Abstract

We present a detailed study of oscillating modes in a slab waveguide with air core and anisotropic metamaterial cladding. It is shown that, under specific dielectric configurations, slow and even stopped electromagnetic wave can be supported by such an air waveguide. We propose a linearly tapped waveguide structure that could lead the propagating light to a complete standstill. Both the theoretical analysis and the proposed waveguide have been validated by full-wave simulation based on finite-difference time-domain method.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Lukin and A. Imamoglu, "Controlling photons using electromagnetically induced transparency," Nature 413, 273-276 (2001).
    [CrossRef] [PubMed]
  2. E. Gehrig, M. van der Poel, J. Mørk, and O. Hess, "Dynamic Spatiotemporal Speed Control of Ultrashort Pulses in Quantum-Dot SOAs," IEEE J. Quant. Electron. 42, 1047-1054 (2006).
    [CrossRef]
  3. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
    [CrossRef] [PubMed]
  4. A. Melloni, F. Morichetti, and M. Martinelli, "Optical slow wave structures," Opt. Photon. News 14, 44 (2003).
    [CrossRef]
  5. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and Slow Light Propagation in a Room-Temperature Solid," Science 301, 200-202 (2003).
    [CrossRef] [PubMed]
  6. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  7. K. Lee and N. M. Lawandy, "Optically induced pulse delay in a solid-state Raman amplifier," Appl. Phys. Lett. 78, 703-705 (2001).
    [CrossRef]
  8. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404 (2004).
    [CrossRef] [PubMed]
  9. Z. Fu, Q. Gan, Y. J. Ding, and F. J. Bartoli, "From waveguiding to spatial localization of THz waves within a plasmonic metallic grating," IEEE J. Sel. Top. Quantum Electron. 14, 486-490 (2008).
    [CrossRef]
  10. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures," Phys. Rev. Lett. 100, 256803 (2008).
    [CrossRef] [PubMed]
  11. J. He and S. He, "Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate," IEEE Microw. Wire. Compon. Lett. 16, 96-98 (2005).
    [CrossRef]
  12. K. L. Tsakmakidis, A. Klaedtke, D. P. Aryal, C. Jamois, and O. Hess, "Single-mode operation in the slow-light regime using oscillatory waves in generalized left-handed heterostructures," Appl. Phys. Lett. 89, 201103 (2006).
    [CrossRef]
  13. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, "'Trapped rainbow' storage of light in metamaterials," Nature 450, 397-401 (2007).
    [CrossRef] [PubMed]
  14. K. Y. Kim, "Tunnelling-induced temporary light trapping in negative-index-clad slab waveguide," Jpn. J. Appl. Phys. 47, 4843-4845 (2008).
    [CrossRef]
  15. Y. J. Huang, W. T. Lu, and S. Sridhar, "Nanowire waveguide made from extremely anisotropic metamaterials," Phys. Rev. A 77, 063836 (2008).
    [CrossRef]
  16. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett. 32, 53-55 (2007).
    [CrossRef]
  17. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical Negative Refraction in Bulk Metamaterials of Nanowires," Science 321, 930 (2008).
    [CrossRef] [PubMed]
  18. T. Jiang and Y. J. Feng, "Slow and frozen waves in a planar air waveguide with anisotropic metamaterial cladding," in Proceedings of the 2008 International Conference on Microwave and Millimeter Wave Technology (Nanjing, China, Apr. 21-24, 2008), pp. 1627-1630.
    [CrossRef]
  19. J. He, Y. Jin, Z. Hong, and S. He, "Slow light in a dielectric waveguide with negative-refractive-index photonic crystal cladding," Opt. Express 16, 11077(2008).
    [CrossRef] [PubMed]
  20. C. Li, Q. Sui, and F. Li, "Complex guided wave solutions of grounded dielectric slab made of metamaterials," PIER 51, 187-195 (2005).
    [CrossRef]
  21. W. Shu and J. M. Song, "Complete mode spectrum of a grounded dielectric slab with double negative metamaterials," PIER 65, 103-123 (2006).
    [CrossRef]
  22. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).
  23. B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116(2006).
    [CrossRef]
  24. R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, "Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media," J. Opt. Soc. Am. B 23, 498-505 (2006).
    [CrossRef]
  25. D. W. Lynch and W. R. Hunter, Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic Press, New York, 1985).

