Abstract

We have fabricated a quarter-wave plate from a single layer of birefringent electric split-ring resonators (ELC). For comparison, an appropriately scaled double layer meanderline structure was fabricated. At the design frequency of 639 GHz, the ELC structure achieves 99.9% circular polarization while the meanderline achieves 99.6%. The meanderline displays a larger bandwidth of operation, attaining over 99% circular polarization from 615 – 743 GHz, while the ELC achieves 99% from 626 – 660 GHz. However, both are broad enough for use with CW sources making ELCs a more attractive choice due to the ease of fabrication. Both samples are free standing with a total thickness of 70μm for the meanderline structure and a mere 20μm for the ELC highlighting the large degree of birefringence exhibited with metamaterial structures.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and μ," Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
    [CrossRef] [PubMed]
  3. J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966 (2000).
    [CrossRef] [PubMed]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
    [CrossRef] [PubMed]
  5. L. Young, L. A. Robinson, and C. A. Hacking, "Meander-line polarizer," IEEE Trans. Antennas Propag. 21, 376-378 (1973).
    [CrossRef]
  6. L. Xu, X.-C. Zhang, and D. H. Hooks Auston, "Terahertz beam generation by femtosecond optical pulses in eletro-optic materials," Appl. Phys. Lett. 61, 1784-1786 (1992).
    [CrossRef]
  7. D. You, R. R. Jones, D. R. Dykaar, and P. H. Bucksbaum, "Generation of High-Power Half-Cycle 500 Femtosecond Electromagnetic Pulses," Opt. Lett. 18, 290-292 (1993).
    [CrossRef] [PubMed]
  8. R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, "Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz," Appl. Phys. Lett. 76, 3191-3193 (2000).
    [CrossRef]
  9. Q. Wu, M. Litz, and X.-C. Zhang, "Broadband detection capability of ZnTe electro-optic field detectors," Appl. Phys. Lett. 68, 2924-2926 (1996).
    [CrossRef]
  10. P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, "Detection of THz pulses by phase retardation in lithium tantalate," Phys. Rev. E 53, 3052-3054 (1996).
    [CrossRef]
  11. P. C. M. Planken, H. Nienhuys, H. J. Bakker, and T. Wenckebach, "Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe," J. Opt. Soc. Am. B 18, 313-317 (2001)
    [CrossRef]
  12. M. B. M. Rinzan and A. G. U. Perera, S. G. Matsik, H. C. Liu, Z. R. Wasilewski, and M. Buchanan, "AlGaAs emitter/GaAs barrier terahertz detector with a 2.3 THz threshold," Appl. Phys. Lett. 86, 071112 (2005)
    [CrossRef]
  13. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990).
    [CrossRef]
  14. B. B. Hu and M. C. Nuss, "Imaging with terahertz waves," Opt. Lett. 20, 1716-1718 (1995).
    [CrossRef] [PubMed]
  15. D. M. Mittleman, J. Cunningham, M. C. Nuss and M. Geva, "Noncontact semiconductor wafer characterization with the terahertz Hall effect," Appl. Phys. Lett. 71, 16-18 (1997).
    [CrossRef]
  16. R. H. Jacobsen, D. M. Mittleman and M. C. Nuss, "Chemical recognition of gases and gas mixtures with terahertz waves," Opt. Lett. 21, 2011-2013 (1996).
    [CrossRef] [PubMed]
  17. T. W. Crowe, T. Globus, D. L. Woolard and J. L. Hesler, "Terahertz sources and detectors and their application to biological sensing," Philosophical transactions - Royal Society A 362, 365-377 (2004).
    [CrossRef]
  18. N. Kanda, K. Konishi, and M Kuwata-Gonokami, "Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns," Opt. Express 15, 11117-11125 (2007).
    [CrossRef] [PubMed]
  19. J. Masson and G. Gallot, "Terahertz achromatic quarter-wave plate," Opt. Lett. 31, 265-267 (2006).
