Abstract

The transient behaviors of the dipole coupling with surface plasmon (SP) features in an Ag/dielectric-interface grating structure in order to understand the characteristics of those dipole-coupling features are demonstrated. In particular, the major decay mechanisms of those coupling features can be identified. For comparison, the time-resolved behaviors of the resonant surface plasmon polariton (SPP) coupling feature on a flat interface are also illustrated. Among the three major grating-induced SP-dipole coupling features, two of them are identified to be localized surface plasmons (LSPs). The third one is a grating-assisted SPP, which shows two decay components, corresponding to the first stage of SPP in-plane propagation and the second stage of coupling system decay. In all the dipole coupling features, metal dissipation can dominate the energy relaxation process, depending on the assumption of damping factor. All the dissipation rates are proportional to the assumed damping factor in the Drude model of the metal. The dissipation rates of the LSP and resonant SPP features are about the same as the damping rate, implying their local electron oscillation natures. The dissipation rate of the grating-assisted SSP feature is consistent with theoretical calculation. In the LSP features under study, dielectric-side emission is prominent. The coupled energy in the grating-assisted SPP feature can be efficiently stored in the coupling system due to its low emission efficiency and effective energy confinement through grating diffraction.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. Shalaev, R. Botet, J. Mercer, and E. B. Stechel, "Optical properties of self-affine thin films," Phys. Rev. B 54, 8235-8242 (1996).
    [CrossRef]
  2. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, "Surface-Enhanced Emission from Single Semiconductor Nanocrystals." Phys. Rev. Lett. 89, 117401 (2002).
    [CrossRef] [PubMed]
  3. M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, "Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate," Phys. Rev. B 74,184203 (2006).
    [CrossRef]
  4. Y. P. Hsieh, C. T. Liang, Y. F. Chen, C. W. Lai, and P. T. Chou, "Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites," Nanotechnology 18, 415707 (2007).
    [CrossRef]
  5. D. M. Yeh, C. F. Huang, and C. C. Yang, "White-light Light-emitting Device Based on Surface Plasmon-enhanced CdSe Nano-crystal Wavelength Conversion on a Blue/green Two-color Light-emitting Diode," Appl. Phys. Lett. 92, 091112 (2008).
    [CrossRef]
  6. A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tacheuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002).
    [CrossRef]
  7. Y. Ito, K. Matsuda, and Y. Kanemitsu, "Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces," Phys. Rev. B 75, 033309 (2007).
    [CrossRef]
  8. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett. 87, 071102 (2005).
    [CrossRef]
  9. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater. 3, 601-605 (2004).
    [CrossRef] [PubMed]
  10. G. Sun, J. B. Khurgin, and R. A. Soref, "Practicable enhancement of spontaneous emission using surface plasmons," Appl. Phys. Lett. 90, 111107 (2007).
    [CrossRef]
  11. J. B. Khurgin, G. Sun, and R. A. Soref, "Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit," J. Opt. Soc. Am. B 24, 1968-1980 (2007).
    [CrossRef]
  12. J. Y. Wang, Y. W. Kiang, and C. C. Yang, "Emission Enhancement Behaviors in the Coupling between Surface Plasmons on a 1-D Metallic Grating and a Light Emitter," Appl. Phys. Lett. 91, 233104 (2007).
    [CrossRef]
  13. K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, "Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure," Appl. Phys. Lett. 92, 013108 (2008).
    [CrossRef]
  14. W. H. Chuang, J. Y. Wang, and C. C. Yang, and Y. W. Kiang, "Differentiating the Contributions between Localized Surface Plasmon and Surface Plasmon Polariton on a One-dimensional Metal Grating in Coupling with a Light Emitter," Appl. Phys. Lett. 92, 133115 (2008).
    [CrossRef]
  15. W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, "Quantum Efficiency Enhancement of a Light-emitting Diode Based on Surface Plasmon Coupling with a Quantum Well," IEEE Photon. Technol. Lett. 20, 1339-1341 (2008).
    [CrossRef]
  16. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, "Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode," Appl. Phys. Lett. 91, 171103 (2007).
    [CrossRef]
  17. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, "Localized surface plasmon-induced emission enhancement of a green light-emitting diode," Nanotechnology 19, 345201 (2008).
    [CrossRef] [PubMed]
  18. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, "Surface-Plasmon-Enhanced Light-Emitting Diodes," Adv. Mater. 20, 1253-1257 (2008).
    [CrossRef]
  19. D. J. Bergman and M. I. Stockman, "Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems," Phys. Rev. Lett. 90, 027402 (2003).
    [CrossRef] [PubMed]
  20. K. Li, X. Li, M. I. Stockman, and D. J. Bergman, "Surface plasmon amplification by stimulated emission in nanolenses," Phys. Rev. B 71, 115409 (2005).
    [CrossRef]
  21. J. Seidel, S. Grafström, and L. Eng, "Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution," Phys. Rev. Lett. 94, 177401 (2005).
    [CrossRef] [PubMed]
  22. I. I. Smolyaninov and Y. J. Hung, "Enhanced transmission of light through a gold film due to excitation of standing surface-plasmon Bloch waves," Phys. Rev. B 75, 033411 (2007).
    [CrossRef]
  23. Y. Gong and J. Vu?kovi?, "Design of plasmon cavities for solid-state cavity quantum electrodynamics applications," Appl. Phys. Lett. 90, 033113 (2007).
    [CrossRef]
  24. F. Wooten, Optical Properties of Solids (Academic Press, New York, 1972).
  25. J. Y. Wang, C. C. Yang, and Y. W. Kiang, "Numerical study on surface plasmon polariton behaviors in periodic metal-dielectric structures using a plane-wave-assisted boundary integral-equation method," Opt. Express 15, 9048-9062 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-14-9048
    [CrossRef] [PubMed]
  26. K. M. Chen, "A mathematical formulation of the equivalence principle," IEEE Trans. Microwave Theory Tech. 37, 1576-1581 (1989).
    [CrossRef]
  27. C. A. Balanis, Advanced Engineering Electromagnetics (John Wiley & Sons, New York, 1989).

