Abstract

By using strong optical injection locking, we report resonance frequency enhancement in excess of 100 GHz in semiconductor lasers. We demonstrate this enhancement in both distributed feedback (DFB) lasers and vertical-cavity surface-emitting lasers (VCSELs), showing the broad applicability of the technique and that the coupling Q is the figure-of-merit for resonance frequency enhancement. We have also identified the key factors that cause low-frequency roll-off in injection-locked lasers. By increasing the slave laser’s DC current bias, we have achieved a record intrinsic 3-dB bandwidth of 80 GHz in VCSELs.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, "30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser," IEEE Photon. Technol. Lett. 9, 25 (1997).
    [CrossRef]
  2. S. Weisser, E. C. Larkins, K. Czotscher, W. Benz, J. Daleiden, I. Esquivias, J. Fleissner, J. D. Ralston, B. Romero, R. E. Sah, A. Schonfelder, and J. Rosenzweig, "Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity In0.35Ga0.65As-GaAs multiple-quantum-well lasers," IEEE Photon. Technol. Lett. 8, 608-610 (1996).
    [CrossRef]
  3. X. Zhang, A. Gutierrez-Aitken, D. Klotzkin, P. Bhattacharya, C. Caneau, and R. Bhat, "0.98-μm multiple-quantum-well tunneling injection laser with 98-GHz intrinsic modulation bandwidth," IEEE J. Sel. Top. Quantum Electron. 3, 309-314 (1997).
    [CrossRef]
  4. R. S. Tucker, "High-speed modulation of semiconductor lasers," J. Lightwave Technol. 3, 1180-1192 (1985).
    [CrossRef]
  5. E. K. Lau, H. K. Sung, and M. C. Wu, "Ultra-high, 72 GHz resonance frequency and 44 GHz bandwidth of injection-locked 1.55-μm DFB lasers," in Opt. Fiber Commun. Conf., Tech. Digest (IEEE, 2006), 1-3.
  6. L. Chrostowski, X. Zhao, C. J. Chang-Hasnain, R. Shau, M. Ortsiefer, and M. C. Amann, "50-GHz Optically Injection-Locked 1.55-μm VCSELs," IEEE Photon. Technol. Lett. 18, 367-369 (2006).
    [CrossRef]
  7. X. J. Meng, T. Chau, and M. C. Wu, "Experimental demonstration of modulation bandwidth enhancement in distributed feedback lasers with external light injection," Electron. Lett. 34, 2031 (1998).
    [CrossRef]
  8. T. B. Simpson and J. M. Liu, "Enhanced modulation bandwidth in injection-locked semiconductor lasers," IEEE Photon. Technol. Lett. 9, 1322-1324 (1997).
    [CrossRef]
  9. X. Zhao, D. Parekh, E. K. Lau, H. K. Sung, M. C. Wu, and C. J. Chang-Hasnain, "Optoelectronic Oscillator Using Injection-Locked VCSELs," in Annu. Meeting IEEE Lasers and Electro-Optics Soc., Tech. Digest (IEEE, 2007), 190-191.
  10. H. K. Sung, E. K. Lau, X. Zhao, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, "Optically injection-locked optoelectronic oscillators with low RF threshold gain," in Conf. on Lasers and Electro-Optics, Tech. Digest (OSA, 2007), 1-2.
  11. T. B. Simpson, J. M. Liu, and A. Gavrielides, "Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection," IEEE J. Quantum Electron. 32, 1456-1468 (1996).
    [CrossRef]
  12. E. K. Lau, H. K. Sung, and M. C. Wu, "Frequency response enhancement of optical injection-locked lasers," IEEE J. Quantum Electron. 44, 90-99 (2008).
    [CrossRef]
  13. E. K. Lau, H. K. Sung, and M. C. Wu, "Scaling of resonance frequency for strong injection-locked lasers," Opt. Lett. 32, 3373-3375 (2007).
    [CrossRef] [PubMed]
  14. H. L. T. Lee, R. J. Ram, O. Kjebon, and R. Schatz, "Bandwidth enhancement and chirp reduction in DBR lasers by strong optical injection," in Conf. on Lasers and Electro-Optics, Postconf. Tech. Digest (OSA, 2000), 99-100.
  15. H. K. Sung, E. K. Lau, M. C. Wu, D. Tishinin, K. Y. Liou, and W. T. Tsang, "Large-signal analog modulation response of monolithic optical injection-locked DFB lasers," in Conf. on Lasers and Electro-Optics, Tech. Digest (OSA, 2005), 1025-1027.