    [CrossRef] [PubMed]
  20. K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, "Terahertz time-domain spectroscopy of amino acids and polypeptides," Biophys. J. 89, 22-24 (2005).
    [CrossRef]
  21. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
    [CrossRef] [PubMed]
  22. W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
    [CrossRef] [PubMed]
  23. H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor and R. D. Averitt, "Active metamaterial devices," Nature 444, 597-600 (2006).
    [CrossRef] [PubMed]
  24. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt, "Electrically resonant terahertz metamaterials: theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
    [CrossRef]
  25. G. Fowles, Introduction to Modern Optics, 2nd ed. (Dover, New York, (1989).
  26. M. Mazur and W. Zieniutycz, "Multi-layer meander line polarizer for Ku band," International conference on Microwaves, Radar and Wireless Communications 1, 78-81 (2000).
  27. J.-F. Z¨urcher, "A meander-line polarizer covering the full E-band (60-90 GHz)," Microwave and Optical Technology Letters 18, 320-323 (1998).
    [CrossRef]
  28. J. S. Tharp, J. Lopez-Alonso, J. C. Ginn, C. F. Middleton, B. A. Lail, B. A. Munk, and G. D. Boreman, "Demonstration of a single-layer meanderline phase retarder at infrared," Opt. Lett. 31, 2687-2689 (2006).
    [CrossRef] [PubMed]
  29. J. S. Tharp, J. Alda, and G. D. Boreman, "Off-axis behavior of an infrared meander-line waveplate," Opt. Lett. 32, 2852-2854 (2007).
    [CrossRef] [PubMed]
  30. H. O. Moser, J. A. Kong, L. K. Jian, H. S. Chen, G. Liu, M. Bahou, S. M. P. Kalaiselvi, S. M. Maniam, X. X. Cheng, B. I. Wu, P. D. Gu, A. Chen, S. P. Heussler, S. B. Mahmood, and L. Wen, "Free-standing THz electromagnetic metamaterials," Opt. Express 16, 13773-13780 (2008).
    [CrossRef] [PubMed]
  31. H. S. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed materials composed of only S-shaped resonators," Phys. Rev. E 70, 057605 (2004).
    [CrossRef]
  32. H. S. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Metamaterial exhibiting left-handed properties over multiple frequency," J. Appl. Phys. 96, 5338-5340 (2004).
    [CrossRef]
  33. M. Reid and R. Fedosejevs, "Terahertz birefringence and attenuation properties of wood and paper," Appl. Opt. 45, 2766-2772 (2006).
    [CrossRef] [PubMed]
  34. C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, "Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals," Appl. Phys. Lett. 83, 4497 (2003).
    [CrossRef]
  35. C. Hsieh, R. Pan, T. Tang, H. Chen, and C. Pan, "Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate," Opt. Lett. 31, 1112-1114 (2006).
    [CrossRef] [PubMed]
  36. Y. Hirota, R. Hattori, M. Tani, and M. Hangyo, "Polarization modulation of terahertz electromagnetic radiation by four-contact photoconductive antenna," Opt. Express 14, 4486-4493 (2006).
    [CrossRef] [PubMed]
  37. C. Imhof and R. Zengerle, "Strong birefringence in left-handed metallic metamaterials," Opt. Commun. 280, 213-216 (2007).
    [CrossRef]
  38. H. Tao, A. C. Strikwerda, K. Fan, C.M. Bingham, W. J. Padilla, X. Zhang, R. D. Averitt, J. Phys. D: Appl. Phys. 41, 232004 (2008).
    [CrossRef]
  39. D. Goldstein, Polarized Light, 2nd ed. (Marcel-Dekker, New York, 2003).
    [CrossRef]
  40. G. G. Stokes, "On the composition and resolution of streams of polarized light from different sources," Trans. Cambridge Philos. Soc. 9, 399 (1852).
  41. R. C. Jones, "New calculus for the treatment of optical systems," J. Opt. Soc. Am. 31, 488-493, (1941).
    [CrossRef]
  42. C. Caloz and T. Itoh, Electromagnetic Metamaterials, (Wiley, Hoboken, 2006).