2008 (6)

Z. Fu, Q. Gan, Y. J. Ding, and F. J. Bartoli, "From waveguiding to spatial localization of THz waves within a plasmonic metallic grating," IEEE J. Sel. Top. Quantum Electron. 14, 486-490 (2008).
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures," Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef] [PubMed]

K. Y. Kim, "Tunnelling-induced temporary light trapping in negative-index-clad slab waveguide," Jpn. J. Appl. Phys. 47, 4843-4845 (2008).
[CrossRef]

Y. J. Huang, W. T. Lu, and S. Sridhar, "Nanowire waveguide made from extremely anisotropic metamaterials," Phys. Rev. A 77, 063836 (2008).
[CrossRef]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical Negative Refraction in Bulk Metamaterials of Nanowires," Science 321, 930 (2008).
[CrossRef] [PubMed]

J. He, Y. Jin, Z. Hong, and S. He, "Slow light in a dielectric waveguide with negative-refractive-index photonic crystal cladding," Opt. Express 16, 11077(2008).
[CrossRef] [PubMed]

2007 (2)

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett. 32, 53-55 (2007).
[CrossRef]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, "'Trapped rainbow' storage of light in metamaterials," Nature 450, 397-401 (2007).
[CrossRef] [PubMed]

2006 (5)

K. L. Tsakmakidis, A. Klaedtke, D. P. Aryal, C. Jamois, and O. Hess, "Single-mode operation in the slow-light regime using oscillatory waves in generalized left-handed heterostructures," Appl. Phys. Lett. 89, 201103 (2006).
[CrossRef]

W. Shu and J. M. Song, "Complete mode spectrum of a grounded dielectric slab with double negative metamaterials," PIER 65, 103-123 (2006).
[CrossRef]

B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116(2006).
[CrossRef]

E. Gehrig, M. van der Poel, J. Mørk, and O. Hess, "Dynamic Spatiotemporal Speed Control of Ultrashort Pulses in Quantum-Dot SOAs," IEEE J. Quant. Electron. 42, 1047-1054 (2006).
[CrossRef]

R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, "Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media," J. Opt. Soc. Am. B 23, 498-505 (2006).
[CrossRef]

2005 (4)

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

C. Li, Q. Sui, and F. Li, "Complex guided wave solutions of grounded dielectric slab made of metamaterials," PIER 51, 187-195 (2005).
[CrossRef]

J. He and S. He, "Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate," IEEE Microw. Wire. Compon. Lett. 16, 96-98 (2005).
[CrossRef]

2004 (1)

M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

2003 (2)

A. Melloni, F. Morichetti, and M. Martinelli, "Optical slow wave structures," Opt. Photon. News 14, 44 (2003).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and Slow Light Propagation in a Room-Temperature Solid," Science 301, 200-202 (2003).
[CrossRef] [PubMed]

2001 (2)

M. D. Lukin and A. Imamoglu, "Controlling photons using electromagnetically induced transparency," Nature 413, 273-276 (2001).
[CrossRef] [PubMed]

K. Lee and N. M. Lawandy, "Optically induced pulse delay in a solid-state Raman amplifier," Appl. Phys. Lett. 78, 703-705 (2001).
[CrossRef]

Aryal, D. P.

