Abstract

A common issue in fiber-based supercontinuum (SC) generation under continuous-wave pumping is that the spectral width of the resulting source is related to the input power of the pump laser used. An increase of the input pump power leads to an increase of the spectral width obtained at the fiber output, and therefore, the average power spectral density (APSD) over the SC spectrum does not grow according to the input power. For some applications it would be desired to have a fixed spectral width in the SC and to increase the average PSD proportionally to the input pump power. In this paper we demonstrate experimentally that SC generation under continuous-wave (CW) pumping can be spectrally bounded by using a fiber with two zero-dispersion wavelengths (ZDWs). Beyond a certain pump power, the spectral width of the SC source remains fixed, and the APSD of the SC grows with the pump power. In our experiment we generate a reasonably flat, spectrally-bounded SC spanning from 1550 nm to 1700 nm. The spectral width of the source is shown to be constant between 3 and 6 W of pump power. Over this range, the increase in input power is directly translated in an increase in the output APSD. The experimental results are confirmed by numerical simulations, which also highlight the sensitivity of this configuration to variations in the fiber dispersion curve. We believe that these results open the way for tailoring the spectral width of high-APSD CW SC by adjusting the fiber dispersion.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 27-27 (2000).
    [CrossRef]
  3. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765-771 (2002),
    [CrossRef]
  4. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am. B 19, 753-764 (2002).
    [CrossRef]
  5. G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, "Enhanced bandwidth of supercontinuum generated in microstructured fibers," Opt. Express 12, 3471-3480 (2004).
    [CrossRef] [PubMed]
  6. G. Genty, M. Lehtonen, and H. Ludvigsen, "Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses," Opt. Express 12, 4614-4624 (2004).
    [CrossRef] [PubMed]
  7. T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000).
    [CrossRef]
  8. A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, "Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchiplaser," Opt. Lett. 28, 1820-1822 (2003).
    [CrossRef] [PubMed]
  9. S. Kobtsev and S. Smirnov, "Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump," Opt. Express 13, 6912-6918 (2005).
    [CrossRef] [PubMed]
  10. F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, and S. Coen, "The role of pump incoherence in continuous-wave supercontinuum generation," Opt. Express 13, 6615-6625 (2005).
    [CrossRef] [PubMed]
  11. M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006).
    [CrossRef] [PubMed]
  12. A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, "Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers," Opt. Express 12, 2838-2843 (2004).
    [CrossRef] [PubMed]
  13. A. K. Abeeluck, C. Headley, and C. G. Jørgensen, "High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser," Opt. Lett. 29, 2163-2165 (2004).
    [CrossRef] [PubMed]
  14. T. Sylvestre, A. Vedadi, H. Maillotte, F. Vanholsbeeck, and S. Coen, "Supercontinuum generation using continuous-wave multiwavelength pumping and dispersion management," Opt. Lett. 31, 2036-2038 (2006).
    [CrossRef] [PubMed]
  15. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, "Continuous-wave, high-power, Raman continuum generation in holey fibers, " Opt. Lett. 28, 1353-1355 (2003).
    [CrossRef] [PubMed]
  16. S. Martín-López, M. González-Herráez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernández, J. Solís, P. Corredera, and M. L. Hernanz. "Broadband spectrally flat and high power density light source for fiber sensing purposes," Meas. Sci. Technol. 17,1014-1019 (2006).
    [CrossRef]
  17. J. C. Travers, R. E. Kennedy, S. V. Popov, J. R. Taylor, H. Sabert, and B. Mangan, "Extended CW supercontinuum generation in a low water-loss holey fiber," Opt. Lett. 30, 1938-1940 (2005)
    [CrossRef] [PubMed]
  18. A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, "Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths," Opt. Express 15, 11553-11563 (2007).
    [CrossRef] [PubMed]
  19. B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, "Phase-shift tecnique for the measurement of chromatic dispersion in optical fibers using leds," IEEE J. Quantum Electron. 18, 1509-1515, 1982.
    [CrossRef]
  20. D. Monzón-Hernández, A. N. Starodumov, Y. O. Barmenkov, I. Torres-Gómez, and F. Mendoza-Santoyo, "Continuous-wave measurement of the fiber nonlinear refractive index," Opt. Lett. 23, 1274-1276 (1998).
    [CrossRef]
  21. D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
    [CrossRef] [PubMed]
  22. N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
    [CrossRef] [PubMed]
  23. E. G. Neumann, Single-mode fibers: fundamentals (Springer-Verlag, 1988).
  24. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, "Raman response function of silica-core fibers," J. Opt. Soc. Am. B 6, 1159-1166 (1989).
    [CrossRef]
  25. O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, "Optimization of the Split-Step Fourier Method in Modeling Optical-Fiber Communications Systems," J. Lightwave Technol. 21, 61-68 (2003).
    [CrossRef]
  26. B. Barviau, S. Randoux, and P. Suret, "Spectral broadening of a multimode continuous-wave optical field propagating in the normal dispersion regime of a fiber," Opt. Lett. 31, 1696-1698 (2006).
    [CrossRef] [PubMed]
  27. M. González-Herráez and L. Thevenaz. "Simultaneous position-resolved measurement of chromatic dispersion and Brillouin shift in single-mode optical fibers," IEEE Photon. Technol. Lett. 161128-1130 (2004).
    [CrossRef]
  28. P. -L. Hsiung, Y. Chen, T. Ko, J. Fujimoto, C. de Matos, S. Popov, J. Taylor, and V. Gapontsev, "Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source," Opt. Express 12, 5287-5295 (2004).
    [CrossRef] [PubMed]

