Abstract

We report the realization of large-area, communications-wavelength electro-optic modulators made via simple solution-casting onto an arbitrary substrate. The devices employ colloidal quantum dots synthesized in, and processed from, the solution phase. Devices exhibit greater than 30% modulation depth at the 1.55 µm eye-safe wavelengths of interest in free-space optical communications. The devices retain considerable modulation depth beyond 1 MHz.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Talapin and C. B. Murray, "PbSe nanocrystal solidsforn-andp-channel thin ?lm ?eld-effecttransistors," Science 310, 86-89 (2005).
    [CrossRef] [PubMed]
  2. N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, "Ef?cient near-infrared polymer nanocrystal light-emitting diodes," Science 295, 1506-1508 (2002).
    [CrossRef] [PubMed]
  3. S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, and E. H. Sargent, "A solution-processed 1.53 μm quantum dot laser with temperature-invariant emission wavelength," Opt. Express. 14, 3273-3281 (2006).
    [CrossRef] [PubMed]
  4. G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, "Ultrasensitive solution-cast quantum dot photodetectors," Nature 442, 180-183 (2006).
    [CrossRef] [PubMed]
  5. K. W. Johnston, A. G. Pattantyus-Abraham, J. P. Clifford, S. H. Myrskog, D. D. MacNeil, L. Levina, and E. H. Sargent, "Schottky-quantum dot photovoltaics for efficient infrared power conversion," Appl. Phys. Lett. 92, 151115 (2008).
    [CrossRef]
  6. J. M. Kahn and J. R. Barry, "Wireless infrared communications," Proc. IEEE 85, 265-298 (1997).
    [CrossRef]
  7. A. V. Jelalian, Laser Radar Systems (Artech House, 1991).
  8. H. Rossmann, A. Schulzgen, F. Hennenberger, and M. Muller, "Quantum Confined DC Stark Effect in Microcrystallites," Phys. Status Solidi 159, 287-290 (1990).
    [CrossRef]
  9. U. Woggon, S. V. Bogdanov, O. Wind, K.-H. Schlaad, H. Pier, C. Klingshirn, P. Chatziagorastou, and H. P. Fritz, "Electro-otic properties of CdS embedded in a polymer," Phys. Rev. B 48, 11979-11986 (1993).
    [CrossRef]
  10. S. A. Empedocles and M. G. Bawendi, "Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots," Science 278, 2114-2117 (1997).
    [CrossRef]
  11. V. L. Colvin, K. L. Cunningham, and A. P. Alivisatos, "Electric field modulation studies of optical absorption in CdSe nanocrystals: Dipolar character of the excited state," J. Chem. Phys. 101, 7122-7138 (1994).
    [CrossRef]
  12. E. J. Klem, L. Levina, and E. H. Sargent, "PbS quantum dot electroabsorption modulation across the extended communications band 1200-1700 nm," Appl. Phys. Lett. 87, 053101 (2005).
    [CrossRef]
  13. D. Yu, C. Wang, and P. Guyot-Sionnest, "n-Type conducting CdSe nanocrystal solids," Science 300, 1277-1280 (2003).
    [CrossRef] [PubMed]
  14. P. Guyot-Sionnest and C. Wang, "Fast voltammetric and electrochromic response of semiconductor nanocrystal thin films," J. Phys. Chem. B 107, 7355-7359 (2003).
    [CrossRef]
  15. W. K. Woo, K. T. Shimizu, M. V. Jarosz, R. G. Neuhauser, C. A. Leatherdale, M. A. Rubner, and M. G. Bawendi, "Reversible charging of CdSe nanocrystals in a simple solid-state device," Adv. Mater. 14, 1068-1071 (2002).
    [CrossRef]

2008 (1)

K. W. Johnston, A. G. Pattantyus-Abraham, J. P. Clifford, S. H. Myrskog, D. D. MacNeil, L. Levina, and E. H. Sargent, "Schottky-quantum dot photovoltaics for efficient infrared power conversion," Appl. Phys. Lett. 92, 151115 (2008).
[CrossRef]

2006 (2)