K. L. Tsakmakidis, A. Klaedtke, D. P. Aryal, C. Jamois, and O. Hess, "Single-mode operation in the slow-light regime using oscillatory waves in generalized left-handed heterostructures," Appl. Phys. Lett. 89, 201103 (2006).
[CrossRef]

Bartal, G.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical Negative Refraction in Bulk Metamaterials of Nanowires," Science 321, 930 (2008).
[CrossRef] [PubMed]

Bartoli, F. J.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures," Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef] [PubMed]

Z. Fu, Q. Gan, Y. J. Ding, and F. J. Bartoli, "From waveguiding to spatial localization of THz waves within a plasmonic metallic grating," IEEE J. Sel. Top. Quantum Electron. 14, 486-490 (2008).
[CrossRef]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and Slow Light Propagation in a Room-Temperature Solid," Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, "'Trapped rainbow' storage of light in metamaterials," Nature 450, 397-401 (2007).
[CrossRef] [PubMed]

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and Slow Light Propagation in a Room-Temperature Solid," Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Ding, Y. J.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures," Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef] [PubMed]

Z. Fu, Q. Gan, Y. J. Ding, and F. J. Bartoli, "From waveguiding to spatial localization of THz waves within a plasmonic metallic grating," IEEE J. Sel. Top. Quantum Electron. 14, 486-490 (2008).
[CrossRef]

Dolling, G.

Elser, J.

Fu, Z.

Z. Fu, Q. Gan, Y. J. Ding, and F. J. Bartoli, "From waveguiding to spatial localization of THz waves within a plasmonic metallic grating," IEEE J. Sel. Top. Quantum Electron. 14, 486-490 (2008).
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures," Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef] [PubMed]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Gan, Q.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures," Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef] [PubMed]

Z. Fu, Q. Gan, Y. J. Ding, and F. J. Bartoli, "From waveguiding to spatial localization of THz waves within a plasmonic metallic grating," IEEE J. Sel. Top. Quantum Electron. 14, 486-490 (2008).
[CrossRef]

Gauthier, D. J.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Gehrig, E.

E. Gehrig, M. van der Poel, J. Mørk, and O. Hess, "Dynamic Spatiotemporal Speed Control of Ultrashort Pulses in Quantum-Dot SOAs," IEEE J. Quant. Electron. 42, 1047-1054 (2006).
[CrossRef]

Hamann, H. F.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

He, J.

J. He, Y. Jin, Z. Hong, and S. He, "Slow light in a dielectric waveguide with negative-refractive-index photonic crystal cladding," Opt. Express 16, 11077(2008).
[CrossRef] [PubMed]

J. He and S. He, "Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate," IEEE Microw. Wire. Compon. Lett. 16, 96-98 (2005).
[CrossRef]

He, S.

J. He, Y. Jin, Z. Hong, and S. He, "Slow light in a dielectric waveguide with negative-refractive-index photonic crystal cladding," Opt. Express 16, 11077(2008).
[CrossRef] [PubMed]

J. He and S. He, "Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate," IEEE Microw. Wire. Compon. Lett. 16, 96-98 (2005).
[CrossRef]

Hess, O.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, "'Trapped rainbow' storage of light in metamaterials," Nature 450, 397-401 (2007).
[CrossRef] [PubMed]

K. L. Tsakmakidis, A. Klaedtke, D. P. Aryal, C. Jamois, and O. Hess, "Single-mode operation in the slow-light regime using oscillatory waves in generalized left-handed heterostructures," Appl. Phys. Lett. 89, 201103 (2006).
[CrossRef]

E. Gehrig, M. van der Poel, J. Mørk, and O. Hess, "Dynamic Spatiotemporal Speed Control of Ultrashort Pulses in Quantum-Dot SOAs," IEEE J. Quant. Electron. 42, 1047-1054 (2006).
[CrossRef]

Hong, Z.

Huang, Y. J.

Y. J. Huang, W. T. Lu, and S. Sridhar, "Nanowire waveguide made from extremely anisotropic metamaterials," Phys. Rev. A 77, 063836 (2008).
[CrossRef]

Imamoglu, A.