2008

2007

N. Kanda, K. Konishi, and M Kuwata-Gonokami, "Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns," Opt. Express 15, 11117-11125 (2007).
[CrossRef] [PubMed]

J. S. Tharp, J. Alda, and G. D. Boreman, "Off-axis behavior of an infrared meander-line waveplate," Opt. Lett. 32, 2852-2854 (2007).
[CrossRef] [PubMed]

C. Imhof and R. Zengerle, "Strong birefringence in left-handed metallic metamaterials," Opt. Commun. 280, 213-216 (2007).
[CrossRef]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt, "Electrically resonant terahertz metamaterials: theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
[CrossRef]

2006

W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor and R. D. Averitt, "Active metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

J. Masson and G. Gallot, "Terahertz achromatic quarter-wave plate," Opt. Lett. 31, 265-267 (2006).
[CrossRef] [PubMed]

C. Hsieh, R. Pan, T. Tang, H. Chen, and C. Pan, "Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate," Opt. Lett. 31, 1112-1114 (2006).
[CrossRef] [PubMed]

M. Reid and R. Fedosejevs, "Terahertz birefringence and attenuation properties of wood and paper," Appl. Opt. 45, 2766-2772 (2006).
[CrossRef] [PubMed]

Y. Hirota, R. Hattori, M. Tani, and M. Hangyo, "Polarization modulation of terahertz electromagnetic radiation by four-contact photoconductive antenna," Opt. Express 14, 4486-4493 (2006).
[CrossRef] [PubMed]

J. S. Tharp, J. Lopez-Alonso, J. C. Ginn, C. F. Middleton, B. A. Lail, B. A. Munk, and G. D. Boreman, "Demonstration of a single-layer meanderline phase retarder at infrared," Opt. Lett. 31, 2687-2689 (2006).
[CrossRef] [PubMed]

2005

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, "Terahertz time-domain spectroscopy of amino acids and polypeptides," Biophys. J. 89, 22-24 (2005).
[CrossRef]

M. B. M. Rinzan and A. G. U. Perera, S. G. Matsik, H. C. Liu, Z. R. Wasilewski, and M. Buchanan, "AlGaAs emitter/GaAs barrier terahertz detector with a 2.3 THz threshold," Appl. Phys. Lett. 86, 071112 (2005)
[CrossRef]

2004

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

H. S. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed materials composed of only S-shaped resonators," Phys. Rev. E 70, 057605 (2004).
[CrossRef]

H. S. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Metamaterial exhibiting left-handed properties over multiple frequency," J. Appl. Phys. 96, 5338-5340 (2004).
[CrossRef]

2003

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, "Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals," Appl. Phys. Lett. 83, 4497 (2003).
[CrossRef]

2001

2000

M. Mazur and W. Zieniutycz, "Multi-layer meander line polarizer for Ku band," International conference on Microwaves, Radar and Wireless Communications 1, 78-81 (2000).

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, "Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz," Appl. Phys. Lett. 76, 3191-3193 (2000).
[CrossRef]

1998

J.-F. Z¨urcher, "A meander-line polarizer covering the full E-band (60-90 GHz)," Microwave and Optical Technology Letters 18, 320-323 (1998).
[CrossRef]

1997

D. M. Mittleman, J. Cunningham, M. C. Nuss and M. Geva, "Noncontact semiconductor wafer characterization with the terahertz Hall effect," Appl. Phys. Lett. 71, 16-18 (1997).
[CrossRef]

1996

Q. Wu, M. Litz, and X.-C. Zhang, "Broadband detection capability of ZnTe electro-optic field detectors," Appl. Phys. Lett. 68, 2924-2926 (1996).
[CrossRef]

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, "Detection of THz pulses by phase retardation in lithium tantalate," Phys. Rev. E 53, 3052-3054 (1996).
[CrossRef]

R. H. Jacobsen, D. M. Mittleman and M. C. Nuss, "Chemical recognition of gases and gas mixtures with terahertz waves," Opt. Lett. 21, 2011-2013 (1996).
[CrossRef] [PubMed]

1995

1993

1992

L. Xu, X.-C. Zhang, and D. H. Hooks Auston, "Terahertz beam generation by femtosecond optical pulses in eletro-optic materials," Appl. Phys. Lett. 61, 1784-1786 (1992).
[CrossRef]

1990

1973

L. Young, L. A. Robinson, and C. A. Hacking, "Meander-line polarizer," IEEE Trans. Antennas Propag. 21, 376-378 (1973).
[CrossRef]

1968

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and μ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

1941

1852

G. G. Stokes, "On the composition and resolution of streams of polarized light from different sources," Trans. Cambridge Philos. Soc. 9, 399 (1852).

Alda, J.

Aronsson, M. T.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt, "Electrically resonant terahertz metamaterials: theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
[CrossRef]

Averitt, R. D.

H. Tao, A. C. Strikwerda, K. Fan, C.M. Bingham, W. J. Padilla, X. Zhang, R. D. Averitt, J. Phys. D: Appl. Phys. 41, 232004 (2008).
[CrossRef]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt, "Electrically resonant terahertz metamaterials: theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
[CrossRef]

H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor and R. D. Averitt, "Active metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Bahou, M.

Bakker, H. J.

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Bingham, C.M.

H. Tao, A. C. Strikwerda, K. Fan, C.M. Bingham, W. J. Padilla, X. Zhang, R. D. Averitt, J. Phys. D: Appl. Phys. 41, 232004 (2008).
[CrossRef]

Boreman, G. D.

Brodschelm, A.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, "Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz," Appl. Phys. Lett. 76, 3191-3193 (2000).
[CrossRef]

Buchanan, M.