S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, and E. H. Sargent, "A solution-processed 1.53 μm quantum dot laser with temperature-invariant emission wavelength," Opt. Express. 14, 3273-3281 (2006).
[CrossRef] [PubMed]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, "Ultrasensitive solution-cast quantum dot photodetectors," Nature 442, 180-183 (2006).
[CrossRef] [PubMed]

2005 (2)

D. Talapin and C. B. Murray, "PbSe nanocrystal solidsforn-andp-channel thin ?lm ?eld-effecttransistors," Science 310, 86-89 (2005).
[CrossRef] [PubMed]

E. J. Klem, L. Levina, and E. H. Sargent, "PbS quantum dot electroabsorption modulation across the extended communications band 1200-1700 nm," Appl. Phys. Lett. 87, 053101 (2005).
[CrossRef]

2003 (2)

D. Yu, C. Wang, and P. Guyot-Sionnest, "n-Type conducting CdSe nanocrystal solids," Science 300, 1277-1280 (2003).
[CrossRef] [PubMed]

P. Guyot-Sionnest and C. Wang, "Fast voltammetric and electrochromic response of semiconductor nanocrystal thin films," J. Phys. Chem. B 107, 7355-7359 (2003).
[CrossRef]

2002 (2)

W. K. Woo, K. T. Shimizu, M. V. Jarosz, R. G. Neuhauser, C. A. Leatherdale, M. A. Rubner, and M. G. Bawendi, "Reversible charging of CdSe nanocrystals in a simple solid-state device," Adv. Mater. 14, 1068-1071 (2002).
[CrossRef]

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, "Ef?cient near-infrared polymer nanocrystal light-emitting diodes," Science 295, 1506-1508 (2002).
[CrossRef] [PubMed]

1997 (2)

J. M. Kahn and J. R. Barry, "Wireless infrared communications," Proc. IEEE 85, 265-298 (1997).
[CrossRef]

S. A. Empedocles and M. G. Bawendi, "Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots," Science 278, 2114-2117 (1997).
[CrossRef]

1994 (1)

V. L. Colvin, K. L. Cunningham, and A. P. Alivisatos, "Electric field modulation studies of optical absorption in CdSe nanocrystals: Dipolar character of the excited state," J. Chem. Phys. 101, 7122-7138 (1994).
[CrossRef]

1993 (1)

U. Woggon, S. V. Bogdanov, O. Wind, K.-H. Schlaad, H. Pier, C. Klingshirn, P. Chatziagorastou, and H. P. Fritz, "Electro-otic properties of CdS embedded in a polymer," Phys. Rev. B 48, 11979-11986 (1993).
[CrossRef]

1990 (1)

H. Rossmann, A. Schulzgen, F. Hennenberger, and M. Muller, "Quantum Confined DC Stark Effect in Microcrystallites," Phys. Status Solidi 159, 287-290 (1990).
[CrossRef]

Alivisatos, A. P.

V. L. Colvin, K. L. Cunningham, and A. P. Alivisatos, "Electric field modulation studies of optical absorption in CdSe nanocrystals: Dipolar character of the excited state," J. Chem. Phys. 101, 7122-7138 (1994).
[CrossRef]

Banin, U.

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, "Ef?cient near-infrared polymer nanocrystal light-emitting diodes," Science 295, 1506-1508 (2002).
[CrossRef] [PubMed]

Barry, J. R.

J. M. Kahn and J. R. Barry, "Wireless infrared communications," Proc. IEEE 85, 265-298 (1997).
[CrossRef]

Bawendi, M. G.

W. K. Woo, K. T. Shimizu, M. V. Jarosz, R. G. Neuhauser, C. A. Leatherdale, M. A. Rubner, and M. G. Bawendi, "Reversible charging of CdSe nanocrystals in a simple solid-state device," Adv. Mater. 14, 1068-1071 (2002).
[CrossRef]

S. A. Empedocles and M. G. Bawendi, "Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots," Science 278, 2114-2117 (1997).
[CrossRef]

Bogdanov, S. V.