2008

D. M. Yeh, C. F. Huang, and C. C. Yang, "White-light Light-emitting Device Based on Surface Plasmon-enhanced CdSe Nano-crystal Wavelength Conversion on a Blue/green Two-color Light-emitting Diode," Appl. Phys. Lett. 92, 091112 (2008).
[CrossRef]

K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, "Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure," Appl. Phys. Lett. 92, 013108 (2008).
[CrossRef]

W. H. Chuang, J. Y. Wang, and C. C. Yang, and Y. W. Kiang, "Differentiating the Contributions between Localized Surface Plasmon and Surface Plasmon Polariton on a One-dimensional Metal Grating in Coupling with a Light Emitter," Appl. Phys. Lett. 92, 133115 (2008).
[CrossRef]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, "Quantum Efficiency Enhancement of a Light-emitting Diode Based on Surface Plasmon Coupling with a Quantum Well," IEEE Photon. Technol. Lett. 20, 1339-1341 (2008).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, "Localized surface plasmon-induced emission enhancement of a green light-emitting diode," Nanotechnology 19, 345201 (2008).
[CrossRef] [PubMed]

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, "Surface-Plasmon-Enhanced Light-Emitting Diodes," Adv. Mater. 20, 1253-1257 (2008).
[CrossRef]

2007

G. Sun, J. B. Khurgin, and R. A. Soref, "Practicable enhancement of spontaneous emission using surface plasmons," Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, "Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit," J. Opt. Soc. Am. B 24, 1968-1980 (2007).
[CrossRef]

J. Y. Wang, Y. W. Kiang, and C. C. Yang, "Emission Enhancement Behaviors in the Coupling between Surface Plasmons on a 1-D Metallic Grating and a Light Emitter," Appl. Phys. Lett. 91, 233104 (2007).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, "Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode," Appl. Phys. Lett. 91, 171103 (2007).
[CrossRef]

Y. Ito, K. Matsuda, and Y. Kanemitsu, "Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces," Phys. Rev. B 75, 033309 (2007).
[CrossRef]

Y. P. Hsieh, C. T. Liang, Y. F. Chen, C. W. Lai, and P. T. Chou, "Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites," Nanotechnology 18, 415707 (2007).
[CrossRef]

I. I. Smolyaninov and Y. J. Hung, "Enhanced transmission of light through a gold film due to excitation of standing surface-plasmon Bloch waves," Phys. Rev. B 75, 033411 (2007).
[CrossRef]

