Abstract

Simulation results for optical metamaterials (MTMs) derived from active coated nano-particle (CNP) inclusions for operation in the visible range of the spectrum between 400nm and 700nm are presented. Several examples of optical MTMs designed with these inclusions are characterized, including two-dimensional (2D) CNP metafilms; three-dimensional (3D) periodic CNP arrays; and 3D random CNP distributions. The properties of these optical MTMs are explored using effective medium theories that are applicable to these inclusion configurations. The effective permittivities and refractive indexes of these optical MTMs are compared and contrasted to the scattering properties of their active CNP inclusions.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Engheta and R. W. Ziolkowski, "A positive future for double negative metamaterials," IEEE Microwave Theory Tech. 53, 1535-1556 (2005).
    [CrossRef]
  2. N. Engheta and R. W. Ziolkowski, eds. Metamaterials: Physics and Engineering Explorations (IEEE Press, Wiley Publishing, 2006).
  3. V. G. Veselago, ??The electrodynamics of substances with simultaneously negative values of ε and μ,?? Sov. Phys. Usp. 10, 509-514 (1968) [in Russian Usp. Fiz. Nauk. 92, 517-526 (1967)].
  4. R. W. Ziolkowski, "Metamaterial-based antennas: Research and developments," IEICE Trans. Electron. E 89-C, 1267-1275 (2006).
    [CrossRef]
  5. A. Alù and N. Engheta, "Achieving transparency with plasmonic and metamaterials coatings," Phys. Rev. E 72, 016623 (2005).
    [CrossRef]
  6. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
    [CrossRef] [PubMed]
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
    [CrossRef] [PubMed]
  8. U. Leonhardt, "Optical conformal mapping," Science 312, 1777-1780 (2006).
    [CrossRef] [PubMed]
  9. G. W. Milton and N.-A. P. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. A 462, 3027-3059 (2006).
    [CrossRef]
  10. R. D. Averitt, S. L. Westcott, and N. J. Halas, "Linear optical properties of gold nanoshells," J. Opt. Soc. Am. B. 16, 1824-1832 (1999).
    [CrossRef]
  11. A. Alù and N. Engheta, "Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double negative-positive metamaterials," J. Appl. Phys. 97, 094310 (2005).
    [CrossRef]
  12. R. W. Ziolkowski and A. Kipple, "Application of double negative metamaterials to increase the power radiated by electrically small antennas," IEEE Trans. Antennas Propag. 51, 2626-2640 (2003)
    [CrossRef]
  13. A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt. Express 14, 1557-1567 (2006).
    [CrossRef] [PubMed]
  14. V. M. Shalaev and W. Cai, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005).
    [CrossRef]
  15. G. Dolling, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett. 31, 1800-1802 (2006).
    [CrossRef] [PubMed]
  16. V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photon. 1, 41-48 (2007).
    [CrossRef]
  17. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater. 7, 31-37 (2007).
    [CrossRef]
  18. J. A. Gordon and R. W. Ziolkowski, "The design and simulated performance of a coated nano-particle laser," Opt. Express 15, 2622-2653 (2007).
    [CrossRef] [PubMed]
  19. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  20. A. L. Aden and M. Kerker, "Scattering of electromagnetic waves from two concentric spheres," J. Appl. Phys. 22, 1242-1246 (1951).
    [CrossRef]
  21. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, New York, 1995).
  22. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L.C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-Tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
    [CrossRef] [PubMed]
  23. D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop??ev, and V. M. Ustinov, "InGaAs-GaAs quantum-dot lasers," IEEE J. Sel. Top. Quantum Electron. 3, 196-205 (1997).
    [CrossRef]
  24. E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, "Averaged transition conditions for electromagnetic fields at a metafilm," IEEE Trans Antennas Propag. 51, 2641-2651 (2003).
    [CrossRef]
  25. S. I. Maslovski and S. A. Tretyakov, "Full-wave interaction field in two dimensional arrays of dipole scatterers," Int. J. Electron. Comun., Arch. Elek. ?bertragungstech. (AE?) 53, 135-139 (1999).
  26. C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, "Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles," IEEE Trans Antennas Propag. 47, 853-865 (2005).
  27. S. A Tretyakov and A. J. Viitanen, "Plane waves in regular arrays of dipole scatterers and effective-medium modeling," J. Opt. Soc. Am. A 17, 1791-1797 (2000).
    [CrossRef]
  28. A. Sihvola, Electromagnetic Mixing Formulas and Applications (Institute of Electrical Engineers, London, 1999).
    [CrossRef]