U. Woggon, S. V. Bogdanov, O. Wind, K.-H. Schlaad, H. Pier, C. Klingshirn, P. Chatziagorastou, and H. P. Fritz, "Electro-otic properties of CdS embedded in a polymer," Phys. Rev. B 48, 11979-11986 (1993).
[CrossRef]

Cauchi, S.

S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, and E. H. Sargent, "A solution-processed 1.53 μm quantum dot laser with temperature-invariant emission wavelength," Opt. Express. 14, 3273-3281 (2006).
[CrossRef] [PubMed]

Chatziagorastou, P.

U. Woggon, S. V. Bogdanov, O. Wind, K.-H. Schlaad, H. Pier, C. Klingshirn, P. Chatziagorastou, and H. P. Fritz, "Electro-otic properties of CdS embedded in a polymer," Phys. Rev. B 48, 11979-11986 (1993).
[CrossRef]

Clifford, J.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, "Ultrasensitive solution-cast quantum dot photodetectors," Nature 442, 180-183 (2006).
[CrossRef] [PubMed]

Clifford, J. P.

K. W. Johnston, A. G. Pattantyus-Abraham, J. P. Clifford, S. H. Myrskog, D. D. MacNeil, L. Levina, and E. H. Sargent, "Schottky-quantum dot photovoltaics for efficient infrared power conversion," Appl. Phys. Lett. 92, 151115 (2008).
[CrossRef]

Colvin, V. L.

V. L. Colvin, K. L. Cunningham, and A. P. Alivisatos, "Electric field modulation studies of optical absorption in CdSe nanocrystals: Dipolar character of the excited state," J. Chem. Phys. 101, 7122-7138 (1994).
[CrossRef]

Cunningham, K. L.

V. L. Colvin, K. L. Cunningham, and A. P. Alivisatos, "Electric field modulation studies of optical absorption in CdSe nanocrystals: Dipolar character of the excited state," J. Chem. Phys. 101, 7122-7138 (1994).
[CrossRef]

Empedocles, S. A.

S. A. Empedocles and M. G. Bawendi, "Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots," Science 278, 2114-2117 (1997).
[CrossRef]

Fischer, A.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, "Ultrasensitive solution-cast quantum dot photodetectors," Nature 442, 180-183 (2006).
[CrossRef] [PubMed]

Fritz, H. P.

U. Woggon, S. V. Bogdanov, O. Wind, K.-H. Schlaad, H. Pier, C. Klingshirn, P. Chatziagorastou, and H. P. Fritz, "Electro-otic properties of CdS embedded in a polymer," Phys. Rev. B 48, 11979-11986 (1993).
[CrossRef]

Guyot-Sionnest, P.

D. Yu, C. Wang, and P. Guyot-Sionnest, "n-Type conducting CdSe nanocrystal solids," Science 300, 1277-1280 (2003).
[CrossRef] [PubMed]

P. Guyot-Sionnest and C. Wang, "Fast voltammetric and electrochromic response of semiconductor nanocrystal thin films," J. Phys. Chem. B 107, 7355-7359 (2003).
[CrossRef]

Hennenberger, F.

H. Rossmann, A. Schulzgen, F. Hennenberger, and M. Muller, "Quantum Confined DC Stark Effect in Microcrystallites," Phys. Status Solidi 159, 287-290 (1990).
[CrossRef]

Hoogland, S.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, "Ultrasensitive solution-cast quantum dot photodetectors," Nature 442, 180-183 (2006).
[CrossRef] [PubMed]

S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, and E. H. Sargent, "A solution-processed 1.53 μm quantum dot laser with temperature-invariant emission wavelength," Opt. Express. 14, 3273-3281 (2006).
[CrossRef] [PubMed]

Howard, I.

S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, and E. H. Sargent, "A solution-processed 1.53 μm quantum dot laser with temperature-invariant emission wavelength," Opt. Express. 14, 3273-3281 (2006).
[CrossRef] [PubMed]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, "Ultrasensitive solution-cast quantum dot photodetectors," Nature 442, 180-183 (2006).
[CrossRef] [PubMed]

Jarosz, M. V.