Y. Gong and J. Vu?kovi?, "Design of plasmon cavities for solid-state cavity quantum electrodynamics applications," Appl. Phys. Lett. 90, 033113 (2007).
[CrossRef]

J. Y. Wang, C. C. Yang, and Y. W. Kiang, "Numerical study on surface plasmon polariton behaviors in periodic metal-dielectric structures using a plane-wave-assisted boundary integral-equation method," Opt. Express 15, 9048-9062 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-14-9048
[CrossRef] [PubMed]

2006

M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, "Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate," Phys. Rev. B 74,184203 (2006).
[CrossRef]

2005

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

K. Li, X. Li, M. I. Stockman, and D. J. Bergman, "Surface plasmon amplification by stimulated emission in nanolenses," Phys. Rev. B 71, 115409 (2005).
[CrossRef]

J. Seidel, S. Grafström, and L. Eng, "Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution," Phys. Rev. Lett. 94, 177401 (2005).
[CrossRef] [PubMed]

2004

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater. 3, 601-605 (2004).
[CrossRef] [PubMed]

2003

D. J. Bergman and M. I. Stockman, "Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems," Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

2002

A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tacheuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002).
[CrossRef]

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, "Surface-Enhanced Emission from Single Semiconductor Nanocrystals." Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

1996

V. M. Shalaev, R. Botet, J. Mercer, and E. B. Stechel, "Optical properties of self-affine thin films," Phys. Rev. B 54, 8235-8242 (1996).
[CrossRef]

1989

K. M. Chen, "A mathematical formulation of the equivalence principle," IEEE Trans. Microwave Theory Tech. 37, 1576-1581 (1989).
[CrossRef]

Adegoke, J.

M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, "Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate," Phys. Rev. B 74,184203 (2006).
[CrossRef]

Bahoura, M.

M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, "Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate," Phys. Rev. B 74,184203 (2006).
[CrossRef]

Bawendi, M. G.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, "Surface-Enhanced Emission from Single Semiconductor Nanocrystals." Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

Bergman, D. J.

K. Li, X. Li, M. I. Stockman, and D. J. Bergman, "Surface plasmon amplification by stimulated emission in nanolenses," Phys. Rev. B 71, 115409 (2005).
[CrossRef]

D. J. Bergman and M. I. Stockman, "Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems," Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

Botet, R.

V. M. Shalaev, R. Botet, J. Mercer, and E. B. Stechel, "Optical properties of self-affine thin films," Phys. Rev. B 54, 8235-8242 (1996).
[CrossRef]

Byeon, C. C.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, "Surface-Plasmon-Enhanced Light-Emitting Diodes," Adv. Mater. 20, 1253-1257 (2008).
[CrossRef]

Chen, C. Y.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, "Localized surface plasmon-induced emission enhancement of a green light-emitting diode," Nanotechnology 19, 345201 (2008).
[CrossRef] [PubMed]

K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, "Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure," Appl. Phys. Lett. 92, 013108 (2008).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, "Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode," Appl. Phys. Lett. 91, 171103 (2007).
[CrossRef]

Chen, K. M.

K. M. Chen, "A mathematical formulation of the equivalence principle," IEEE Trans. Microwave Theory Tech. 37, 1576-1581 (1989).
[CrossRef]

Chen, Y. F.

Y. P. Hsieh, C. T. Liang, Y. F. Chen, C. W. Lai, and P. T. Chou, "Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites," Nanotechnology 18, 415707 (2007).
[CrossRef]

Cho, C. Y.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, "Surface-Plasmon-Enhanced Light-Emitting Diodes," Adv. Mater. 20, 1253-1257 (2008).
[CrossRef]

Chou, P. T.

Y. P. Hsieh, C. T. Liang, Y. F. Chen, C. W. Lai, and P. T. Chou, "Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites," Nanotechnology 18, 415707 (2007).
[CrossRef]

Chuang, W. H.