M. B. M. Rinzan and A. G. U. Perera, S. G. Matsik, H. C. Liu, Z. R. Wasilewski, and M. Buchanan, "AlGaAs emitter/GaAs barrier terahertz detector with a 2.3 THz threshold," Appl. Phys. Lett. 86, 071112 (2005)
[CrossRef]

Bucksbaum, P. H.

Chen, A.

Chen, C.-Y.

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, "Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals," Appl. Phys. Lett. 83, 4497 (2003).
[CrossRef]

Chen, H.

Chen, H. S.

H. O. Moser, J. A. Kong, L. K. Jian, H. S. Chen, G. Liu, M. Bahou, S. M. P. Kalaiselvi, S. M. Maniam, X. X. Cheng, B. I. Wu, P. D. Gu, A. Chen, S. P. Heussler, S. B. Mahmood, and L. Wen, "Free-standing THz electromagnetic metamaterials," Opt. Express 16, 13773-13780 (2008).
[CrossRef] [PubMed]

H. S. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed materials composed of only S-shaped resonators," Phys. Rev. E 70, 057605 (2004).
[CrossRef]

H. S. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Metamaterial exhibiting left-handed properties over multiple frequency," J. Appl. Phys. 96, 5338-5340 (2004).
[CrossRef]

Chen, H-T

H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor and R. D. Averitt, "Active metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Chen, K.

H. S. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed materials composed of only S-shaped resonators," Phys. Rev. E 70, 057605 (2004).
[CrossRef]

H. S. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Metamaterial exhibiting left-handed properties over multiple frequency," J. Appl. Phys. 96, 5338-5340 (2004).
[CrossRef]

Cheng, X. X.

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Cunningham, J.

D. M. Mittleman, J. Cunningham, M. C. Nuss and M. Geva, "Noncontact semiconductor wafer characterization with the terahertz Hall effect," Appl. Phys. Lett. 71, 16-18 (1997).
[CrossRef]

Dykaar, D. R.

Fan, K.

H. Tao, A. C. Strikwerda, K. Fan, C.M. Bingham, W. J. Padilla, X. Zhang, R. D. Averitt, J. Phys. D: Appl. Phys. 41, 232004 (2008).
[CrossRef]

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Fattinger, C.

Fedosejevs, R.

Gallot, G.

Geva, M.

D. M. Mittleman, J. Cunningham, M. C. Nuss and M. Geva, "Noncontact semiconductor wafer characterization with the terahertz Hall effect," Appl. Phys. Lett. 71, 16-18 (1997).
[CrossRef]

Ginn, J. C.

Gossard, A. C.

H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor and R. D. Averitt, "Active metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Grischkowsky, D.

Grzegorczyk, T. M.

H. S. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed materials composed of only S-shaped resonators," Phys. Rev. E 70, 057605 (2004).
[CrossRef]

H. S. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Metamaterial exhibiting left-handed properties over multiple frequency," J. Appl. Phys. 96, 5338-5340 (2004).
[CrossRef]

Gu, P. D.

Hacking, C. A.

L. Young, L. A. Robinson, and C. A. Hacking, "Meander-line polarizer," IEEE Trans. Antennas Propag. 21, 376-378 (1973).
[CrossRef]

Hangyo, M.

Hattori, R.

Helm, H.

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, "Detection of THz pulses by phase retardation in lithium tantalate," Phys. Rev. E 53, 3052-3054 (1996).
[CrossRef]

Heussler, S. P.

Highstrete, C.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt, "Electrically resonant terahertz metamaterials: theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Hirota, Y.

Hooks Auston, D. H.

L. Xu, X.-C. Zhang, and D. H. Hooks Auston, "Terahertz beam generation by femtosecond optical pulses in eletro-optic materials," Appl. Phys. Lett. 61, 1784-1786 (1992).
[CrossRef]

Hsieh, C.

Hu, B. B.

Huangfu, J.

H. S. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Metamaterial exhibiting left-handed properties over multiple frequency," J. Appl. Phys. 96, 5338-5340 (2004).
[CrossRef]

H. S. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed materials composed of only S-shaped resonators," Phys. Rev. E 70, 057605 (2004).
[CrossRef]

Huber, R.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, "Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz," Appl. Phys. Lett. 76, 3191-3193 (2000).
[CrossRef]

Imhof, C.

C. Imhof and R. Zengerle, "Strong birefringence in left-handed metallic metamaterials," Opt. Commun. 280, 213-216 (2007).
[CrossRef]

Jacobsen, R. H.

Jian, L. K.

Jones, R. C.

Jones, R. R.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Kalaiselvi, S. M. P.

Kanda, N.

Keiding, S.

Keiding, S. R.