2007 (3)

V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photon. 1, 41-48 (2007).
[CrossRef]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater. 7, 31-37 (2007).
[CrossRef]

J. A. Gordon and R. W. Ziolkowski, "The design and simulated performance of a coated nano-particle laser," Opt. Express 15, 2622-2653 (2007).
[CrossRef] [PubMed]

2006 (7)

A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt. Express 14, 1557-1567 (2006).
[CrossRef] [PubMed]

G. Dolling, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett. 31, 1800-1802 (2006).
[CrossRef] [PubMed]

R. W. Ziolkowski, "Metamaterial-based antennas: Research and developments," IEICE Trans. Electron. E 89-C, 1267-1275 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

U. Leonhardt, "Optical conformal mapping," Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

G. W. Milton and N.-A. P. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. A 462, 3027-3059 (2006).
[CrossRef]

2005 (5)

A. Alù and N. Engheta, "Achieving transparency with plasmonic and metamaterials coatings," Phys. Rev. E 72, 016623 (2005).
[CrossRef]

N. Engheta and R. W. Ziolkowski, "A positive future for double negative metamaterials," IEEE Microwave Theory Tech. 53, 1535-1556 (2005).
[CrossRef]

A. Alù and N. Engheta, "Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double negative-positive metamaterials," J. Appl. Phys. 97, 094310 (2005).
[CrossRef]

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, "Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles," IEEE Trans Antennas Propag. 47, 853-865 (2005).

V. M. Shalaev and W. Cai, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005).
[CrossRef]

2003 (2)

E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, "Averaged transition conditions for electromagnetic fields at a metafilm," IEEE Trans Antennas Propag. 51, 2641-2651 (2003).
[CrossRef]

R. W. Ziolkowski and A. Kipple, "Application of double negative metamaterials to increase the power radiated by electrically small antennas," IEEE Trans. Antennas Propag. 51, 2626-2640 (2003)
[CrossRef]

2000 (1)

1999 (1)

R. D. Averitt, S. L. Westcott, and N. J. Halas, "Linear optical properties of gold nanoshells," J. Opt. Soc. Am. B. 16, 1824-1832 (1999).
[CrossRef]

1997 (1)

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop??ev, and V. M. Ustinov, "InGaAs-GaAs quantum-dot lasers," IEEE J. Sel. Top. Quantum Electron. 3, 196-205 (1997).
[CrossRef]

1968 (1)

V. G. Veselago, ??The electrodynamics of substances with simultaneously negative values of ε and μ,?? Sov. Phys. Usp. 10, 509-514 (1968) [in Russian Usp. Fiz. Nauk. 92, 517-526 (1967)].

1951 (1)

A. L. Aden and M. Kerker, "Scattering of electromagnetic waves from two concentric spheres," J. Appl. Phys. 22, 1242-1246 (1951).
[CrossRef]

Aden, A. L.

A. L. Aden and M. Kerker, "Scattering of electromagnetic waves from two concentric spheres," J. Appl. Phys. 22, 1242-1246 (1951).
[CrossRef]

Alferov, Zh. I.

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop??ev, and V. M. Ustinov, "InGaAs-GaAs quantum-dot lasers," IEEE J. Sel. Top. Quantum Electron. 3, 196-205 (1997).
[CrossRef]

Alù, A.

A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt. Express 14, 1557-1567 (2006).
[CrossRef] [PubMed]

A. Alù and N. Engheta, "Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double negative-positive metamaterials," J. Appl. Phys. 97, 094310 (2005).
[CrossRef]

A. Alù and N. Engheta, "Achieving transparency with plasmonic and metamaterials coatings," Phys. Rev. E 72, 016623 (2005).
[CrossRef]

Averitt, R. D.

R. D. Averitt, S. L. Westcott, and N. J. Halas, "Linear optical properties of gold nanoshells," J. Opt. Soc. Am. B. 16, 1824-1832 (1999).
[CrossRef]

Bimberg, D.