2008 (1)

E. K. Lau, H. K. Sung, and M. C. Wu, "Frequency response enhancement of optical injection-locked lasers," IEEE J. Quantum Electron. 44, 90-99 (2008).
[CrossRef]

2007 (1)

2006 (1)

L. Chrostowski, X. Zhao, C. J. Chang-Hasnain, R. Shau, M. Ortsiefer, and M. C. Amann, "50-GHz Optically Injection-Locked 1.55-μm VCSELs," IEEE Photon. Technol. Lett. 18, 367-369 (2006).
[CrossRef]

1998 (1)

X. J. Meng, T. Chau, and M. C. Wu, "Experimental demonstration of modulation bandwidth enhancement in distributed feedback lasers with external light injection," Electron. Lett. 34, 2031 (1998).
[CrossRef]

1997 (3)

T. B. Simpson and J. M. Liu, "Enhanced modulation bandwidth in injection-locked semiconductor lasers," IEEE Photon. Technol. Lett. 9, 1322-1324 (1997).
[CrossRef]

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, "30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser," IEEE Photon. Technol. Lett. 9, 25 (1997).
[CrossRef]

X. Zhang, A. Gutierrez-Aitken, D. Klotzkin, P. Bhattacharya, C. Caneau, and R. Bhat, "0.98-μm multiple-quantum-well tunneling injection laser with 98-GHz intrinsic modulation bandwidth," IEEE J. Sel. Top. Quantum Electron. 3, 309-314 (1997).
[CrossRef]

1996 (2)

S. Weisser, E. C. Larkins, K. Czotscher, W. Benz, J. Daleiden, I. Esquivias, J. Fleissner, J. D. Ralston, B. Romero, R. E. Sah, A. Schonfelder, and J. Rosenzweig, "Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity In0.35Ga0.65As-GaAs multiple-quantum-well lasers," IEEE Photon. Technol. Lett. 8, 608-610 (1996).
[CrossRef]

T. B. Simpson, J. M. Liu, and A. Gavrielides, "Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection," IEEE J. Quantum Electron. 32, 1456-1468 (1996).
[CrossRef]

1985 (1)

R. S. Tucker, "High-speed modulation of semiconductor lasers," J. Lightwave Technol. 3, 1180-1192 (1985).
[CrossRef]

Amann, M. C.

L. Chrostowski, X. Zhao, C. J. Chang-Hasnain, R. Shau, M. Ortsiefer, and M. C. Amann, "50-GHz Optically Injection-Locked 1.55-μm VCSELs," IEEE Photon. Technol. Lett. 18, 367-369 (2006).
[CrossRef]

Arahira, S.

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, "30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser," IEEE Photon. Technol. Lett. 9, 25 (1997).
[CrossRef]

Benz, W.

S. Weisser, E. C. Larkins, K. Czotscher, W. Benz, J. Daleiden, I. Esquivias, J. Fleissner, J. D. Ralston, B. Romero, R. E. Sah, A. Schonfelder, and J. Rosenzweig, "Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity In0.35Ga0.65As-GaAs multiple-quantum-well lasers," IEEE Photon. Technol. Lett. 8, 608-610 (1996).
[CrossRef]

Bhat, R.

X. Zhang, A. Gutierrez-Aitken, D. Klotzkin, P. Bhattacharya, C. Caneau, and R. Bhat, "0.98-μm multiple-quantum-well tunneling injection laser with 98-GHz intrinsic modulation bandwidth," IEEE J. Sel. Top. Quantum Electron. 3, 309-314 (1997).
[CrossRef]

Bhattacharya, P.

X. Zhang, A. Gutierrez-Aitken, D. Klotzkin, P. Bhattacharya, C. Caneau, and R. Bhat, "0.98-μm multiple-quantum-well tunneling injection laser with 98-GHz intrinsic modulation bandwidth," IEEE J. Sel. Top. Quantum Electron. 3, 309-314 (1997).
[CrossRef]

Caneau, C.

X. Zhang, A. Gutierrez-Aitken, D. Klotzkin, P. Bhattacharya, C. Caneau, and R. Bhat, "0.98-μm multiple-quantum-well tunneling injection laser with 98-GHz intrinsic modulation bandwidth," IEEE J. Sel. Top. Quantum Electron. 3, 309-314 (1997).
[CrossRef]

Chang-Hasnain, C. J.