M. D. Lukin and A. Imamoglu, "Controlling photons using electromagnetically induced transparency," Nature 413, 273-276 (2001).
[CrossRef] [PubMed]

Jamois, C.

K. L. Tsakmakidis, A. Klaedtke, D. P. Aryal, C. Jamois, and O. Hess, "Single-mode operation in the slow-light regime using oscillatory waves in generalized left-handed heterostructures," Appl. Phys. Lett. 89, 201103 (2006).
[CrossRef]

Jin, Y.

Kim, K. Y.

K. Y. Kim, "Tunnelling-induced temporary light trapping in negative-index-clad slab waveguide," Jpn. J. Appl. Phys. 47, 4843-4845 (2008).
[CrossRef]

Klaedtke, A.

K. L. Tsakmakidis, A. Klaedtke, D. P. Aryal, C. Jamois, and O. Hess, "Single-mode operation in the slow-light regime using oscillatory waves in generalized left-handed heterostructures," Appl. Phys. Lett. 89, 201103 (2006).
[CrossRef]

Lawandy, N. M.

K. Lee and N. M. Lawandy, "Optically induced pulse delay in a solid-state Raman amplifier," Appl. Phys. Lett. 78, 703-705 (2001).
[CrossRef]

Lee, K.

K. Lee and N. M. Lawandy, "Optically induced pulse delay in a solid-state Raman amplifier," Appl. Phys. Lett. 78, 703-705 (2001).
[CrossRef]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and Slow Light Propagation in a Room-Temperature Solid," Science 301, 200-202 (2003).
[CrossRef] [PubMed]

Li, C.

C. Li, Q. Sui, and F. Li, "Complex guided wave solutions of grounded dielectric slab made of metamaterials," PIER 51, 187-195 (2005).
[CrossRef]

Li, F.

C. Li, Q. Sui, and F. Li, "Complex guided wave solutions of grounded dielectric slab made of metamaterials," PIER 51, 187-195 (2005).
[CrossRef]

Linden, S.

Liu, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical Negative Refraction in Bulk Metamaterials of Nanowires," Science 321, 930 (2008).
[CrossRef] [PubMed]

Liu, Z.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical Negative Refraction in Bulk Metamaterials of Nanowires," Science 321, 930 (2008).
[CrossRef] [PubMed]

Lu, W. T.

Y. J. Huang, W. T. Lu, and S. Sridhar, "Nanowire waveguide made from extremely anisotropic metamaterials," Phys. Rev. A 77, 063836 (2008).
[CrossRef]

Lukin, M. D.

M. D. Lukin and A. Imamoglu, "Controlling photons using electromagnetically induced transparency," Nature 413, 273-276 (2001).
[CrossRef] [PubMed]

Martinelli, M.

A. Melloni, F. Morichetti, and M. Martinelli, "Optical slow wave structures," Opt. Photon. News 14, 44 (2003).
[CrossRef]

McNab, S. J.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Melloni, A.

A. Melloni, F. Morichetti, and M. Martinelli, "Optical slow wave structures," Opt. Photon. News 14, 44 (2003).
[CrossRef]

Morichetti, F.

A. Melloni, F. Morichetti, and M. Martinelli, "Optical slow wave structures," Opt. Photon. News 14, 44 (2003).
[CrossRef]

Mørk, J.

E. Gehrig, M. van der Poel, J. Mørk, and O. Hess, "Dynamic Spatiotemporal Speed Control of Ultrashort Pulses in Quantum-Dot SOAs," IEEE J. Quant. Electron. 42, 1047-1054 (2006).
[CrossRef]

Narimanov, E. E.

O'Boyle, M.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Pendry, J. B.

B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116(2006).
[CrossRef]

Podolskiy, V. A.

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Shu, W.

W. Shu and J. M. Song, "Complete mode spectrum of a grounded dielectric slab with double negative metamaterials," PIER 65, 103-123 (2006).
[CrossRef]

Song, J. M.

