Merten, D. Pisignano, A. D. Griffiths, and D. A. Weitz, "Drop-based microfluidic devices for encapsulation of single cells," Lab Chip 8, 1110-1115 (2008).
[CrossRef] [PubMed]

Rybalko, S.

S. Rybalko, N. Magome, and K. Yoshikawa, "Forward and backward laser-guided motion of an oil droplet," Phys. Rev. E 70, 046301 (2004).
[CrossRef]

Schmickel, R. D.

R. G. Worton, J. Sutherland, J. E. Sylvester, H. F. Willard, S. Bodrug, I. Dubé, C. Duff, V. Kean, P. N. Ray, and R. D. Schmickel, "Human ribosomal RNA genes: orientation of the tandem array and conservation of the 5' end," Science. 239, 64-68. (1988).
[CrossRef] [PubMed]

Schmitz, C.

S. Köster, F. E. Angilè, H. Duan, J. J. Agrestil, A. Wintner, C. Schmitz, A. C. Rowat, C. A. Merten, D. Pisignano, A. D. Griffiths, and D. A. Weitz, "Drop-based microfluidic devices for encapsulation of single cells," Lab Chip 8, 1110-1115 (2008).
[CrossRef] [PubMed]

Scriba, J.

Z. Guttenberg, H. Müller, H. Habermüller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, and A. Wixforth, "Planar chip device for PCR and hybridization with surface acoustic wave pump," Lab Chip 5, 308-317 (2005).
[CrossRef] [PubMed]

Shelby, J. P.

M. He, J. S. Edgar, G. D. M. Jeffries, R. M. Lorenz, J. P. Shelby, and D. T. Chiu, "Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets," Anal. Chem. 77, 1539-1544 (2005).
[CrossRef] [PubMed]

Slyadnev, M. N.

M. N. Slyadnev, Y. Tanaka, M. Tokeshi, and T. Kitamori, "Photothermal temperature control of a chemical reaction on a microchip using an infrared diode laser," Anal. Chem. 73, 4037-4044 (2001).
[CrossRef] [PubMed]

Strausbauch, M. A.

R. P. Oda, M. A. Strausbauch, A. F. R. Huhmer, N. Borson, S. R. Jurrens, J. Craighead, P. J. Wettstein, B. Eckloff, B. Kline, and J. P. Landers, "Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA," Anal. Chem. 70, 4361-4368 (1998).
[CrossRef] [PubMed]

Sun, C.

M. He, C. Sun, and D. Chiu, "Concentrating solutes and nanoparticles within individual aqueous microdroplets," Anal. Chem. 76, 1222-1227 (2004).
[CrossRef] [PubMed]

Sun, K.

K. Sun, A. Yamaguchi, Y. Ishida, S. Matsuo, and H. Misawa, "A heater-integrated transparent microchannel chip for continuous-flow PCR," Sens. Actuators B 84, 283-289 (2002).
[CrossRef]

Sutherland, J.

R. G. Worton, J. Sutherland, J. E. Sylvester, H. F. Willard, S. Bodrug, I. Dubé, C. Duff, V. Kean, P. N. Ray, and R. D. Schmickel, "Human ribosomal RNA genes: orientation of the tandem array and conservation of the 5' end," Science. 239, 64-68. (1988).
[CrossRef] [PubMed]

Swedberg, S.

B. C. Giordano, J. Ferrance, S. Swedberg, A. F. R. Hühmer, and J. P. Landers, "Polymerase chain reaction in polymeric Microchips:DNA amplification in less than 240 seconds," Anal. Biochem. 291, 124-132 (2001).
[CrossRef] [PubMed]

Sylvester, J. E.

R. G. Worton, J. Sutherland, J. E. Sylvester, H. F. Willard, S. Bodrug, I. Dubé, C. Duff, V. Kean, P. N. Ray, and R. D. Schmickel, "Human ribosomal RNA genes: orientation of the tandem array and conservation of the 5' end," Science. 239, 64-68. (1988).
[CrossRef] [PubMed]

Takeda, K.