W. K. Woo, K. T. Shimizu, M. V. Jarosz, R. G. Neuhauser, C. A. Leatherdale, M. A. Rubner, and M. G. Bawendi, "Reversible charging of CdSe nanocrystals in a simple solid-state device," Adv. Mater. 14, 1068-1071 (2002).
[CrossRef]

Johnston, K. W.

K. W. Johnston, A. G. Pattantyus-Abraham, J. P. Clifford, S. H. Myrskog, D. D. MacNeil, L. Levina, and E. H. Sargent, "Schottky-quantum dot photovoltaics for efficient infrared power conversion," Appl. Phys. Lett. 92, 151115 (2008).
[CrossRef]

Kahn, J. M.

J. M. Kahn and J. R. Barry, "Wireless infrared communications," Proc. IEEE 85, 265-298 (1997).
[CrossRef]

Kan, S.

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, "Ef?cient near-infrared polymer nanocrystal light-emitting diodes," Science 295, 1506-1508 (2002).
[CrossRef] [PubMed]

Kazes, M.

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, "Ef?cient near-infrared polymer nanocrystal light-emitting diodes," Science 295, 1506-1508 (2002).
[CrossRef] [PubMed]

Klem, E.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, "Ultrasensitive solution-cast quantum dot photodetectors," Nature 442, 180-183 (2006).
[CrossRef] [PubMed]

Klem, E. J.

E. J. Klem, L. Levina, and E. H. Sargent, "PbS quantum dot electroabsorption modulation across the extended communications band 1200-1700 nm," Appl. Phys. Lett. 87, 053101 (2005).
[CrossRef]

Klingshirn, C.

U. Woggon, S. V. Bogdanov, O. Wind, K.-H. Schlaad, H. Pier, C. Klingshirn, P. Chatziagorastou, and H. P. Fritz, "Electro-otic properties of CdS embedded in a polymer," Phys. Rev. B 48, 11979-11986 (1993).
[CrossRef]

Konstantatos, G.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, "Ultrasensitive solution-cast quantum dot photodetectors," Nature 442, 180-183 (2006).
[CrossRef] [PubMed]

Leatherdale, C. A.

W. K. Woo, K. T. Shimizu, M. V. Jarosz, R. G. Neuhauser, C. A. Leatherdale, M. A. Rubner, and M. G. Bawendi, "Reversible charging of CdSe nanocrystals in a simple solid-state device," Adv. Mater. 14, 1068-1071 (2002).
[CrossRef]

Levina, L.

K. W. Johnston, A. G. Pattantyus-Abraham, J. P. Clifford, S. H. Myrskog, D. D. MacNeil, L. Levina, and E. H. Sargent, "Schottky-quantum dot photovoltaics for efficient infrared power conversion," Appl. Phys. Lett. 92, 151115 (2008).
[CrossRef]

S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, and E. H. Sargent, "A solution-processed 1.53 μm quantum dot laser with temperature-invariant emission wavelength," Opt. Express. 14, 3273-3281 (2006).
[CrossRef] [PubMed]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, "Ultrasensitive solution-cast quantum dot photodetectors," Nature 442, 180-183 (2006).
[CrossRef] [PubMed]

E. J. Klem, L. Levina, and E. H. Sargent, "PbS quantum dot electroabsorption modulation across the extended communications band 1200-1700 nm," Appl. Phys. Lett. 87, 053101 (2005).
[CrossRef]

MacNeil, D. D.

K. W. Johnston, A. G. Pattantyus-Abraham, J. P. Clifford, S. H. Myrskog, D. D. MacNeil, L. Levina, and E. H. Sargent, "Schottky-quantum dot photovoltaics for efficient infrared power conversion," Appl. Phys. Lett. 92, 151115 (2008).
[CrossRef]

Medvedev, V.

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, "Ef?cient near-infrared polymer nanocrystal light-emitting diodes," Science 295, 1506-1508 (2002).
[CrossRef] [PubMed]

Muller, M.

H. Rossmann, A. Schulzgen, F. Hennenberger, and M. Muller, "Quantum Confined DC Stark Effect in Microcrystallites," Phys. Status Solidi 159, 287-290 (1990).
[CrossRef]

Murray, C. B.