W. Shu and J. M. Song, "Complete mode spectrum of a grounded dielectric slab with double negative metamaterials," PIER 65, 103-123 (2006).
[CrossRef]

Soukoulis, C. M.

Sridhar, S.

Y. J. Huang, W. T. Lu, and S. Sridhar, "Nanowire waveguide made from extremely anisotropic metamaterials," Phys. Rev. A 77, 063836 (2008).
[CrossRef]

Stacy, A. M.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical Negative Refraction in Bulk Metamaterials of Nanowires," Science 321, 930 (2008).
[CrossRef] [PubMed]

Stockman, M. I.

M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

Sui, Q.

C. Li, Q. Sui, and F. Li, "Complex guided wave solutions of grounded dielectric slab made of metamaterials," PIER 51, 187-195 (2005).
[CrossRef]

Sun, C.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical Negative Refraction in Bulk Metamaterials of Nanowires," Science 321, 930 (2008).
[CrossRef] [PubMed]

Tsai, D. P.

B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116(2006).
[CrossRef]

Tsakmakidis, K. L.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, "'Trapped rainbow' storage of light in metamaterials," Nature 450, 397-401 (2007).
[CrossRef] [PubMed]

K. L. Tsakmakidis, A. Klaedtke, D. P. Aryal, C. Jamois, and O. Hess, "Single-mode operation in the slow-light regime using oscillatory waves in generalized left-handed heterostructures," Appl. Phys. Lett. 89, 201103 (2006).
[CrossRef]

van der Poel, M.

E. Gehrig, M. van der Poel, J. Mørk, and O. Hess, "Dynamic Spatiotemporal Speed Control of Ultrashort Pulses in Quantum-Dot SOAs," IEEE J. Quant. Electron. 42, 1047-1054 (2006).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Wang, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical Negative Refraction in Bulk Metamaterials of Nanowires," Science 321, 930 (2008).
[CrossRef] [PubMed]

Wangberg, R.

Wegener, M.

Wood, B.

B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116(2006).
[CrossRef]

Yao, J.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical Negative Refraction in Bulk Metamaterials of Nanowires," Science 321, 930 (2008).
[CrossRef] [PubMed]

Zhang, X.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical Negative Refraction in Bulk Metamaterials of Nanowires," Science 321, 930 (2008).
[CrossRef] [PubMed]

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

K. Lee and N. M. Lawandy, "Optically induced pulse delay in a solid-state Raman amplifier," Appl. Phys. Lett. 78, 703-705 (2001).
[CrossRef]

K. L. Tsakmakidis, A. Klaedtke, D. P. Aryal, C. Jamois, and O. Hess, "Single-mode operation in the slow-light regime using oscillatory waves in generalized left-handed heterostructures," Appl. Phys. Lett. 89, 201103 (2006).
[CrossRef]

IEEE J. Quant. Electron. (1)

E. Gehrig, M. van der Poel, J. Mørk, and O. Hess, "Dynamic Spatiotemporal Speed Control of Ultrashort Pulses in Quantum-Dot SOAs," IEEE J. Quant. Electron. 42, 1047-1054 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Z. Fu, Q. Gan, Y. J. Ding, and F. J. Bartoli, "From waveguiding to spatial localization of THz waves within a plasmonic metallic grating," IEEE J. Sel. Top. Quantum Electron. 14, 486-490 (2008).
[CrossRef]

IEEE Microw. Wire. Compon. Lett. (1)

J. He and S. He, "Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate," IEEE Microw. Wire. Compon. Lett. 16, 96-98 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

K. Y. Kim, "Tunnelling-induced temporary light trapping in negative-index-clad slab waveguide," Jpn. J. Appl. Phys. 47, 4843-4845 (2008).
[CrossRef]

Nature (3)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, "'Trapped rainbow' storage of light in metamaterials," Nature 450, 397-401 (2007).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

M. D. Lukin and A. Imamoglu, "Controlling photons using electromagnetically induced transparency," Nature 413, 273-276 (2001).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Opt. Photon. News (1)