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop??ev, and V. M. Ustinov, "InGaAs-GaAs quantum-dot lasers," IEEE J. Sel. Top. Quantum Electron. 3, 196-205 (1997).
[CrossRef]

Cai, W.

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Dienstfrey, A.

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, "Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles," IEEE Trans Antennas Propag. 47, 853-865 (2005).

Dolling, G.

Engheta, N.

A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt. Express 14, 1557-1567 (2006).
[CrossRef] [PubMed]

A. Alù and N. Engheta, "Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double negative-positive metamaterials," J. Appl. Phys. 97, 094310 (2005).
[CrossRef]

A. Alù and N. Engheta, "Achieving transparency with plasmonic and metamaterials coatings," Phys. Rev. E 72, 016623 (2005).
[CrossRef]

N. Engheta and R. W. Ziolkowski, "A positive future for double negative metamaterials," IEEE Microwave Theory Tech. 53, 1535-1556 (2005).
[CrossRef]

Fu, L.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater. 7, 31-37 (2007).
[CrossRef]

Giessen, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater. 7, 31-37 (2007).
[CrossRef]

Gordon, J. A.

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater. 7, 31-37 (2007).
[CrossRef]

Halas, N. J.

R. D. Averitt, S. L. Westcott, and N. J. Halas, "Linear optical properties of gold nanoshells," J. Opt. Soc. Am. B. 16, 1824-1832 (1999).
[CrossRef]

Holloway, C. L.

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, "Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles," IEEE Trans Antennas Propag. 47, 853-865 (2005).

E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, "Averaged transition conditions for electromagnetic fields at a metafilm," IEEE Trans Antennas Propag. 51, 2641-2651 (2003).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Kaiser, S.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater. 7, 31-37 (2007).
[CrossRef]

Kerker, M.

A. L. Aden and M. Kerker, "Scattering of electromagnetic waves from two concentric spheres," J. Appl. Phys. 22, 1242-1246 (1951).
[CrossRef]

Kipple, A.

R. W. Ziolkowski and A. Kipple, "Application of double negative metamaterials to increase the power radiated by electrically small antennas," IEEE Trans. Antennas Propag. 51, 2626-2640 (2003)
[CrossRef]

Kirstaedter, N.

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop??ev, and V. M. Ustinov, "InGaAs-GaAs quantum-dot lasers," IEEE J. Sel. Top. Quantum Electron. 3, 196-205 (1997).
[CrossRef]

Kop??ev, P. S.

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop??ev, and V. M. Ustinov, "InGaAs-GaAs quantum-dot lasers," IEEE J. Sel. Top. Quantum Electron. 3, 196-205 (1997).
[CrossRef]

Kuester, E. F.

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, "Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles," IEEE Trans Antennas Propag. 47, 853-865 (2005).

E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, "Averaged transition conditions for electromagnetic fields at a metafilm," IEEE Trans Antennas Propag. 51, 2641-2651 (2003).
[CrossRef]

Ledentsov, N. N.

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop??ev, and V. M. Ustinov, "InGaAs-GaAs quantum-dot lasers," IEEE J. Sel. Top. Quantum Electron. 3, 196-205 (1997).
[CrossRef]

Leonhardt, U.

U. Leonhardt, "Optical conformal mapping," Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

Linden, S.

Liu, N.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater. 7, 31-37 (2007).
[CrossRef]

Milton, G. W.

G. W. Milton and N.-A. P. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. A 462, 3027-3059 (2006).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Mohamed, M. A.

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, "Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles," IEEE Trans Antennas Propag. 47, 853-865 (2005).

E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, "Averaged transition conditions for electromagnetic fields at a metafilm," IEEE Trans Antennas Propag. 51, 2641-2651 (2003).
[CrossRef]

Nicorovici, N.-A. P.

G. W. Milton and N.-A. P. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. A 462, 3027-3059 (2006).
[CrossRef]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

Piket-May, M.

E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, "Averaged transition conditions for electromagnetic fields at a metafilm," IEEE Trans Antennas Propag. 51, 2641-2651 (2003).
[CrossRef]

Salandrino, A.