H. Terazono, A. Hattori, H. Takei, K. Takeda, and K. Yasuda, "Development of 1480nm photothermal high-speed real-time polymerase chain reaction system for rapid nucleotide recognition," Jpn. J. Appl. Phys. 47, 5212-5216 (2008).
[CrossRef]

Takei, H.

H. Terazono, A. Hattori, H. Takei, K. Takeda, and K. Yasuda, "Development of 1480nm photothermal high-speed real-time polymerase chain reaction system for rapid nucleotide recognition," Jpn. J. Appl. Phys. 47, 5212-5216 (2008).
[CrossRef]

Tanaka, Y.

M. N. Slyadnev, Y. Tanaka, M. Tokeshi, and T. Kitamori, "Photothermal temperature control of a chemical reaction on a microchip using an infrared diode laser," Anal. Chem. 73, 4037-4044 (2001).
[CrossRef] [PubMed]

Tawfik, D. S.

A. D. Griffiths and D. S. Tawfik, "Miniaturising the laboratory in emulsion droplets," Trends Biotech. 24, 395-402 (2006).
[CrossRef]

Teh, S. Y.

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, "Droplet microfluidics," Lab Chip 8, 198-220 (2008).
[CrossRef] [PubMed]

Terazono, H.

H. Terazono, A. Hattori, H. Takei, K. Takeda, and K. Yasuda, "Development of 1480nm photothermal high-speed real-time polymerase chain reaction system for rapid nucleotide recognition," Jpn. J. Appl. Phys. 47, 5212-5216 (2008).
[CrossRef]

Tokeshi, M.

M. N. Slyadnev, Y. Tanaka, M. Tokeshi, and T. Kitamori, "Photothermal temperature control of a chemical reaction on a microchip using an infrared diode laser," Anal. Chem. 73, 4037-4044 (2001).
[CrossRef] [PubMed]

Viovy, J. L.

K. D. Dorfman, M. Chabert, J. H. Codarbox, G. Rousseau, P. de Cremoux, and J. L. Viovy, "Contamination-free continuous flow microfluidic polymerase chain reaction for quantitative and clinical applications," Anal. Chem. 77, 3700-3704 (2005).
[CrossRef] [PubMed]

Vishniakou, S.

H. Kim, S. Vishniakou, and G. W. Faris, "Petri dish PCR: Laser-heated reactions in nanoliter droplet arrays" Lab Chip (to be published).

Vogelstein, B.

B. Vogelstein and K. W. Kinzler, "Digital PCR," Proc. Natl. Acad. Sci. USA 96, 9236-9241 (1999).
[CrossRef] [PubMed]

Warner, J.

M. M. Kiss, L. Ortoleva-Donnelly, N. R. Beer, J. Warner, C. G. Bailey, B. W. Colston, J. M. Rothberg, D. R. Link, and J. H. Leamon, "High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets," Anal Chem 80, 8975-8981 (2008).
[CrossRef]

Weitz, D. A.

J. Clausell-Tormos, D. Lieber, J. C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, "Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms," Chem. Biol. 15, 427-437 (2008).
[CrossRef] [PubMed]

S. Köster, F. E. Angilè, H. Duan, J. J. Agrestil, A. Wintner, C. Schmitz, A. C. Rowat, C. A. Merten, D. Pisignano, A. D. Griffiths, and D. A. Weitz, "Drop-based microfluidic devices for encapsulation of single cells," Lab Chip 8, 1110-1115 (2008).
[CrossRef] [PubMed]

Wettstein, P. J.

R. P. Oda, M. A. Strausbauch, A. F. R. Huhmer, N. Borson, S. R. Jurrens, J. Craighead, P. J. Wettstein, B. Eckloff, B. Kline, and J. P. Landers, "Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA," Anal. Chem. 70, 4361-4368 (1998).
[CrossRef] [PubMed]

Wheeler, E. K.

N. R. Beer, B. J. Hindson, E. K. Wheeler, S. B. Hall, K. A. Rose, I. M. Kennedy, and B. W. Colston, "On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets," Anal. Chem. 79, 8471-8475 (2007).
[CrossRef] [PubMed]

Willard, H. F.