D. Talapin and C. B. Murray, "PbSe nanocrystal solidsforn-andp-channel thin ?lm ?eld-effecttransistors," Science 310, 86-89 (2005).
[CrossRef] [PubMed]

Myrskog, S. H.

K. W. Johnston, A. G. Pattantyus-Abraham, J. P. Clifford, S. H. Myrskog, D. D. MacNeil, L. Levina, and E. H. Sargent, "Schottky-quantum dot photovoltaics for efficient infrared power conversion," Appl. Phys. Lett. 92, 151115 (2008).
[CrossRef]

Neuhauser, R. G.

W. K. Woo, K. T. Shimizu, M. V. Jarosz, R. G. Neuhauser, C. A. Leatherdale, M. A. Rubner, and M. G. Bawendi, "Reversible charging of CdSe nanocrystals in a simple solid-state device," Adv. Mater. 14, 1068-1071 (2002).
[CrossRef]

Pattantyus-Abraham, A. G.

K. W. Johnston, A. G. Pattantyus-Abraham, J. P. Clifford, S. H. Myrskog, D. D. MacNeil, L. Levina, and E. H. Sargent, "Schottky-quantum dot photovoltaics for efficient infrared power conversion," Appl. Phys. Lett. 92, 151115 (2008).
[CrossRef]

Pier, H.

U. Woggon, S. V. Bogdanov, O. Wind, K.-H. Schlaad, H. Pier, C. Klingshirn, P. Chatziagorastou, and H. P. Fritz, "Electro-otic properties of CdS embedded in a polymer," Phys. Rev. B 48, 11979-11986 (1993).
[CrossRef]

Rossmann, H.

H. Rossmann, A. Schulzgen, F. Hennenberger, and M. Muller, "Quantum Confined DC Stark Effect in Microcrystallites," Phys. Status Solidi 159, 287-290 (1990).
[CrossRef]

Rubner, M. A.

W. K. Woo, K. T. Shimizu, M. V. Jarosz, R. G. Neuhauser, C. A. Leatherdale, M. A. Rubner, and M. G. Bawendi, "Reversible charging of CdSe nanocrystals in a simple solid-state device," Adv. Mater. 14, 1068-1071 (2002).
[CrossRef]

Sargent, E. H.

K. W. Johnston, A. G. Pattantyus-Abraham, J. P. Clifford, S. H. Myrskog, D. D. MacNeil, L. Levina, and E. H. Sargent, "Schottky-quantum dot photovoltaics for efficient infrared power conversion," Appl. Phys. Lett. 92, 151115 (2008).
[CrossRef]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, "Ultrasensitive solution-cast quantum dot photodetectors," Nature 442, 180-183 (2006).
[CrossRef] [PubMed]

S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, and E. H. Sargent, "A solution-processed 1.53 μm quantum dot laser with temperature-invariant emission wavelength," Opt. Express. 14, 3273-3281 (2006).
[CrossRef] [PubMed]

E. J. Klem, L. Levina, and E. H. Sargent, "PbS quantum dot electroabsorption modulation across the extended communications band 1200-1700 nm," Appl. Phys. Lett. 87, 053101 (2005).
[CrossRef]

Schlaad, K.-H.

U. Woggon, S. V. Bogdanov, O. Wind, K.-H. Schlaad, H. Pier, C. Klingshirn, P. Chatziagorastou, and H. P. Fritz, "Electro-otic properties of CdS embedded in a polymer," Phys. Rev. B 48, 11979-11986 (1993).
[CrossRef]

Schulzgen, A.

H. Rossmann, A. Schulzgen, F. Hennenberger, and M. Muller, "Quantum Confined DC Stark Effect in Microcrystallites," Phys. Status Solidi 159, 287-290 (1990).
[CrossRef]

Shimizu, K. T.

W. K. Woo, K. T. Shimizu, M. V. Jarosz, R. G. Neuhauser, C. A. Leatherdale, M. A. Rubner, and M. G. Bawendi, "Reversible charging of CdSe nanocrystals in a simple solid-state device," Adv. Mater. 14, 1068-1071 (2002).
[CrossRef]

Sukhovatkin, V.