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, "Detection of THz pulses by phase retardation in lithium tantalate," Phys. Rev. E 53, 3052-3054 (1996).
[CrossRef]

Kong, J. A.

H. O. Moser, J. A. Kong, L. K. Jian, H. S. Chen, G. Liu, M. Bahou, S. M. P. Kalaiselvi, S. M. Maniam, X. X. Cheng, B. I. Wu, P. D. Gu, A. Chen, S. P. Heussler, S. B. Mahmood, and L. Wen, "Free-standing THz electromagnetic metamaterials," Opt. Express 16, 13773-13780 (2008).
[CrossRef] [PubMed]

H. S. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed materials composed of only S-shaped resonators," Phys. Rev. E 70, 057605 (2004).
[CrossRef]

H. S. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Metamaterial exhibiting left-handed properties over multiple frequency," J. Appl. Phys. 96, 5338-5340 (2004).
[CrossRef]

Konishi, K.

Kuwata-Gonokami, M

Lail, B. A.

Lee, M.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt, "Electrically resonant terahertz metamaterials: theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
[CrossRef]

Leitenstorfer, A.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, "Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz," Appl. Phys. Lett. 76, 3191-3193 (2000).
[CrossRef]

Litz, M.

Q. Wu, M. Litz, and X.-C. Zhang, "Broadband detection capability of ZnTe electro-optic field detectors," Appl. Phys. Lett. 68, 2924-2926 (1996).
[CrossRef]

Liu, G.

Liu, H. C.

M. B. M. Rinzan and A. G. U. Perera, S. G. Matsik, H. C. Liu, Z. R. Wasilewski, and M. Buchanan, "AlGaAs emitter/GaAs barrier terahertz detector with a 2.3 THz threshold," Appl. Phys. Lett. 86, 071112 (2005)
[CrossRef]

Lopez-Alonso, J.

Maniam, S. M.

Masson, J.

Matsik, S. G.

M. B. M. Rinzan and A. G. U. Perera, S. G. Matsik, H. C. Liu, Z. R. Wasilewski, and M. Buchanan, "AlGaAs emitter/GaAs barrier terahertz detector with a 2.3 THz threshold," Appl. Phys. Lett. 86, 071112 (2005)
[CrossRef]

Mazur, M.

M. Mazur and W. Zieniutycz, "Multi-layer meander line polarizer for Ku band," International conference on Microwaves, Radar and Wireless Communications 1, 78-81 (2000).

Middleton, C. F.

Mittleman, D. M.

D. M. Mittleman, J. Cunningham, M. C. Nuss and M. Geva, "Noncontact semiconductor wafer characterization with the terahertz Hall effect," Appl. Phys. Lett. 71, 16-18 (1997).
[CrossRef]

R. H. Jacobsen, D. M. Mittleman and M. C. Nuss, "Chemical recognition of gases and gas mixtures with terahertz waves," Opt. Lett. 21, 2011-2013 (1996).
[CrossRef] [PubMed]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Moser, H. O.

Munk, B. A.

Murakami, H.

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, "Terahertz time-domain spectroscopy of amino acids and polypeptides," Biophys. J. 89, 22-24 (2005).
[CrossRef]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Nienhuys, H.

Nuss, M. C.

Ohtake, H.

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, "Terahertz time-domain spectroscopy of amino acids and polypeptides," Biophys. J. 89, 22-24 (2005).
[CrossRef]

Padilla, W. J.

H. Tao, A. C. Strikwerda, K. Fan, C.M. Bingham, W. J. Padilla, X. Zhang, R. D. Averitt, J. Phys. D: Appl. Phys. 41, 232004 (2008).
[CrossRef]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt, "Electrically resonant terahertz metamaterials: theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor and R. D. Averitt, "Active metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Pan, C.

Pan, C.-L.

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, "Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals," Appl. Phys. Lett. 83, 4497 (2003).
[CrossRef]

Pan, R.

Pan, R.-P.

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, "Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals," Appl. Phys. Lett. 83, 4497 (2003).
[CrossRef]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

Perera, A. G. U.

M. B. M. Rinzan and A. G. U. Perera, S. G. Matsik, H. C. Liu, Z. R. Wasilewski, and M. Buchanan, "AlGaAs emitter/GaAs barrier terahertz detector with a 2.3 THz threshold," Appl. Phys. Lett. 86, 071112 (2005)
[CrossRef]

Phys, J.

H. Tao, A. C. Strikwerda, K. Fan, C.M. Bingham, W. J. Padilla, X. Zhang, R. D. Averitt, J. Phys. D: Appl. Phys. 41, 232004 (2008).
[CrossRef]

Planken, P. C. M.