R. G. Worton, J. Sutherland, J. E. Sylvester, H. F. Willard, S. Bodrug, I. Dubé, C. Duff, V. Kean, P. N. Ray, and R. D. Schmickel, "Human ribosomal RNA genes: orientation of the tandem array and conservation of the 5' end," Science. 239, 64-68. (1988).
[CrossRef] [PubMed]

Wintner, A.

S. Köster, F. E. Angilè, H. Duan, J. J. Agrestil, A. Wintner, C. Schmitz, A. C. Rowat, C. A. Merten, D. Pisignano, A. D. Griffiths, and D. A. Weitz, "Drop-based microfluidic devices for encapsulation of single cells," Lab Chip 8, 1110-1115 (2008).
[CrossRef] [PubMed]

Wixforth, A.

Z. Guttenberg, H. Müller, H. Habermüller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, and A. Wixforth, "Planar chip device for PCR and hybridization with surface acoustic wave pump," Lab Chip 5, 308-317 (2005).
[CrossRef] [PubMed]

Worton, R. G.

R. G. Worton, J. Sutherland, J. E. Sylvester, H. F. Willard, S. Bodrug, I. Dubé, C. Duff, V. Kean, P. N. Ray, and R. D. Schmickel, "Human ribosomal RNA genes: orientation of the tandem array and conservation of the 5' end," Science. 239, 64-68. (1988).
[CrossRef] [PubMed]

Wunenburger, R.

C. N. Baroud, J. P. Delville, F. Gallaire, and R. Wunenburger, "Thermocapillary valve for droplet production and sorting," Phys. Rev. E 75, 046302 (2007).
[CrossRef]

Yamaguchi, A.

K. Sun, A. Yamaguchi, Y. Ishida, S. Matsuo, and H. Misawa, "A heater-integrated transparent microchannel chip for continuous-flow PCR," Sens. Actuators B 84, 283-289 (2002).
[CrossRef]

Yasuda, K.

H. Terazono, A. Hattori, H. Takei, K. Takeda, and K. Yasuda, "Development of 1480nm photothermal high-speed real-time polymerase chain reaction system for rapid nucleotide recognition," Jpn. J. Appl. Phys. 47, 5212-5216 (2008).
[CrossRef]

Yoshikawa, K.

S. Rybalko, N. Magome, and K. Yoshikawa, "Forward and backward laser-guided motion of an oil droplet," Phys. Rev. E 70, 046301 (2004).
[CrossRef]

Zengerle, R.

S. Haeberle and R. Zengerle, "Microfluidic platforms for lab-on-a-chip applications," Lab Chip 7, 1094-1110 (2007).
[CrossRef] [PubMed]

Zhang, C.

P. Neuzil, C. Zhang, J. Pipper, S. Oh, and L. Zhuo, "Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes," Nucleic Acids Res. 34, e77 (2006).
[CrossRef]

Zhuo, L.

P. Neuzil, C. Zhang, J. Pipper, S. Oh, and L. Zhuo, "Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes," Nucleic Acids Res. 34, e77 (2006).
[CrossRef]

Anal Chem (1)

M. M. Kiss, L. Ortoleva-Donnelly, N. R. Beer, J. Warner, C. G. Bailey, B. W. Colston, J. M. Rothberg, D. R. Link, and J. H. Leamon, "High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets," Anal Chem 80, 8975-8981 (2008).
[CrossRef]

Anal. Biochem. (1)

B. C. Giordano, J. Ferrance, S. Swedberg, A. F. R. Hühmer, and J. P. Landers, "Polymerase chain reaction in polymeric Microchips:DNA amplification in less than 240 seconds," Anal. Biochem. 291, 124-132 (2001).
[CrossRef] [PubMed]

Anal. Chem. (7)

R. P. Oda, M. A. Strausbauch, A. F. R. Huhmer, N. Borson, S. R. Jurrens, J. Craighead, P. J. Wettstein, B. Eckloff, B. Kline, and J. P. Landers, "Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA," Anal. Chem. 70, 4361-4368 (1998).
[CrossRef] [PubMed]