S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, and E. H. Sargent, "A solution-processed 1.53 μm quantum dot laser with temperature-invariant emission wavelength," Opt. Express. 14, 3273-3281 (2006).
[CrossRef] [PubMed]

Talapin, D.

D. Talapin and C. B. Murray, "PbSe nanocrystal solidsforn-andp-channel thin ?lm ?eld-effecttransistors," Science 310, 86-89 (2005).
[CrossRef] [PubMed]

Tessler, N.

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, "Ef?cient near-infrared polymer nanocrystal light-emitting diodes," Science 295, 1506-1508 (2002).
[CrossRef] [PubMed]

Wang, C.

D. Yu, C. Wang, and P. Guyot-Sionnest, "n-Type conducting CdSe nanocrystal solids," Science 300, 1277-1280 (2003).
[CrossRef] [PubMed]

P. Guyot-Sionnest and C. Wang, "Fast voltammetric and electrochromic response of semiconductor nanocrystal thin films," J. Phys. Chem. B 107, 7355-7359 (2003).
[CrossRef]

Wind, O.

U. Woggon, S. V. Bogdanov, O. Wind, K.-H. Schlaad, H. Pier, C. Klingshirn, P. Chatziagorastou, and H. P. Fritz, "Electro-otic properties of CdS embedded in a polymer," Phys. Rev. B 48, 11979-11986 (1993).
[CrossRef]

Woggon, U.

U. Woggon, S. V. Bogdanov, O. Wind, K.-H. Schlaad, H. Pier, C. Klingshirn, P. Chatziagorastou, and H. P. Fritz, "Electro-otic properties of CdS embedded in a polymer," Phys. Rev. B 48, 11979-11986 (1993).
[CrossRef]

Woo, W. K.

W. K. Woo, K. T. Shimizu, M. V. Jarosz, R. G. Neuhauser, C. A. Leatherdale, M. A. Rubner, and M. G. Bawendi, "Reversible charging of CdSe nanocrystals in a simple solid-state device," Adv. Mater. 14, 1068-1071 (2002).
[CrossRef]

Yu, D.

D. Yu, C. Wang, and P. Guyot-Sionnest, "n-Type conducting CdSe nanocrystal solids," Science 300, 1277-1280 (2003).
[CrossRef] [PubMed]

Adv. Mater. (1)

W. K. Woo, K. T. Shimizu, M. V. Jarosz, R. G. Neuhauser, C. A. Leatherdale, M. A. Rubner, and M. G. Bawendi, "Reversible charging of CdSe nanocrystals in a simple solid-state device," Adv. Mater. 14, 1068-1071 (2002).
[CrossRef]

Appl. Phys. Lett. (2)

E. J. Klem, L. Levina, and E. H. Sargent, "PbS quantum dot electroabsorption modulation across the extended communications band 1200-1700 nm," Appl. Phys. Lett. 87, 053101 (2005).
[CrossRef]

K. W. Johnston, A. G. Pattantyus-Abraham, J. P. Clifford, S. H. Myrskog, D. D. MacNeil, L. Levina, and E. H. Sargent, "Schottky-quantum dot photovoltaics for efficient infrared power conversion," Appl. Phys. Lett. 92, 151115 (2008).
[CrossRef]

J. Chem. Phys. (1)

V. L. Colvin, K. L. Cunningham, and A. P. Alivisatos, "Electric field modulation studies of optical absorption in CdSe nanocrystals: Dipolar character of the excited state," J. Chem. Phys. 101, 7122-7138 (1994).
[CrossRef]

J. Phys. Chem. B (1)

P. Guyot-Sionnest and C. Wang, "Fast voltammetric and electrochromic response of semiconductor nanocrystal thin films," J. Phys. Chem. B 107, 7355-7359 (2003).
[CrossRef]

Nature (1)

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, "Ultrasensitive solution-cast quantum dot photodetectors," Nature 442, 180-183 (2006).
[CrossRef] [PubMed]

Opt. Express. (1)

S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, and E. H. Sargent, "A solution-processed 1.53 μm quantum dot laser with temperature-invariant emission wavelength," Opt. Express. 14, 3273-3281 (2006).
[CrossRef] [PubMed]