Ran, L.

H. S. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Metamaterial exhibiting left-handed properties over multiple frequency," J. Appl. Phys. 96, 5338-5340 (2004).
[CrossRef]

H. S. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed materials composed of only S-shaped resonators," Phys. Rev. E 70, 057605 (2004).
[CrossRef]

Reid, M.

Rinzan, M. B. M.

M. B. M. Rinzan and A. G. U. Perera, S. G. Matsik, H. C. Liu, Z. R. Wasilewski, and M. Buchanan, "AlGaAs emitter/GaAs barrier terahertz detector with a 2.3 THz threshold," Appl. Phys. Lett. 86, 071112 (2005)
[CrossRef]

Robinson, L. A.

L. Young, L. A. Robinson, and C. A. Hacking, "Meander-line polarizer," IEEE Trans. Antennas Propag. 21, 376-378 (1973).
[CrossRef]

Sarukura, N.

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, "Terahertz time-domain spectroscopy of amino acids and polypeptides," Biophys. J. 89, 22-24 (2005).
[CrossRef]

Sasakawa, H.

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, "Terahertz time-domain spectroscopy of amino acids and polypeptides," Biophys. J. 89, 22-24 (2005).
[CrossRef]

Schall, M.

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, "Detection of THz pulses by phase retardation in lithium tantalate," Phys. Rev. E 53, 3052-3054 (1996).
[CrossRef]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Schyja, V.

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, "Detection of THz pulses by phase retardation in lithium tantalate," Phys. Rev. E 53, 3052-3054 (1996).
[CrossRef]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Stokes, G. G.

G. G. Stokes, "On the composition and resolution of streams of polarized light from different sources," Trans. Cambridge Philos. Soc. 9, 399 (1852).

Strikwerda, A. C.

H. Tao, A. C. Strikwerda, K. Fan, C.M. Bingham, W. J. Padilla, X. Zhang, R. D. Averitt, J. Phys. D: Appl. Phys. 41, 232004 (2008).
[CrossRef]

Tamura, A.

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, "Terahertz time-domain spectroscopy of amino acids and polypeptides," Biophys. J. 89, 22-24 (2005).
[CrossRef]

Tang, T.

Tani, M.

Tao, H.

H. Tao, A. C. Strikwerda, K. Fan, C.M. Bingham, W. J. Padilla, X. Zhang, R. D. Averitt, J. Phys. D: Appl. Phys. 41, 232004 (2008).
[CrossRef]

Tauser, F.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, "Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz," Appl. Phys. Lett. 76, 3191-3193 (2000).
[CrossRef]

Taylor, A. J.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt, "Electrically resonant terahertz metamaterials: theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor and R. D. Averitt, "Active metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Tharp, J. S.

Tominaga, K.

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, "Terahertz time-domain spectroscopy of amino acids and polypeptides," Biophys. J. 89, 22-24 (2005).
[CrossRef]

Tsai, T.-R.

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, "Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals," Appl. Phys. Lett. 83, 4497 (2003).
[CrossRef]

Uhd Jepsen, P.

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, "Detection of THz pulses by phase retardation in lithium tantalate," Phys. Rev. E 53, 3052-3054 (1996).
[CrossRef]

van Exter, M.

Veselago, V. G.

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and μ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Wasilewski, Z. R.

M. B. M. Rinzan and A. G. U. Perera, S. G. Matsik, H. C. Liu, Z. R. Wasilewski, and M. Buchanan, "AlGaAs emitter/GaAs barrier terahertz detector with a 2.3 THz threshold," Appl. Phys. Lett. 86, 071112 (2005)
[CrossRef]

Wenckebach, T.

Winnewisser, C.

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, "Detection of THz pulses by phase retardation in lithium tantalate," Phys. Rev. E 53, 3052-3054 (1996).
[CrossRef]

Wu, B. I.

Wu, Q.

Q. Wu, M. Litz, and X.-C. Zhang, "Broadband detection capability of ZnTe electro-optic field detectors," Appl. Phys. Lett. 68, 2924-2926 (1996).
[CrossRef]

Xu, L.

L. Xu, X.-C. Zhang, and D. H. Hooks Auston, "Terahertz beam generation by femtosecond optical pulses in eletro-optic materials," Appl. Phys. Lett. 61, 1784-1786 (1992).
[CrossRef]

Yamamoto, K.

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, "Terahertz time-domain spectroscopy of amino acids and polypeptides," Biophys. J. 89, 22-24 (2005).
[CrossRef]

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

You, D.

Young, L.