M. He, J. S. Edgar, G. D. M. Jeffries, R. M. Lorenz, J. P. Shelby, and D. T. Chiu, "Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets," Anal. Chem. 77, 1539-1544 (2005).
[CrossRef] [PubMed]

M. He, C. Sun, and D. Chiu, "Concentrating solutes and nanoparticles within individual aqueous microdroplets," Anal. Chem. 76, 1222-1227 (2004).
[CrossRef] [PubMed]

N. R. Beer, B. J. Hindson, E. K. Wheeler, S. B. Hall, K. A. Rose, I. M. Kennedy, and B. W. Colston, "On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets," Anal. Chem. 79, 8471-8475 (2007).
[CrossRef] [PubMed]

K. D. Dorfman, M. Chabert, J. H. Codarbox, G. Rousseau, P. de Cremoux, and J. L. Viovy, "Contamination-free continuous flow microfluidic polymerase chain reaction for quantitative and clinical applications," Anal. Chem. 77, 3700-3704 (2005).
[CrossRef] [PubMed]

D. Ross, M. Gaitan, and L. E. Locascio, "Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye," Anal. Chem. 73, 4117-4123 (2001).
[CrossRef] [PubMed]

M. N. Slyadnev, Y. Tanaka, M. Tokeshi, and T. Kitamori, "Photothermal temperature control of a chemical reaction on a microchip using an infrared diode laser," Anal. Chem. 73, 4037-4044 (2001).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. T. Kotz, K. A. Noble, and G. W. Faris, "Optical microfluidics," Appl. Phys. Lett. 85, 2658-2660 (2004).
[CrossRef]

Applied Energy (1)

S. Goodhew and R. Griffiths, "Analysis of thermal-probe measurements using an iterative method to give sample conductivity and diffusivity data," Applied Energy 77, 205-223 (2004).
[CrossRef]

Biochem J. (1)

P. H. Dear and P. R. Cook, "Cellular gels. Purifying and mapping long DNA molecules," Biochem J. 273, 695-699. (1991).
[PubMed]

Chem. Biol. (1)

J. Clausell-Tormos, D. Lieber, J. C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, "Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms," Chem. Biol. 15, 427-437 (2008).
[CrossRef] [PubMed]

Exp. Fluids (1)

J. Coppeta and C. Rogers, "Dual emission laser induced fluorescence for direct planar scalar behavior measurements," Exp. Fluids 25, 1-15 (1998).
[CrossRef]

Human Genet. (1)

K. Bross and W. Krone, "On the number of ribosomal RNA genes in man," Human Genet. 14, 137-141 (1972).
[CrossRef]

J. Am. Chem. Soc. (1)

K. T. Kotz, Y. Gu, and G. W. Faris, "Optically addressed droplet-based protein assay," J. Am. Chem. Soc. 127, 5736-5737 (2005).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. (1)

H. Terazono, A. Hattori, H. Takei, K. Takeda, and K. Yasuda, "Development of 1480nm photothermal high-speed real-time polymerase chain reaction system for rapid nucleotide recognition," Jpn. J. Appl. Phys. 47, 5212-5216 (2008).
[CrossRef]

Lab Chip (6)

H. Kim, S. Vishniakou, and G. W. Faris, "Petri dish PCR: Laser-heated reactions in nanoliter droplet arrays" Lab Chip (to be published).

Z. Guttenberg, H. Müller, H. Habermüller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, and A. Wixforth, "Planar chip device for PCR and hybridization with surface acoustic wave pump," Lab Chip 5, 308-317 (2005).
[CrossRef] [PubMed]

C. N. Baroud, M. R. de Saint Vincent, and J. P. Delville, "An optical toolbox for total control of droplet microfluidics," Lab Chip 7, 1029-1033 (2007).
[CrossRef] [PubMed]

S. Haeberle and R. Zengerle, "Microfluidic platforms for lab-on-a-chip applications," Lab Chip 7, 1094-1110 (2007).
[CrossRef] [PubMed]