Phys. Rev. B (1)

U. Woggon, S. V. Bogdanov, O. Wind, K.-H. Schlaad, H. Pier, C. Klingshirn, P. Chatziagorastou, and H. P. Fritz, "Electro-otic properties of CdS embedded in a polymer," Phys. Rev. B 48, 11979-11986 (1993).
[CrossRef]

Phys. Status Solidi (1)

H. Rossmann, A. Schulzgen, F. Hennenberger, and M. Muller, "Quantum Confined DC Stark Effect in Microcrystallites," Phys. Status Solidi 159, 287-290 (1990).
[CrossRef]

Proc. IEEE (1)

J. M. Kahn and J. R. Barry, "Wireless infrared communications," Proc. IEEE 85, 265-298 (1997).
[CrossRef]

Science (4)

S. A. Empedocles and M. G. Bawendi, "Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots," Science 278, 2114-2117 (1997).
[CrossRef]

D. Talapin and C. B. Murray, "PbSe nanocrystal solidsforn-andp-channel thin ?lm ?eld-effecttransistors," Science 310, 86-89 (2005).
[CrossRef] [PubMed]

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, "Ef?cient near-infrared polymer nanocrystal light-emitting diodes," Science 295, 1506-1508 (2002).
[CrossRef] [PubMed]

D. Yu, C. Wang, and P. Guyot-Sionnest, "n-Type conducting CdSe nanocrystal solids," Science 300, 1277-1280 (2003).
[CrossRef] [PubMed]

Other (1)

A. V. Jelalian, Laser Radar Systems (Artech House, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Colloidal quantum dot electro-absorption modulator architecture. In the experiments presented herein, light is incident from the bottom. It passes through the transparent glass substrate, through the colloidal quantum dot film, reflects off of the gold electrode, and is passed again through the film and substrate. Measurements reported herein are thus made in reflection mode.

Fig. 2.
Fig. 2.

Electron micrographs of a ~50 nm thick layer of benzendithiol-treated nanocrystal film on silicon. The top image shows a cross-sectional view; the lower image shows a top-surface view. Close-packing of the nanocrystals may be observed; nanoscale cracks do not penetrate to the substrate.

Fig. 3.
Fig. 3.

Change in absorption under both positive and negative DC biases as a function of wavelength. Red corresponds to positive bias while black corresponds to negative bias. The increasing-amplitude spectra are for +/-1 V, +/-3 V, +/-4 V, and +/-6 V.

Fig. 4.
Fig. 4.

Change in absorption under large negative DC biases as a function of wavelength. Curves with increasing amplitude of absorption change correspond to -1 V, -3 V, -5 V, -7 V, -9 V, -11 V, and -12 V bias. The maximum absorption change exceeded 25% for an applied DC voltage of -12 V. Note that the vertical scale bar spans 35% compared to the 7% span of Fig. 3.

Fig. 5.
Fig. 5.

Temporal dependence of the change in absorption at the wavelength of maximum modulation. In (a) and (b) we report the absorption change in response to the application of a periodic train of 40 µs voltage pulses. In (a) we report for negative pulses while in (b) for positive. Pulse amplitudes of 2, 6, 10, 14, and 20 V were applied. The measured fall and rise characteristics fit well to a single exponential with characteristic time 4 µs. The amplitude and temporal response of absorption change are substantially invariant with field polarity. In (c) we report the peak current and peak absorption change amplitude as a function of the square of the bias voltage.

Fig. 6.
Fig. 6.

Modulation electrical frequency spectrum and 50 kHz pulse modulation response. a, Modulation bandwidth as measured at the peak Stark-wavelength of the 230 nm thick device, obtained by applying a single oscillation of the set frequency with an amplitude of -30 V (black) or a frequency-variable sinusoidal bias (red). The frequency response exhibits a 3 dB bandwidth of 120 kHz. b, Absorption change (solid line) in response to the application of a voltage double-pulse (dashed line). The maximum change in absorption is more than 30% (lprobe=1500 nm) at an effective frequency of 50 kHz.

Metrics