W. H. Chuang, J. Y. Wang, and C. C. Yang, and Y. W. Kiang, "Differentiating the Contributions between Localized Surface Plasmon and Surface Plasmon Polariton on a One-dimensional Metal Grating in Coupling with a Light Emitter," Appl. Phys. Lett. 92, 133115 (2008).
[CrossRef]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, "Quantum Efficiency Enhancement of a Light-emitting Diode Based on Surface Plasmon Coupling with a Quantum Well," IEEE Photon. Technol. Lett. 20, 1339-1341 (2008).
[CrossRef]

Davison, C.

M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, "Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate," Phys. Rev. B 74,184203 (2006).
[CrossRef]

Drachev, V. P.

M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, "Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate," Phys. Rev. B 74,184203 (2006).
[CrossRef]

Eisler, H. J.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, "Surface-Enhanced Emission from Single Semiconductor Nanocrystals." Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

Eng, L.

J. Seidel, S. Grafström, and L. Eng, "Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution," Phys. Rev. Lett. 94, 177401 (2005).
[CrossRef] [PubMed]

Everitt, H. O.

A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tacheuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Fisher, B. R.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, "Surface-Enhanced Emission from Single Semiconductor Nanocrystals." Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

Gong, Y.

Y. Gong and J. Vu?kovi?, "Design of plasmon cavities for solid-state cavity quantum electrodynamics applications," Appl. Phys. Lett. 90, 033113 (2007).
[CrossRef]

Grafström, S.

J. Seidel, S. Grafström, and L. Eng, "Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution," Phys. Rev. Lett. 94, 177401 (2005).
[CrossRef] [PubMed]

Hsieh, Y. P.

Y. P. Hsieh, C. T. Liang, Y. F. Chen, C. W. Lai, and P. T. Chou, "Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites," Nanotechnology 18, 415707 (2007).
[CrossRef]

Huang, C. F.

D. M. Yeh, C. F. Huang, and C. C. Yang, "White-light Light-emitting Device Based on Surface Plasmon-enhanced CdSe Nano-crystal Wavelength Conversion on a Blue/green Two-color Light-emitting Diode," Appl. Phys. Lett. 92, 091112 (2008).
[CrossRef]

K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, "Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure," Appl. Phys. Lett. 92, 013108 (2008).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, "Localized surface plasmon-induced emission enhancement of a green light-emitting diode," Nanotechnology 19, 345201 (2008).
[CrossRef] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, "Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode," Appl. Phys. Lett. 91, 171103 (2007).
[CrossRef]

Hung, Y. J.

I. I. Smolyaninov and Y. J. Hung, "Enhanced transmission of light through a gold film due to excitation of standing surface-plasmon Bloch waves," Phys. Rev. B 75, 033411 (2007).
[CrossRef]

Ito, Y.

Y. Ito, K. Matsuda, and Y. Kanemitsu, "Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces," Phys. Rev. B 75, 033309 (2007).
[CrossRef]

Kanemitsu, Y.

Y. Ito, K. Matsuda, and Y. Kanemitsu, "Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces," Phys. Rev. B 75, 033309 (2007).
[CrossRef]

Kawakami, Y.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

Khurgin, J. B.

G. Sun, J. B. Khurgin, and R. A. Soref, "Practicable enhancement of spontaneous emission using surface plasmons," Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, "Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit," J. Opt. Soc. Am. B 24, 1968-1980 (2007).
[CrossRef]

Kiang, Y. W.

W. H. Chuang, J. Y. Wang, and C. C. Yang, and Y. W. Kiang, "Differentiating the Contributions between Localized Surface Plasmon and Surface Plasmon Polariton on a One-dimensional Metal Grating in Coupling with a Light Emitter," Appl. Phys. Lett. 92, 133115 (2008).
[CrossRef]

K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, "Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure," Appl. Phys. Lett. 92, 013108 (2008).
[CrossRef]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, "Quantum Efficiency Enhancement of a Light-emitting Diode Based on Surface Plasmon Coupling with a Quantum Well," IEEE Photon. Technol. Lett. 20, 1339-1341 (2008).
[CrossRef]

J. Y. Wang, C. C. Yang, and Y. W. Kiang, "Numerical study on surface plasmon polariton behaviors in periodic metal-dielectric structures using a plane-wave-assisted boundary integral-equation method," Opt. Express 15, 9048-9062 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-14-9048
[CrossRef] [PubMed]

J. Y. Wang, Y. W. Kiang, and C. C. Yang, "Emission Enhancement Behaviors in the Coupling between Surface Plasmons on a 1-D Metallic Grating and a Light Emitter," Appl. Phys. Lett. 91, 233104 (2007).
[CrossRef]

Kim, B. H.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, "Surface-Plasmon-Enhanced Light-Emitting Diodes," Adv. Mater. 20, 1253-1257 (2008).
[CrossRef]

Kim, J. Y.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, "Surface-Plasmon-Enhanced Light-Emitting Diodes," Adv. Mater. 20, 1253-1257 (2008).
[CrossRef]

Kuroda, T.