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

Schweizer, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater. 7, 31-37 (2007).
[CrossRef]

Shalaev, V. M.

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

Soukoulis, C. M.

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Tretyakov, S. A

Ustinov, V. M.

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop??ev, and V. M. Ustinov, "InGaAs-GaAs quantum-dot lasers," IEEE J. Sel. Top. Quantum Electron. 3, 196-205 (1997).
[CrossRef]

Veselago, V. G.

V. G. Veselago, ??The electrodynamics of substances with simultaneously negative values of ε and μ,?? Sov. Phys. Usp. 10, 509-514 (1968) [in Russian Usp. Fiz. Nauk. 92, 517-526 (1967)].

Viitanen, A. J.

Westcott, S. L.

R. D. Averitt, S. L. Westcott, and N. J. Halas, "Linear optical properties of gold nanoshells," J. Opt. Soc. Am. B. 16, 1824-1832 (1999).
[CrossRef]

Ziolkowski, R. W.

J. A. Gordon and R. W. Ziolkowski, "The design and simulated performance of a coated nano-particle laser," Opt. Express 15, 2622-2653 (2007).
[CrossRef] [PubMed]

R. W. Ziolkowski, "Metamaterial-based antennas: Research and developments," IEICE Trans. Electron. E 89-C, 1267-1275 (2006).
[CrossRef]

N. Engheta and R. W. Ziolkowski, "A positive future for double negative metamaterials," IEEE Microwave Theory Tech. 53, 1535-1556 (2005).
[CrossRef]

R. W. Ziolkowski and A. Kipple, "Application of double negative metamaterials to increase the power radiated by electrically small antennas," IEEE Trans. Antennas Propag. 51, 2626-2640 (2003)
[CrossRef]

E (1)

R. W. Ziolkowski, "Metamaterial-based antennas: Research and developments," IEICE Trans. Electron. E 89-C, 1267-1275 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop??ev, and V. M. Ustinov, "InGaAs-GaAs quantum-dot lasers," IEEE J. Sel. Top. Quantum Electron. 3, 196-205 (1997).
[CrossRef]

IEEE Microwave Theory Tech. (1)

N. Engheta and R. W. Ziolkowski, "A positive future for double negative metamaterials," IEEE Microwave Theory Tech. 53, 1535-1556 (2005).
[CrossRef]

IEEE Trans Antennas Propag. (2)

E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, "Averaged transition conditions for electromagnetic fields at a metafilm," IEEE Trans Antennas Propag. 51, 2641-2651 (2003).
[CrossRef]

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, "Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles," IEEE Trans Antennas Propag. 47, 853-865 (2005).

IEEE Trans. Antennas Propag. (1)

R. W. Ziolkowski and A. Kipple, "Application of double negative metamaterials to increase the power radiated by electrically small antennas," IEEE Trans. Antennas Propag. 51, 2626-2640 (2003)
[CrossRef]

J. Appl. Phys. (2)

A. Alù and N. Engheta, "Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double negative-positive metamaterials," J. Appl. Phys. 97, 094310 (2005).
[CrossRef]

A. L. Aden and M. Kerker, "Scattering of electromagnetic waves from two concentric spheres," J. Appl. Phys. 22, 1242-1246 (1951).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B. (1)

R. D. Averitt, S. L. Westcott, and N. J. Halas, "Linear optical properties of gold nanoshells," J. Opt. Soc. Am. B. 16, 1824-1832 (1999).
[CrossRef]

Nat. Mater. (1)

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater. 7, 31-37 (2007).
[CrossRef]

Nat. Photon. (1)

V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photon. 1, 41-48 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. E (1)

A. Alù and N. Engheta, "Achieving transparency with plasmonic and metamaterials coatings," Phys. Rev. E 72, 016623 (2005).
[CrossRef]

Proc. R. Soc. A (1)

G. W. Milton and N.-A. P. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. A 462, 3027-3059 (2006).
[CrossRef]

Science (3)

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[CrossRef] [PubMed]

U. Leonhardt, "Optical conformal mapping," Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, ??The electrodynamics of substances with simultaneously negative values of ε and μ,?? Sov. Phys. Usp. 10, 509-514 (1968) [in Russian Usp. Fiz. Nauk. 92, 517-526 (1967)].