L. Chrostowski, X. Zhao, C. J. Chang-Hasnain, R. Shau, M. Ortsiefer, and M. C. Amann, "50-GHz Optically Injection-Locked 1.55-μm VCSELs," IEEE Photon. Technol. Lett. 18, 367-369 (2006).
[CrossRef]

Chau, T.

X. J. Meng, T. Chau, and M. C. Wu, "Experimental demonstration of modulation bandwidth enhancement in distributed feedback lasers with external light injection," Electron. Lett. 34, 2031 (1998).
[CrossRef]

Chrostowski, L.

L. Chrostowski, X. Zhao, C. J. Chang-Hasnain, R. Shau, M. Ortsiefer, and M. C. Amann, "50-GHz Optically Injection-Locked 1.55-μm VCSELs," IEEE Photon. Technol. Lett. 18, 367-369 (2006).
[CrossRef]

Czotscher, K.

S. Weisser, E. C. Larkins, K. Czotscher, W. Benz, J. Daleiden, I. Esquivias, J. Fleissner, J. D. Ralston, B. Romero, R. E. Sah, A. Schonfelder, and J. Rosenzweig, "Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity In0.35Ga0.65As-GaAs multiple-quantum-well lasers," IEEE Photon. Technol. Lett. 8, 608-610 (1996).
[CrossRef]

Daleiden, J.

S. Weisser, E. C. Larkins, K. Czotscher, W. Benz, J. Daleiden, I. Esquivias, J. Fleissner, J. D. Ralston, B. Romero, R. E. Sah, A. Schonfelder, and J. Rosenzweig, "Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity In0.35Ga0.65As-GaAs multiple-quantum-well lasers," IEEE Photon. Technol. Lett. 8, 608-610 (1996).
[CrossRef]

Esquivias, I.

S. Weisser, E. C. Larkins, K. Czotscher, W. Benz, J. Daleiden, I. Esquivias, J. Fleissner, J. D. Ralston, B. Romero, R. E. Sah, A. Schonfelder, and J. Rosenzweig, "Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity In0.35Ga0.65As-GaAs multiple-quantum-well lasers," IEEE Photon. Technol. Lett. 8, 608-610 (1996).
[CrossRef]

Fleissner, J.

S. Weisser, E. C. Larkins, K. Czotscher, W. Benz, J. Daleiden, I. Esquivias, J. Fleissner, J. D. Ralston, B. Romero, R. E. Sah, A. Schonfelder, and J. Rosenzweig, "Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity In0.35Ga0.65As-GaAs multiple-quantum-well lasers," IEEE Photon. Technol. Lett. 8, 608-610 (1996).
[CrossRef]

Gavrielides, A.

T. B. Simpson, J. M. Liu, and A. Gavrielides, "Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection," IEEE J. Quantum Electron. 32, 1456-1468 (1996).
[CrossRef]

Gutierrez-Aitken, A.

X. Zhang, A. Gutierrez-Aitken, D. Klotzkin, P. Bhattacharya, C. Caneau, and R. Bhat, "0.98-μm multiple-quantum-well tunneling injection laser with 98-GHz intrinsic modulation bandwidth," IEEE J. Sel. Top. Quantum Electron. 3, 309-314 (1997).
[CrossRef]

Klotzkin, D.

X. Zhang, A. Gutierrez-Aitken, D. Klotzkin, P. Bhattacharya, C. Caneau, and R. Bhat, "0.98-μm multiple-quantum-well tunneling injection laser with 98-GHz intrinsic modulation bandwidth," IEEE J. Sel. Top. Quantum Electron. 3, 309-314 (1997).
[CrossRef]

Kutsuzawa, S.

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, "30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser," IEEE Photon. Technol. Lett. 9, 25 (1997).
[CrossRef]

Larkins, E. C.

S. Weisser, E. C. Larkins, K. Czotscher, W. Benz, J. Daleiden, I. Esquivias, J. Fleissner, J. D. Ralston, B. Romero, R. E. Sah, A. Schonfelder, and J. Rosenzweig, "Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity In0.35Ga0.65As-GaAs multiple-quantum-well lasers," IEEE Photon. Technol. Lett. 8, 608-610 (1996).
[CrossRef]

Lau, E. K.