A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tacheuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Kwon, M. K.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, "Surface-Plasmon-Enhanced Light-Emitting Diodes," Adv. Mater. 20, 1253-1257 (2008).
[CrossRef]

Lai, C. W.

Y. P. Hsieh, C. T. Liang, Y. F. Chen, C. W. Lai, and P. T. Chou, "Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites," Nanotechnology 18, 415707 (2007).
[CrossRef]

Lee, C. W.

A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tacheuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Li, K.

K. Li, X. Li, M. I. Stockman, and D. J. Bergman, "Surface plasmon amplification by stimulated emission in nanolenses," Phys. Rev. B 71, 115409 (2005).
[CrossRef]

Li, X.

K. Li, X. Li, M. I. Stockman, and D. J. Bergman, "Surface plasmon amplification by stimulated emission in nanolenses," Phys. Rev. B 71, 115409 (2005).
[CrossRef]

Liang, C. T.

Y. P. Hsieh, C. T. Liang, Y. F. Chen, C. W. Lai, and P. T. Chou, "Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites," Nanotechnology 18, 415707 (2007).
[CrossRef]

Lu, Y. C.

K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, "Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure," Appl. Phys. Lett. 92, 013108 (2008).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, "Localized surface plasmon-induced emission enhancement of a green light-emitting diode," Nanotechnology 19, 345201 (2008).
[CrossRef] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, "Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode," Appl. Phys. Lett. 91, 171103 (2007).
[CrossRef]

Matsuda, K.

Y. Ito, K. Matsuda, and Y. Kanemitsu, "Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces," Phys. Rev. B 75, 033309 (2007).
[CrossRef]

Mercer, J.

V. M. Shalaev, R. Botet, J. Mercer, and E. B. Stechel, "Optical properties of self-affine thin films," Phys. Rev. B 54, 8235-8242 (1996).
[CrossRef]

Mukai, T.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater. 3, 601-605 (2004).
[CrossRef] [PubMed]

Narukawa, Y.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater. 3, 601-605 (2004).
[CrossRef] [PubMed]

Neogi, A.

A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tacheuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Niki, I.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater. 3, 601-605 (2004).
[CrossRef] [PubMed]

Noginov, M. A.

M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, "Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate," Phys. Rev. B 74,184203 (2006).
[CrossRef]

Nyga, P.

M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, "Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate," Phys. Rev. B 74,184203 (2006).
[CrossRef]

Okamoto, K.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater. 3, 601-605 (2004).
[CrossRef] [PubMed]

Park, I. K.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, "Surface-Plasmon-Enhanced Light-Emitting Diodes," Adv. Mater. 20, 1253-1257 (2008).
[CrossRef]

Park, S. J.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, "Surface-Plasmon-Enhanced Light-Emitting Diodes," Adv. Mater. 20, 1253-1257 (2008).
[CrossRef]

Scherer, A.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater. 3, 601-605 (2004).
[CrossRef] [PubMed]

Seidel, J.

J. Seidel, S. Grafström, and L. Eng, "Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution," Phys. Rev. Lett. 94, 177401 (2005).
[CrossRef] [PubMed]

Shalaev, V. M.

M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, "Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate," Phys. Rev. B 74,184203 (2006).
[CrossRef]

V. M. Shalaev, R. Botet, J. Mercer, and E. B. Stechel, "Optical properties of self-affine thin films," Phys. Rev. B 54, 8235-8242 (1996).
[CrossRef]

Shen, K. C.

K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, "Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure," Appl. Phys. Lett. 92, 013108 (2008).
[CrossRef]

Shimizu, K. T.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, "Surface-Enhanced Emission from Single Semiconductor Nanocrystals." Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater. 3, 601-605 (2004).
[CrossRef] [PubMed]

Small, C. E.