Other (6)

N. Engheta and R. W. Ziolkowski, eds. Metamaterials: Physics and Engineering Explorations (IEEE Press, Wiley Publishing, 2006).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, New York, 1995).

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L.C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-Tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

S. I. Maslovski and S. A. Tretyakov, "Full-wave interaction field in two dimensional arrays of dipole scatterers," Int. J. Electron. Comun., Arch. Elek. ?bertragungstech. (AE?) 53, 135-139 (1999).

A. Sihvola, Electromagnetic Mixing Formulas and Applications (Institute of Electrical Engineers, London, 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (28)

Fig. 1.
Fig. 1.

Plane wave scattering from a CNP. The core, which is defined by ε 1, μ 1, is assumed to be silica. The coating, i.e., the second layer, is a plasmonic material defined by ε 2, μ 2. The CNP is surrounded by free space. For an active CNP, the core region includes an active material.

Fig. 2.
Fig. 2.

Results for a CNP with R1=8nm and R2=10nm and with its resonance peak at λres =491.2 nm. (a) Super resonant scattering cross-section when the CNP is active; (b) Super resonant emission cross-section when the CNP is active; and (c) Absorption dominated scattering when the CNP is passive.

Fig. 3.
Fig. 3.

Normally incident plane wave scattering from the CNP-based metafilm

Fig. 4.
Fig. 4.

Transmittance of metafilm for varying gain values in the core of the active CNP inclusions.

Fig. 5.
Fig. 5.

Reflectance of metafilm for varying gain values in the core of the active CNP inclusions.

Fig. 6.
Fig. 6.

Absorptance of metafilm for varying gain values in the core of the active CNP inclusions.

Fig. 7.
Fig. 7.

Comparison of active and passive metafilm for the operating parameters, k=-0.463, d=51nm. Under these conditions the active metafilm takes on characteristics of a plasmonic material with a plasma wavelength of λres ≃491nm

Fig. 8.
Fig. 8.

Absorptance, showing net gain, a<0, for λ<λres and net loss a>0, for λ>λres in the CNP metafilm operating at the SR gain value k=-0.453 as the spacing d is varied over the range of 40nm to 70nm.

Fig. 9.
Fig. 9.

Real part of the effective permittivity of the CNP crystal.

Fig. 10.
Fig. 10.

Imaginary part of the effective permittivity of the CNP crystal.

Fig. 11.
Fig. 11.

Real and imaginary part of the effective permittivity as the lattice spacing is varied. The gain in the CNP was set to k=-0.463, above the SR gain value.

Fig. 12.
Fig. 12.

Real and imaginary part of the effective permittivity as the lattice spacing is varied. The gain in the CNP was set to k=-0.353, below the SR gain value.

Fig. 13.
Fig. 13.

Real and imaginary part of the effective permittivity as the lattice spacing is varied. There was no gain included, i.e., k=0 so that the CNP inclusions were passive.

Fig. 14.
Fig. 14.

Real part of the effective index of the CNP crystal.

Fig. 15.
Fig. 15.

Imaginary part of the effective index of the CNP crystal.

Fig. 16.
Fig. 16.

Real and imaginary part of the effective refractive index as the lattice spacing is varied. The gain in the CNP is set equal to k=−0.463, above the SR value.

Fig. 17.
Fig. 17.

Real and imaginary part of the effective refractive index as the lattice spacing is varied. The gain in the CNP is set equal to k=-0.353, below the SR value.

Fig. 18.
Fig. 18.

Real and imaginary part of the effective refractive index as the lattice spacing is varied. The CNP inclusions are passive, i.e., k=0.

Fig. 19.
Fig. 19.

Real part of the effective permittivity of the random CNP medium.

Fig. 20.
Fig. 20.

Imaginary part of the effective permittivity of the random CNP medium.

Fig. 21.
Fig. 21.

Normalized real part of the effective permittivity of the random CNP medium.

Fig. 22.
Fig. 22.

Normalized imaginary part of the effective permittivity of the random CNP medium.

Fig. 23.
Fig. 23.

Real part of the complex effective index of the random CNP medium.