2007

2006

2005

2004

2003

2002

2000

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 27-27 (2000).
[CrossRef]

T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000).
[CrossRef]

1998

1995

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

1989

1982

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, "Phase-shift tecnique for the measurement of chromatic dispersion in optical fibers using leds," IEEE J. Quantum Electron. 18, 1509-1515, 1982.
[CrossRef]

Abeeluck, A. K.

Akhmediev, N.

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

Avdokhin, A. V.

Bang, O.

Barmenkov, Y. O.

Barviau, B.

Beaugeois, M.

Birks, T. A.

Bjarklev, A.

Bouazaoui, M.

Carrasco-Sanz, A.

S. Martín-López, M. González-Herráez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernández, J. Solís, P. Corredera, and M. L. Hernanz. "Broadband spectrally flat and high power density light source for fiber sensing purposes," Meas. Sci. Technol. 17,1014-1019 (2006).
[CrossRef]

Chau, A. H. L.

Chen, Y.

Coen, S.

Corredera, P.

S. Martín-López, M. González-Herráez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernández, J. Solís, P. Corredera, and M. L. Hernanz. "Broadband spectrally flat and high power density light source for fiber sensing purposes," Meas. Sci. Technol. 17,1014-1019 (2006).
[CrossRef]

Costa, B.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, "Phase-shift tecnique for the measurement of chromatic dispersion in optical fibers using leds," IEEE J. Quantum Electron. 18, 1509-1515, 1982.
[CrossRef]

de Matos, C.

Dudley, J.

J. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Dudley, J. M.

Eggleton, B. J.

Fernández, H.

S. Martín-López, M. González-Herráez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernández, J. Solís, P. Corredera, and M. L. Hernanz. "Broadband spectrally flat and high power density light source for fiber sensing purposes," Meas. Sci. Technol. 17,1014-1019 (2006).
[CrossRef]

Finot, C.

Frosz, M. H.

Fujimoto, J.

Gapontsev, V.

Genty, G.

González-Herráez, M.

S. Martín-López, M. González-Herráez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernández, J. Solís, P. Corredera, and M. L. Hernanz. "Broadband spectrally flat and high power density light source for fiber sensing purposes," Meas. Sci. Technol. 17,1014-1019 (2006).
[CrossRef]

F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, and S. Coen, "The role of pump incoherence in continuous-wave supercontinuum generation," Opt. Express 13, 6615-6625 (2005).
[CrossRef] [PubMed]

M. González-Herráez and L. Thevenaz. "Simultaneous position-resolved measurement of chromatic dispersion and Brillouin shift in single-mode optical fibers," IEEE Photon. Technol. Lett. 161128-1130 (2004).
[CrossRef]

Gordon, J. P.

Grossard, N.

Harvey, J. D.

Haus, H. A.

Headley, C.

Hernanz, M. L.