A. Melloni, F. Morichetti, and M. Martinelli, "Optical slow wave structures," Opt. Photon. News 14, 44 (2003).
[CrossRef]

Phys. Rev. A (1)

Y. J. Huang, W. T. Lu, and S. Sridhar, "Nanowire waveguide made from extremely anisotropic metamaterials," Phys. Rev. A 77, 063836 (2008).
[CrossRef]

Phys. Rev. B (1)

B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116(2006).
[CrossRef]

Phys. Rev. Lett. (3)

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures," Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

PIER (2)

C. Li, Q. Sui, and F. Li, "Complex guided wave solutions of grounded dielectric slab made of metamaterials," PIER 51, 187-195 (2005).
[CrossRef]

W. Shu and J. M. Song, "Complete mode spectrum of a grounded dielectric slab with double negative metamaterials," PIER 65, 103-123 (2006).
[CrossRef]

Science (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and Slow Light Propagation in a Room-Temperature Solid," Science 301, 200-202 (2003).
[CrossRef] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical Negative Refraction in Bulk Metamaterials of Nanowires," Science 321, 930 (2008).
[CrossRef] [PubMed]

Other (3)

T. Jiang and Y. J. Feng, "Slow and frozen waves in a planar air waveguide with anisotropic metamaterial cladding," in Proceedings of the 2008 International Conference on Microwave and Millimeter Wave Technology (Nanjing, China, Apr. 21-24, 2008), pp. 1627-1630.
[CrossRef]

D. W. Lynch and W. R. Hunter, Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic Press, New York, 1985).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).

Supplementary Material (1)

» Media 1: MOV (4075 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

A planar air waveguide with anisotropic metamaterial cladding.

Fig. 2.
Fig. 2.

The complete dispersion diagrams of the air waveguide for different parameter sets. Solid line is for normalized β of the guided modes. Dashed line is for normalized α of the complex guided modes. Blue color is for the forward ordinary modes; red color is for the backward ordinary modes; green color is for the complex guided modes. The green circles represent degeneracy points of forward-wave and backward-wave modes. The insets show the magnetic field patterns (Hy ) for different modes. The Hy field patterns in (b), (c) is similar with that in (a), and those in (e), (f) is similar with that in (d).

Fig. 3.
Fig. 3.

Variation of group velocity (a), and normalized power flow (b) with reduced slab thickness for εx = -0.1, εz = -1 and μy = 1. Blue color is for the forward ordinary modes; red color is for the backward ordinary modes; green color is for the complex guided modes. The green circles denote the degeneracy points.

Fig. 4.
Fig. 4.

(a) Geometry of the linearly tapered air waveguide with anisotropic metamaterial cladding. The material parameters of the AMM are chosen as εx = -0.1, εz = -1 and μy = 1. (b) Snapshots of the propagation of a monochromatic (wavelength is 600nm) Gaussian modulated pulse (p-polarized magnetic-field component). The duration of the pulse is 5e-14 s. The time interval between every two snapshots is 10T (T is the period of the input light)(Media 1).

Fig. 5.
Fig. 5.

(a) The relationship between the air slab thicknesses of the stop position and the excitation frequencies (material dispersion is not considered here). (b) Spatial field distributions in the tapered waveguide for light launched from the wider port, with the corresponding wavelengths marked on the left side.

Fig. 6.
Fig. 6.

A proposed tapered waveguide fabricated with aniostropic metamaterial, which is composed of a stack of alternating layers of silver and silicon dioxide, with layer thickness much less than the wavelength.

Tables (1)

Tables Icon

Table 1. Six parameter sets of AMM supporting TM oscillating modes.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

tan(κd)=2η1η2,
Sz=12Re(ExHy*)=β2ωεx,0Hy2.
εx=εy=(1N) ε1+Nε2
εz=ε1ε2Nε1+(1N)ε2.

Metrics