E. K. Lau, H. K. Sung, and M. C. Wu, "Frequency response enhancement of optical injection-locked lasers," IEEE J. Quantum Electron. 44, 90-99 (2008).
[CrossRef]

E. K. Lau, H. K. Sung, and M. C. Wu, "Scaling of resonance frequency for strong injection-locked lasers," Opt. Lett. 32, 3373-3375 (2007).
[CrossRef] [PubMed]

Liu, J. M.

T. B. Simpson and J. M. Liu, "Enhanced modulation bandwidth in injection-locked semiconductor lasers," IEEE Photon. Technol. Lett. 9, 1322-1324 (1997).
[CrossRef]

T. B. Simpson, J. M. Liu, and A. Gavrielides, "Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection," IEEE J. Quantum Electron. 32, 1456-1468 (1996).
[CrossRef]

Matsui, Y.

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, "30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser," IEEE Photon. Technol. Lett. 9, 25 (1997).
[CrossRef]

Meng, X. J.

X. J. Meng, T. Chau, and M. C. Wu, "Experimental demonstration of modulation bandwidth enhancement in distributed feedback lasers with external light injection," Electron. Lett. 34, 2031 (1998).
[CrossRef]

Murai, H.

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, "30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser," IEEE Photon. Technol. Lett. 9, 25 (1997).
[CrossRef]

Ogawa, Y.

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, "30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser," IEEE Photon. Technol. Lett. 9, 25 (1997).
[CrossRef]

Ortsiefer, M.

L. Chrostowski, X. Zhao, C. J. Chang-Hasnain, R. Shau, M. Ortsiefer, and M. C. Amann, "50-GHz Optically Injection-Locked 1.55-μm VCSELs," IEEE Photon. Technol. Lett. 18, 367-369 (2006).
[CrossRef]

Ralston, J. D.

S. Weisser, E. C. Larkins, K. Czotscher, W. Benz, J. Daleiden, I. Esquivias, J. Fleissner, J. D. Ralston, B. Romero, R. E. Sah, A. Schonfelder, and J. Rosenzweig, "Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity In0.35Ga0.65As-GaAs multiple-quantum-well lasers," IEEE Photon. Technol. Lett. 8, 608-610 (1996).
[CrossRef]

Romero, B.

S. Weisser, E. C. Larkins, K. Czotscher, W. Benz, J. Daleiden, I. Esquivias, J. Fleissner, J. D. Ralston, B. Romero, R. E. Sah, A. Schonfelder, and J. Rosenzweig, "Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity In0.35Ga0.65As-GaAs multiple-quantum-well lasers," IEEE Photon. Technol. Lett. 8, 608-610 (1996).
[CrossRef]

Rosenzweig, J.

S. Weisser, E. C. Larkins, K. Czotscher, W. Benz, J. Daleiden, I. Esquivias, J. Fleissner, J. D. Ralston, B. Romero, R. E. Sah, A. Schonfelder, and J. Rosenzweig, "Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity In0.35Ga0.65As-GaAs multiple-quantum-well lasers," IEEE Photon. Technol. Lett. 8, 608-610 (1996).
[CrossRef]

Sah, R. E.

S. Weisser, E. C. Larkins, K. Czotscher, W. Benz, J. Daleiden, I. Esquivias, J. Fleissner, J. D. Ralston, B. Romero, R. E. Sah, A. Schonfelder, and J. Rosenzweig, "Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity In0.35Ga0.65As-GaAs multiple-quantum-well lasers," IEEE Photon. Technol. Lett. 8, 608-610 (1996).
[CrossRef]

Schonfelder, A.

S. Weisser, E. C. Larkins, K. Czotscher, W. Benz, J. Daleiden, I. Esquivias, J. Fleissner, J. D. Ralston, B. Romero, R. E. Sah, A. Schonfelder, and J. Rosenzweig, "Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity In0.35Ga0.65As-GaAs multiple-quantum-well lasers," IEEE Photon. Technol. Lett. 8, 608-610 (1996).
[CrossRef]

Shau, R.

L. Chrostowski, X. Zhao, C. J. Chang-Hasnain, R. Shau, M. Ortsiefer, and M. C. Amann, "50-GHz Optically Injection-Locked 1.55-μm VCSELs," IEEE Photon. Technol. Lett. 18, 367-369 (2006).
[CrossRef]

Simpson, T. B.