S. Martín-López, M. González-Herráez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernández, J. Solís, P. Corredera, and M. L. Hernanz. "Broadband spectrally flat and high power density light source for fiber sensing purposes," Meas. Sci. Technol. 17,1014-1019 (2006).
[CrossRef]

Holzlöhner, R.

Hsiung, P. -L.

Jørgensen, C. G.

Kaivola, M.

Karlsson, M.

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

Kennedy, R. E.

Knight, J. C.

Ko, T.

Kobtsev, S.

Lantz, E.

Lehtonen, M.

Leonhardt, R.

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Ludvigsen, H.

Maillotte, H.

Mangan, B.

Martin-Lopez, S.

Martín-López, S.

S. Martín-López, M. González-Herráez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernández, J. Solís, P. Corredera, and M. L. Hernanz. "Broadband spectrally flat and high power density light source for fiber sensing purposes," Meas. Sci. Technol. 17,1014-1019 (2006).
[CrossRef]

Mazzoni, D.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, "Phase-shift tecnique for the measurement of chromatic dispersion in optical fibers using leds," IEEE J. Quantum Electron. 18, 1509-1515, 1982.
[CrossRef]

Mendoza-Santoyo, F.

Menyuk, C. R.

Monzón-Hernández, D.

Mussot, A.

Pitois, S.

Popov, S.

Popov, S. V.

Provino, L.

Puleo, M.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, "Phase-shift tecnique for the measurement of chromatic dispersion in optical fibers using leds," IEEE J. Quantum Electron. 18, 1509-1515, 1982.
[CrossRef]

Randoux, S.

Ranka, J. K.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 27-27 (2000).
[CrossRef]

Russell, P. S. J.

Sabert, H.

Sinkin, O. V.

Skryabin, D. V.

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Smirnov, S.

Solís, J.

S. Martín-López, M. González-Herráez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernández, J. Solís, P. Corredera, and M. L. Hernanz. "Broadband spectrally flat and high power density light source for fiber sensing purposes," Meas. Sci. Technol. 17,1014-1019 (2006).
[CrossRef]

Starodumov, A. N.

Stentz, A. J.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 27-27 (2000).
[CrossRef]

Stolen, R. H.

Suret, P.

Sylvestre, T.

Taylor, J.

Taylor, J. R.

Thevenaz, L.

M. González-Herráez and L. Thevenaz. "Simultaneous position-resolved measurement of chromatic dispersion and Brillouin shift in single-mode optical fibers," IEEE Photon. Technol. Lett. 161128-1130 (2004).
[CrossRef]

Tomlinson, W. J.

Torres-Gómez, I.

Travers, J. C.

Vanholsbeeck, F.

Vedadi, A.

Vezzoni, E.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, "Phase-shift tecnique for the measurement of chromatic dispersion in optical fibers using leds," IEEE J. Quantum Electron. 18, 1509-1515, 1982.
[CrossRef]

Wadsworth, W. J.

Windeler, R. S.

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765-771 (2002),
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 27-27 (2000).
[CrossRef]

Zweck, J.

IEEE J. Quantum Electron.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, "Phase-shift tecnique for the measurement of chromatic dispersion in optical fibers using leds," IEEE J. Quantum Electron. 18, 1509-1515, 1982.
[CrossRef]

IEEE Photon. Technol. Lett.

M. González-Herráez and L. Thevenaz. "Simultaneous position-resolved measurement of chromatic dispersion and Brillouin shift in single-mode optical fibers," IEEE Photon. Technol. Lett. 161128-1130 (2004).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Meas. Sci. Technol.

S. Martín-López, M. González-Herráez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernández, J. Solís, P. Corredera, and M. L. Hernanz. "Broadband spectrally flat and high power density light source for fiber sensing purposes," Meas. Sci. Technol. 17,1014-1019 (2006).
[CrossRef]

Opt. Express

G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, "Enhanced bandwidth of supercontinuum generated in microstructured fibers," Opt. Express 12, 3471-3480 (2004).
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, and H. Ludvigsen, "Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses," Opt. Express 12, 4614-4624 (2004).
[CrossRef] [PubMed]

S. Kobtsev and S. Smirnov, "Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump," Opt. Express 13, 6912-6918 (2005).
[CrossRef] [PubMed]

F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, and S. Coen, "The role of pump incoherence in continuous-wave supercontinuum generation," Opt. Express 13, 6615-6625 (2005).
[CrossRef] [PubMed]

M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006).
[CrossRef] [PubMed]

A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, "Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers," Opt. Express 12, 2838-2843 (2004).
[CrossRef] [PubMed]

A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, "Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths," Opt. Express 15, 11553-11563 (2007).
[CrossRef] [PubMed]

P. -L. Hsiung, Y. Chen, T. Ko, J. Fujimoto, C. de Matos, S. Popov, J. Taylor, and V. Gapontsev, "Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source," Opt. Express 12, 5287-5295 (2004).
[CrossRef] [PubMed]

Opt. Lett.