L. Young, L. A. Robinson, and C. A. Hacking, "Meander-line polarizer," IEEE Trans. Antennas Propag. 21, 376-378 (1973).
[CrossRef]

Z¨urcher, J.-F.

J.-F. Z¨urcher, "A meander-line polarizer covering the full E-band (60-90 GHz)," Microwave and Optical Technology Letters 18, 320-323 (1998).
[CrossRef]

Zengerle, R.

C. Imhof and R. Zengerle, "Strong birefringence in left-handed metallic metamaterials," Opt. Commun. 280, 213-216 (2007).
[CrossRef]

Zhang, X.

H. Tao, A. C. Strikwerda, K. Fan, C.M. Bingham, W. J. Padilla, X. Zhang, R. D. Averitt, J. Phys. D: Appl. Phys. 41, 232004 (2008).
[CrossRef]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

H. S. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed materials composed of only S-shaped resonators," Phys. Rev. E 70, 057605 (2004).
[CrossRef]

H. S. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Metamaterial exhibiting left-handed properties over multiple frequency," J. Appl. Phys. 96, 5338-5340 (2004).
[CrossRef]

Zhang, X.-C.

Q. Wu, M. Litz, and X.-C. Zhang, "Broadband detection capability of ZnTe electro-optic field detectors," Appl. Phys. Lett. 68, 2924-2926 (1996).
[CrossRef]

L. Xu, X.-C. Zhang, and D. H. Hooks Auston, "Terahertz beam generation by femtosecond optical pulses in eletro-optic materials," Appl. Phys. Lett. 61, 1784-1786 (1992).
[CrossRef]

Zide, J. M. O.

H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor and R. D. Averitt, "Active metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Zieniutycz, W.

M. Mazur and W. Zieniutycz, "Multi-layer meander line polarizer for Ku band," International conference on Microwaves, Radar and Wireless Communications 1, 78-81 (2000).

Appl. Opt.

Appl. Phys. Lett.

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, "Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals," Appl. Phys. Lett. 83, 4497 (2003).
[CrossRef]

L. Xu, X.-C. Zhang, and D. H. Hooks Auston, "Terahertz beam generation by femtosecond optical pulses in eletro-optic materials," Appl. Phys. Lett. 61, 1784-1786 (1992).
[CrossRef]

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, "Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz," Appl. Phys. Lett. 76, 3191-3193 (2000).
[CrossRef]

Q. Wu, M. Litz, and X.-C. Zhang, "Broadband detection capability of ZnTe electro-optic field detectors," Appl. Phys. Lett. 68, 2924-2926 (1996).
[CrossRef]

M. B. M. Rinzan and A. G. U. Perera, S. G. Matsik, H. C. Liu, Z. R. Wasilewski, and M. Buchanan, "AlGaAs emitter/GaAs barrier terahertz detector with a 2.3 THz threshold," Appl. Phys. Lett. 86, 071112 (2005)
[CrossRef]

D. M. Mittleman, J. Cunningham, M. C. Nuss and M. Geva, "Noncontact semiconductor wafer characterization with the terahertz Hall effect," Appl. Phys. Lett. 71, 16-18 (1997).
[CrossRef]

Biophys. J.

K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, "Terahertz time-domain spectroscopy of amino acids and polypeptides," Biophys. J. 89, 22-24 (2005).
[CrossRef]

D: Appl. Phys.

H. Tao, A. C. Strikwerda, K. Fan, C.M. Bingham, W. J. Padilla, X. Zhang, R. D. Averitt, J. Phys. D: Appl. Phys. 41, 232004 (2008).
[CrossRef]

IEEE Trans. Antennas Propag.

L. Young, L. A. Robinson, and C. A. Hacking, "Meander-line polarizer," IEEE Trans. Antennas Propag. 21, 376-378 (1973).
[CrossRef]

J. Appl. Phys.

H. S. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Metamaterial exhibiting left-handed properties over multiple frequency," J. Appl. Phys. 96, 5338-5340 (2004).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Microwave and Optical Technology Letters

J.-F. Z¨urcher, "A meander-line polarizer covering the full E-band (60-90 GHz)," Microwave and Optical Technology Letters 18, 320-323 (1998).
[CrossRef]

Nature

H-T Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor and R. D. Averitt, "Active metamaterial devices," Nature 444, 597-600 (2006).
[CrossRef] [PubMed]

Opt. Commun.