M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, "Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate," Phys. Rev. B 74,184203 (2006).
[CrossRef]

Smolyaninov, I. I.

I. I. Smolyaninov and Y. J. Hung, "Enhanced transmission of light through a gold film due to excitation of standing surface-plasmon Bloch waves," Phys. Rev. B 75, 033411 (2007).
[CrossRef]

Soref, R. A.

G. Sun, J. B. Khurgin, and R. A. Soref, "Practicable enhancement of spontaneous emission using surface plasmons," Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, "Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit," J. Opt. Soc. Am. B 24, 1968-1980 (2007).
[CrossRef]

Stechel, E. B.

V. M. Shalaev, R. Botet, J. Mercer, and E. B. Stechel, "Optical properties of self-affine thin films," Phys. Rev. B 54, 8235-8242 (1996).
[CrossRef]

Stockman, M. I.

K. Li, X. Li, M. I. Stockman, and D. J. Bergman, "Surface plasmon amplification by stimulated emission in nanolenses," Phys. Rev. B 71, 115409 (2005).
[CrossRef]

D. J. Bergman and M. I. Stockman, "Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems," Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

Sun, G.

J. B. Khurgin, G. Sun, and R. A. Soref, "Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit," J. Opt. Soc. Am. B 24, 1968-1980 (2007).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, "Practicable enhancement of spontaneous emission using surface plasmons," Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

Tacheuchi, A.

A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tacheuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Vuckovic, J.

Y. Gong and J. Vu?kovi?, "Design of plasmon cavities for solid-state cavity quantum electrodynamics applications," Appl. Phys. Lett. 90, 033113 (2007).
[CrossRef]

Wang, J. Y.

K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, "Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure," Appl. Phys. Lett. 92, 013108 (2008).
[CrossRef]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, "Quantum Efficiency Enhancement of a Light-emitting Diode Based on Surface Plasmon Coupling with a Quantum Well," IEEE Photon. Technol. Lett. 20, 1339-1341 (2008).
[CrossRef]

W. H. Chuang, J. Y. Wang, and C. C. Yang, and Y. W. Kiang, "Differentiating the Contributions between Localized Surface Plasmon and Surface Plasmon Polariton on a One-dimensional Metal Grating in Coupling with a Light Emitter," Appl. Phys. Lett. 92, 133115 (2008).
[CrossRef]

J. Y. Wang, Y. W. Kiang, and C. C. Yang, "Emission Enhancement Behaviors in the Coupling between Surface Plasmons on a 1-D Metallic Grating and a Light Emitter," Appl. Phys. Lett. 91, 233104 (2007).
[CrossRef]

J. Y. Wang, C. C. Yang, and Y. W. Kiang, "Numerical study on surface plasmon polariton behaviors in periodic metal-dielectric structures using a plane-wave-assisted boundary integral-equation method," Opt. Express 15, 9048-9062 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-14-9048
[CrossRef] [PubMed]

Woo, W. K.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, "Surface-Enhanced Emission from Single Semiconductor Nanocrystals." Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

Yablonovitch, E.

A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tacheuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Yang, C. C.

D. M. Yeh, C. F. Huang, and C. C. Yang, "White-light Light-emitting Device Based on Surface Plasmon-enhanced CdSe Nano-crystal Wavelength Conversion on a Blue/green Two-color Light-emitting Diode," Appl. Phys. Lett. 92, 091112 (2008).
[CrossRef]

W. H. Chuang, J. Y. Wang, and C. C. Yang, and Y. W. Kiang, "Differentiating the Contributions between Localized Surface Plasmon and Surface Plasmon Polariton on a One-dimensional Metal Grating in Coupling with a Light Emitter," Appl. Phys. Lett. 92, 133115 (2008).
[CrossRef]

K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, "Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure," Appl. Phys. Lett. 92, 013108 (2008).
[CrossRef]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, "Quantum Efficiency Enhancement of a Light-emitting Diode Based on Surface Plasmon Coupling with a Quantum Well," IEEE Photon. Technol. Lett. 20, 1339-1341 (2008).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, "Localized surface plasmon-induced emission enhancement of a green light-emitting diode," Nanotechnology 19, 345201 (2008).
[CrossRef] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, "Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode," Appl. Phys. Lett. 91, 171103 (2007).
[CrossRef]