B. Barviau, S. Randoux, and P. Suret, "Spectral broadening of a multimode continuous-wave optical field propagating in the normal dispersion regime of a fiber," Opt. Lett. 31, 1696-1698 (2006).
[CrossRef] [PubMed]

A. K. Abeeluck, C. Headley, and C. G. Jørgensen, "High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser," Opt. Lett. 29, 2163-2165 (2004).
[CrossRef] [PubMed]

T. Sylvestre, A. Vedadi, H. Maillotte, F. Vanholsbeeck, and S. Coen, "Supercontinuum generation using continuous-wave multiwavelength pumping and dispersion management," Opt. Lett. 31, 2036-2038 (2006).
[CrossRef] [PubMed]

A. V. Avdokhin, S. V. Popov, and J. R. Taylor, "Continuous-wave, high-power, Raman continuum generation in holey fibers, " Opt. Lett. 28, 1353-1355 (2003).
[CrossRef] [PubMed]

T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000).
[CrossRef]

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, "Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchiplaser," Opt. Lett. 28, 1820-1822 (2003).
[CrossRef] [PubMed]

J. C. Travers, R. E. Kennedy, S. V. Popov, J. R. Taylor, H. Sabert, and B. Mangan, "Extended CW supercontinuum generation in a low water-loss holey fiber," Opt. Lett. 30, 1938-1940 (2005)
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 27-27 (2000).
[CrossRef]

D. Monzón-Hernández, A. N. Starodumov, Y. O. Barmenkov, I. Torres-Gómez, and F. Mendoza-Santoyo, "Continuous-wave measurement of the fiber nonlinear refractive index," Opt. Lett. 23, 1274-1276 (1998).
[CrossRef]

Phys. Rev. A

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

Rev. Mod. Phys.

J. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Science

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Other

E. G. Neumann, Single-mode fibers: fundamentals (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup. EDFA: erbium-doped fiber amplifier, FDF: flat dispersion fiber, OSA: optical spectrum analyzer.

Fig. 2.
Fig. 2.

(a). Dispersion curve of the 6 km FDF. The values beyond 1570 nm and under 1470 nm are extrapolated from the measured data (see text for details). (b) Measured (hollow squares) and fitted attenuation curve of the FDF.

Fig. 3.
Fig. 3.

Evolution of the wavelength of dispersive waves as a function of the wavelength of the soliton, as obtained from the dispersion curve represented in Fig. 2 with a pump power of 6 W.

Fig. 4.
Fig. 4.

Spectra measured at the output of the 6 km FDF: (a) Different input powers for the pump wavelength of 1550 nm. (b) Different pump wavelengths for a pump power of 7 W.

Fig. 5.
Fig. 5.

(a). Spectra measured at the output of the 2 km FDF: (a) Different input powers for the pump wavelength of 1550 nm. (b) Different pump wavelengths for a pump power of 5 W.

Fig. 6.
Fig. 6.

(a). Three slightly different dispersion curves for the FDF and (b) corresponding output spectra at the output of the 2 km fiber for 6 W and λP=1550 nm. The dotted line represents experimental results.

Fig. 7.
Fig. 7.

(a). four successive simulations with the blue dispersion curve of Fig. 6. (b) example of smoothing to get a clearer figure. (c) temporal input intensity of the pump wave.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ β = β ( ω S ) β ( ω DW ) = γ ( ω S ) P S 2 n 2 n = 12 ( ω DW ω S ) n n ! β n ( ω S ) = 0
E z = i m 2 m = 12 i m β m m ! m E τ m + i γ ( ω 0 ) [ 1 + i ω 0 τ ] × [ E ( z , τ ) + R ( τ ) E ( z , τ τ ) 2 d τ ] α ( ω ) 2 E

Metrics