Fig. 24.
Fig. 24.

Imaginary part of the complex effective index of the random CNP medium.

Fig. 25.
Fig. 25.

Imaginary part of the complex effective index of the random CNP medium, gain in CNP core above SR value, with a value of k=-0.463.

Fig. 26.
Fig. 26.

Imaginary part of the complex effective index of the random CNP medium when the gain in the CNP core is at the SR value, with k=-0.453.

Fig. 27.
Fig. 27.

Imaginary part of the complex effective index of the random CNP medium when the gain in the CNP core is below the SR value, with k=-0.353.

Fig. 28.
Fig. 28.

Imaginary part of the complex effective index of the random CNP medium when the core is passive , i.e., when the gain in CNP core is zero (k=0).

Equations (37)

Equations on this page are rendered with MathJax. Learn more.

E scat = E o n = 1 ( i ) n 2 n + 1 n ( n + 1 ) [ a n m o 1 n ( 3 ) ( ρ , θ , ϕ ) + i b n n e 1 n ( 3 ) ( ρ , θ , ϕ ) ]
H scat = E o ε 4 μ 4 n = 1 ( i ) n 2 n + 1 n ( n + 1 ) [ b n m e 1 n ( 3 ) ( ρ , θ , ϕ ) i a n n o 1 n ( 3 ) ( ρ , θ , ϕ ) ]
σ scat = P scat I inc = 2 π β 2 n ( 2 n + 1 ) ( a n 2 + b n 2 )
σ abs = P abs I inc = 2 π β 2 n ( 2 n + 1 ) ( Re { a n } + a n 2 + Re { b n } + b n 2 )
σ ext = σ scat + σ abs
Q scat = σ scat π r 2
Q abs = σ abs π r 2
Q ext = Q scat + Q abs
ε ( ω , R ) = ε Drude ( ω , R ) + χ IntBand ( ω )
ε Drude ( ω , R ) = 1 ω p 2 Γ ( R ) 2 + ω 2 + i Γ ( R ) ω p 2 ω ( Γ ( R ) 2 + ω 2 )
Γ ( R ) = Γ + AV F R
ε core = n 2 k 2 + i 2 kn
p = α E E loc , m = α M H loc
α E = i 6 π ε 0 b 1 β 3 , α M = i 6 π a 1 β 3
a z × H z = 0 0 + = i ω ε 0 α ES · E t , av z = 0 + a z × t [ α MS zz H z , av ] z = 0
E | z = 0 0 + × a z = i ω μ 0 α MS · H t , av | z = 0 t [ α ES zz E z , av ] z = 0 × a z
D z | z = 0 0 + = · ( ε 0 α ES · E t , av | z = 0 )
B z | z = 0 0 + = · ( μ 0 α MS · H t , av | z = 0 )
α ES = α ES xx a x a x + α ES yy a y a y + α ES zz a z a z
α MS = α MS xx a x a x + α MS yy a y a y + α MS zz a z a z
α ES xx = N α E , xx ε 0 N α E , xx 4 R
α ES yy = N α E , yy ε 0 N α E , yy 4 R
α ES zz = N α E , zz ε 0 + N α E , zz 2 R
α MS xx = N α M , xx 1 + N α M , xx 4 R
α MS yy = N α M , yy 1 + N α M , yy 4 R
α MS zz = N α M , zz 1 N α M , zz 2 R
T = 1 ( β 2 ) 2 α ES xx α MS yy 1 + ( β 2 ) 2 α ES xx α MS yy + i ( β 2 ) ( α MS yy α ES xx )
Γ = i ( β 2 ) ( α MS yy + α ES xx ) 1 + ( β 2 ) 2 α ES xx α MS yy + i ( β 2 ) ( α MS yy α ES xx )
E trans 2 ~ t E inc 2
E refl 2 ~ r E inc 2
a = 1 t r
ε lattice = 1 + 1 ε 0 n ( 1 α E + i β 3 6 π ε 0 ) 1 3
ε lattice = ε lat + i ε lat "
N lattice = ε lattice = n lat + i k lat
ε rand = 1 + 1 ε 0 n α E 1 3
ε rand = ε rand + i ε rand
N rand = ε rand = n rand + ik rand

Metrics