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, "Droplet microfluidics," Lab Chip 8, 198-220 (2008).
[CrossRef] [PubMed]

S. Köster, F. E. Angilè, H. Duan, J. J. Agrestil, A. Wintner, C. Schmitz, A. C. Rowat, C. A. Merten, D. Pisignano, A. D. Griffiths, and D. A. Weitz, "Drop-based microfluidic devices for encapsulation of single cells," Lab Chip 8, 1110-1115 (2008).
[CrossRef] [PubMed]

Nature (1)

H. A. Druett, "Equilibrium temperature of a small sphere suspended in air and exposed to solar radiation," Nature 201, 611 (1964).
[CrossRef]

Nature Mater. (1)

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, "Optofluidic control using photothermal nanoparticles," Nature Mater. 5, 27-32 (2006).
[CrossRef]

Nucleic Acids Res. (1)

P. Neuzil, C. Zhang, J. Pipper, S. Oh, and L. Zhuo, "Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes," Nucleic Acids Res. 34, e77 (2006).
[CrossRef]

Phys. Rev. E (2)

C. N. Baroud, J. P. Delville, F. Gallaire, and R. Wunenburger, "Thermocapillary valve for droplet production and sorting," Phys. Rev. E 75, 046302 (2007).
[CrossRef]

S. Rybalko, N. Magome, and K. Yoshikawa, "Forward and backward laser-guided motion of an oil droplet," Phys. Rev. E 70, 046301 (2004).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

B. Vogelstein and K. W. Kinzler, "Digital PCR," Proc. Natl. Acad. Sci. USA 96, 9236-9241 (1999).
[CrossRef] [PubMed]

Science. (1)

R. G. Worton, J. Sutherland, J. E. Sylvester, H. F. Willard, S. Bodrug, I. Dubé, C. Duff, V. Kean, P. N. Ray, and R. D. Schmickel, "Human ribosomal RNA genes: orientation of the tandem array and conservation of the 5' end," Science. 239, 64-68. (1988).
[CrossRef] [PubMed]

Sens. Actuators B (1)

K. Sun, A. Yamaguchi, Y. Ishida, S. Matsuo, and H. Misawa, "A heater-integrated transparent microchannel chip for continuous-flow PCR," Sens. Actuators B 84, 283-289 (2002).
[CrossRef]

Trends Biotech. (1)

A. D. Griffiths and D. S. Tawfik, "Miniaturising the laboratory in emulsion droplets," Trends Biotech. 24, 395-402 (2006).
[CrossRef]

Other (1)

B. C. Delidow, J. P. Lynch, J. J. Peluso, and B. A. White, "Polymerase chain reaction," in Basic DNA and RNA Protocols, A. Harwood, ed. (Humana Press, Totowa, NJ, 1996), pp. 275-292.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig 1.
Fig 1.

(a) Illustration of laser-irradiated droplets dispersed in mineral oil for PCR on a microscope stage. (b) Home-built PCR chamber that holds the mineral oil and droplets at a constant temperature based on a conductive glass slide. The silicon O-ring forces the top surface of the oil to be optically flat, and a single-use hydrophobic Hybrislip is inserted as the floor of the chamber.

Fig 2.
Fig 2.

Normalized fluorescence intensity of LDS 698 dissolved in the aqueous droplet as a function of temperature.

Fig 3.
Fig 3.

Amplification curves of droplet-based PCR with laser heating at four concentrations. The 4 ng/μl, 400 pg/μl, 40 pg/μl concentrations correspond to roughly 14,000, 1,400, and 140 target copies per droplet, respectively. Bright field images of a PCR mixture droplet dispersed in the mineral oil phase before and after PCR with a 100 μm scale bar are also shown as insets.

Fig 4.
Fig 4.

Fluorescence images from FAM emission of droplets during the amplification cycle of laser heating PCR with the oil phase held at 58°C.

Fig. 5
Fig. 5

Laser power required for the successful PCR amplification as a function of droplet diameter.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Q=4π·k·r·(T1T0)

Metrics