J. Y. Wang, C. C. Yang, and Y. W. Kiang, "Numerical study on surface plasmon polariton behaviors in periodic metal-dielectric structures using a plane-wave-assisted boundary integral-equation method," Opt. Express 15, 9048-9062 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-14-9048
[CrossRef] [PubMed]

J. Y. Wang, Y. W. Kiang, and C. C. Yang, "Emission Enhancement Behaviors in the Coupling between Surface Plasmons on a 1-D Metallic Grating and a Light Emitter," Appl. Phys. Lett. 91, 233104 (2007).
[CrossRef]

Yang, Y. J.

K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, "Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure," Appl. Phys. Lett. 92, 013108 (2008).
[CrossRef]

Yeh, D. M.

D. M. Yeh, C. F. Huang, and C. C. Yang, "White-light Light-emitting Device Based on Surface Plasmon-enhanced CdSe Nano-crystal Wavelength Conversion on a Blue/green Two-color Light-emitting Diode," Appl. Phys. Lett. 92, 091112 (2008).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, "Localized surface plasmon-induced emission enhancement of a green light-emitting diode," Nanotechnology 19, 345201 (2008).
[CrossRef] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, "Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode," Appl. Phys. Lett. 91, 171103 (2007).
[CrossRef]

Zhu, G.

M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, "Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate," Phys. Rev. B 74,184203 (2006).
[CrossRef]

Adv. Mater.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, "Surface-Plasmon-Enhanced Light-Emitting Diodes," Adv. Mater. 20, 1253-1257 (2008).
[CrossRef]

Appl. Phys. Lett.

Y. Gong and J. Vu?kovi?, "Design of plasmon cavities for solid-state cavity quantum electrodynamics applications," Appl. Phys. Lett. 90, 033113 (2007).
[CrossRef]

D. M. Yeh, C. F. Huang, and C. C. Yang, "White-light Light-emitting Device Based on Surface Plasmon-enhanced CdSe Nano-crystal Wavelength Conversion on a Blue/green Two-color Light-emitting Diode," Appl. Phys. Lett. 92, 091112 (2008).
[CrossRef]

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett. 87, 071102 (2005).
[CrossRef]

J. Y. Wang, Y. W. Kiang, and C. C. Yang, "Emission Enhancement Behaviors in the Coupling between Surface Plasmons on a 1-D Metallic Grating and a Light Emitter," Appl. Phys. Lett. 91, 233104 (2007).
[CrossRef]

K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, "Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure," Appl. Phys. Lett. 92, 013108 (2008).
[CrossRef]

W. H. Chuang, J. Y. Wang, and C. C. Yang, and Y. W. Kiang, "Differentiating the Contributions between Localized Surface Plasmon and Surface Plasmon Polariton on a One-dimensional Metal Grating in Coupling with a Light Emitter," Appl. Phys. Lett. 92, 133115 (2008).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, "Practicable enhancement of spontaneous emission using surface plasmons," Appl. Phys. Lett. 90, 111107 (2007).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, "Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode," Appl. Phys. Lett. 91, 171103 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, "Quantum Efficiency Enhancement of a Light-emitting Diode Based on Surface Plasmon Coupling with a Quantum Well," IEEE Photon. Technol. Lett. 20, 1339-1341 (2008).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

K. M. Chen, "A mathematical formulation of the equivalence principle," IEEE Trans. Microwave Theory Tech. 37, 1576-1581 (1989).
[CrossRef]

J. Opt. Soc. Am. B

Nanotechnology

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, "Localized surface plasmon-induced emission enhancement of a green light-emitting diode," Nanotechnology 19, 345201 (2008).
[CrossRef] [PubMed]

Y. P. Hsieh, C. T. Liang, Y. F. Chen, C. W. Lai, and P. T. Chou, "Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites," Nanotechnology 18, 415707 (2007).
[CrossRef]

Nat. Mater.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater. 3, 601-605 (2004).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

I. I. Smolyaninov and Y. J. Hung, "Enhanced transmission of light through a gold film due to excitation of standing surface-plasmon Bloch waves," Phys. Rev. B 75, 033411 (2007).
[CrossRef]