C. Imhof and R. Zengerle, "Strong birefringence in left-handed metallic metamaterials," Opt. Commun. 280, 213-216 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt, "Electrically resonant terahertz metamaterials: theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007).
[CrossRef]

Phys. Rev. E

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, "Detection of THz pulses by phase retardation in lithium tantalate," Phys. Rev. E 53, 3052-3054 (1996).
[CrossRef]

H. S. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed materials composed of only S-shaped resonators," Phys. Rev. E 70, 057605 (2004).
[CrossRef]

Phys. Rev. Lett.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef] [PubMed]

Radar and Wireless Communications

M. Mazur and W. Zieniutycz, "Multi-layer meander line polarizer for Ku band," International conference on Microwaves, Radar and Wireless Communications 1, 78-81 (2000).

Science

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Sov. Phys. Usp.

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and μ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Trans. Cambridge Philos. Soc.

G. G. Stokes, "On the composition and resolution of streams of polarized light from different sources," Trans. Cambridge Philos. Soc. 9, 399 (1852).

Other

C. Caloz and T. Itoh, Electromagnetic Metamaterials, (Wiley, Hoboken, 2006).

D. Goldstein, Polarized Light, 2nd ed. (Marcel-Dekker, New York, 2003).
[CrossRef]

T. W. Crowe, T. Globus, D. L. Woolard and J. L. Hesler, "Terahertz sources and detectors and their application to biological sensing," Philosophical transactions - Royal Society A 362, 365-377 (2004).
[CrossRef]

G. Fowles, Introduction to Modern Optics, 2nd ed. (Dover, New York, (1989).

Supplementary Material (5)

» Media 1: AVI (1571 KB)     
» Media 2: AVI (1750 KB)     
» Media 3: AVI (3740 KB)     
» Media 4: AVI (2364 KB)     
» Media 5: AVI (3897 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(color online) The individual unit cells for (a), (c) the ELC QWP and (b), (d) the meanderline QWP. The dimensions in the upper pictures correspond with Table 1. With the incident electric field at 45° with respect to the x and y axes (as shown in (a) and (b)), the transmitted field will be circularly polarized.

Fig. 2.
Fig. 2.

Optical microscope pictures of (a) ELC waveplate and (b) meanderline waveplate.

Fig. 3.
Fig. 3.

(color online) Comparison of the simulated and measured response of meanderline and ELC waveplates. The graphs for the left column are the ELC while the right column displays the results for the meanderline structure. Top to bottom, the graphs are transmission, phase shift, and axial ratio as defined in the text.

Fig. 4.
Fig. 4.

Simulated and measured circular polarization percentage of the structures with the results for the ELC displayed on the left and the results for the meanderline on the right.

Fig. 5.
Fig. 5.

(Media 1) The resonant current at 424 GHz when excited by linear polarization parallel to the y axis. These figures were created using CST MWS. Videos of the currents oscillating as a function of phase are available online.

Fig. 6.
Fig. 6.

(Media 2) The resonant current at 876 GHz when excited by linear polarization parallel to the x axis. These figures were created using CST MWS. Videos of the currents oscillating as a function of phase are available online.

Fig. 7.
Fig. 7.

(Media 3) The simulated ELC polarization ellipse at 639.6 GHz, representing 99.99% circular polarization. The axes represent the magnitude of the electric field along the x and y axes after passing through the ELC, relative to a normalized input linearly polarized at 45°. A video of the polarization ellipse as a function of frequency from 350GHz – 950GHz is available online. The ellipse is red below 65%, blue above 95%, and will blend through green between the two. A solid line represents right handed polarization, and a dashed line represents left handed polarization.

Fig. 8.
Fig. 8.

(Media 4) The simulated meanderline polarization ellipse at 479.2 GHz, representing 90.86% circular polarization. As in Fig. 7, the axes represent the electric field after passing through the meanderline, relative to a normalized input linearly polarized at 45°. A video of the polarization ellipse as a function of frequency from 350GHz – 950GHz is available online. The ellipse is red below 65%, blue above 95%, and will blend through green between the two.

Fig. 9.
Fig. 9.

(Media 5) The current at 639 GHz when excited by linear polarization at 45°. This figure was created using CST MWS. A video of the current oscillating as a function of phase is available online.

Tables (1)

Tables Icon

Table 1. Dimensions of the quarter-wave plate structures. The various dimensions correspond to Fig. 1 (all units in μm).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d=λ04(n1n2)
t˜sim_x(ω)2=t˜sim_y(ω)2
arg(t˜sim_x(ω)arg(t˜sim_y(ω)))=90.
E=t˜E0
(ExEy)=(t˜x00t˜y) (cosθsinθ)
S0=Ex2+Ey2
S1=Ex2Ey2
S2=2Re (ExEy*)
S3=2Im (ExEy*)
CircularPolarization%=S3S0.

Metrics