K. Li, X. Li, M. I. Stockman, and D. J. Bergman, "Surface plasmon amplification by stimulated emission in nanolenses," Phys. Rev. B 71, 115409 (2005).
[CrossRef]

A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tacheuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Y. Ito, K. Matsuda, and Y. Kanemitsu, "Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces," Phys. Rev. B 75, 033309 (2007).
[CrossRef]

M. A. Noginov, G. Zhu, M. Bahoura, C. E. Small, C. Davison, J. Adegoke, V. P. Drachev, P. Nyga, and V. M. Shalaev, "Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate," Phys. Rev. B 74,184203 (2006).
[CrossRef]

V. M. Shalaev, R. Botet, J. Mercer, and E. B. Stechel, "Optical properties of self-affine thin films," Phys. Rev. B 54, 8235-8242 (1996).
[CrossRef]

Phys. Rev. Lett.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, "Surface-Enhanced Emission from Single Semiconductor Nanocrystals." Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

J. Seidel, S. Grafström, and L. Eng, "Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution," Phys. Rev. Lett. 94, 177401 (2005).
[CrossRef] [PubMed]

D. J. Bergman and M. I. Stockman, "Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems," Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

Other

F. Wooten, Optical Properties of Solids (Academic Press, New York, 1972).

C. A. Balanis, Advanced Engineering Electromagnetics (John Wiley & Sons, New York, 1989).

Supplementary Material (4)

» Media 1: MOV (2232 KB)     
» Media 2: MOV (1924 KB)     
» Media 3: MOV (1743 KB)     
» Media 4: MOV (2189 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Two-dimensional Ag/dielectric grating structure in the x-y plane. The dipole, Jx, is located 10 nm right below the center of a grating groove, which is defined as the origin, O, of the coordinate system. The flat interface structure is depicted by the dotted line along the x axis. (b) The dipole radiation power spectrum (continuous curve), the dielectric-side emission spectrum of the SP-dipole coupling system (dashed curve), the radiation power spectrum of the control case (dotted line near the bottom), and three source spectra (dashed Gaussian-like curves) for the three SP-dipole coupling features (A-C) in the grating structure. (c) The dipole radiation power spectrum (continuous curve), the dielectric-side emission spectrum of the SP-dipole coupling system (dashed curve), and the source spectrum (dashed Gaussian-like curve) for the SP-dipole coupling feature D in the flat-interface structure.

Fig. 2.
Fig. 2.

Dispersion curves of a grating-assisted SPP feature and three LSP features evaluated with the plane-wave-assisted BIEM.

Fig. 3.
Fig. 3.

Field strength (absolute value of Hz) distributions of the dipole-coupling features A-D in parts (a)-–(d), (Media 1) (Media 2) (Media 3) (Media 4), respectively, at the individually chosen delay times for showing the broadest field distributions along the x axis when γ = γ 0.

Fig. 4.
Fig. 4.

Time-resolved field intensity profiles at point O of the four SP-dipole coupling features. The source profile is shown and labeled by S. The fitting lines for calibrating the decay times are plotted. The insert shows the linear-scale profiles for demonstrating the temporal peak positions. The damping factor γ is set at γ 0.

Fig. 5.
Fig. 5.

Comparison of the spectra of in-plane propagation energy with the dielectric-side emission spectra in the case of γ = γ 0. The label (x) means the energy propagation along the +x and −x directions. The label (-y) implies dielectric-side emission. (a) In-plane propagation evaluated at x = +100 and -100 nm; (b) in-plane propagation evaluated at x = +500 and -500 nm.

Fig. 6.
Fig. 6.

(a) Attenuation coefficients, a, as functions of wavelength for the five γ cases. Part (b) shows the normalized attenuation coefficients.

Fig. 7.
Fig. 7.

Hz field intensities as functions of wavelength at point O with different γ values in the grating structure (a) and flat-interface structure (b).

Fig. 8.
Fig. 8.

Contours of electric-field line and charge distributions of the four SP-dipole coupling features A-D in parts (a)–(d), respectively, when γ = γ 0.

Tables (2)

Tables Icon

Table 1. Delay times and decay times under the assumptions of various metal damping factors

Tables Icon

Table 2. Comparisons between simulated and calibrated decay times

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1τd=1τt +1τdi.

Metrics