T. B. Simpson and J. M. Liu, "Enhanced modulation bandwidth in injection-locked semiconductor lasers," IEEE Photon. Technol. Lett. 9, 1322-1324 (1997).
[CrossRef]

T. B. Simpson, J. M. Liu, and A. Gavrielides, "Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection," IEEE J. Quantum Electron. 32, 1456-1468 (1996).
[CrossRef]

Sung, H. K.

E. K. Lau, H. K. Sung, and M. C. Wu, "Frequency response enhancement of optical injection-locked lasers," IEEE J. Quantum Electron. 44, 90-99 (2008).
[CrossRef]

E. K. Lau, H. K. Sung, and M. C. Wu, "Scaling of resonance frequency for strong injection-locked lasers," Opt. Lett. 32, 3373-3375 (2007).
[CrossRef] [PubMed]

Tucker, R. S.

R. S. Tucker, "High-speed modulation of semiconductor lasers," J. Lightwave Technol. 3, 1180-1192 (1985).
[CrossRef]

Weisser, S.

S. Weisser, E. C. Larkins, K. Czotscher, W. Benz, J. Daleiden, I. Esquivias, J. Fleissner, J. D. Ralston, B. Romero, R. E. Sah, A. Schonfelder, and J. Rosenzweig, "Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity In0.35Ga0.65As-GaAs multiple-quantum-well lasers," IEEE Photon. Technol. Lett. 8, 608-610 (1996).
[CrossRef]

Wu, M. C.

E. K. Lau, H. K. Sung, and M. C. Wu, "Frequency response enhancement of optical injection-locked lasers," IEEE J. Quantum Electron. 44, 90-99 (2008).
[CrossRef]

E. K. Lau, H. K. Sung, and M. C. Wu, "Scaling of resonance frequency for strong injection-locked lasers," Opt. Lett. 32, 3373-3375 (2007).
[CrossRef] [PubMed]

X. J. Meng, T. Chau, and M. C. Wu, "Experimental demonstration of modulation bandwidth enhancement in distributed feedback lasers with external light injection," Electron. Lett. 34, 2031 (1998).
[CrossRef]

Zhang, X.

X. Zhang, A. Gutierrez-Aitken, D. Klotzkin, P. Bhattacharya, C. Caneau, and R. Bhat, "0.98-μm multiple-quantum-well tunneling injection laser with 98-GHz intrinsic modulation bandwidth," IEEE J. Sel. Top. Quantum Electron. 3, 309-314 (1997).
[CrossRef]

Zhao, X.

L. Chrostowski, X. Zhao, C. J. Chang-Hasnain, R. Shau, M. Ortsiefer, and M. C. Amann, "50-GHz Optically Injection-Locked 1.55-μm VCSELs," IEEE Photon. Technol. Lett. 18, 367-369 (2006).
[CrossRef]

Electron. Lett. (1)

X. J. Meng, T. Chau, and M. C. Wu, "Experimental demonstration of modulation bandwidth enhancement in distributed feedback lasers with external light injection," Electron. Lett. 34, 2031 (1998).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. B. Simpson, J. M. Liu, and A. Gavrielides, "Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection," IEEE J. Quantum Electron. 32, 1456-1468 (1996).
[CrossRef]

E. K. Lau, H. K. Sung, and M. C. Wu, "Frequency response enhancement of optical injection-locked lasers," IEEE J. Quantum Electron. 44, 90-99 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

X. Zhang, A. Gutierrez-Aitken, D. Klotzkin, P. Bhattacharya, C. Caneau, and R. Bhat, "0.98-μm multiple-quantum-well tunneling injection laser with 98-GHz intrinsic modulation bandwidth," IEEE J. Sel. Top. Quantum Electron. 3, 309-314 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, "30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser," IEEE Photon. Technol. Lett. 9, 25 (1997).
[CrossRef]

S. Weisser, E. C. Larkins, K. Czotscher, W. Benz, J. Daleiden, I. Esquivias, J. Fleissner, J. D. Ralston, B. Romero, R. E. Sah, A. Schonfelder, and J. Rosenzweig, "Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity In0.35Ga0.65As-GaAs multiple-quantum-well lasers," IEEE Photon. Technol. Lett. 8, 608-610 (1996).
[CrossRef]

T. B. Simpson and J. M. Liu, "Enhanced modulation bandwidth in injection-locked semiconductor lasers," IEEE Photon. Technol. Lett. 9, 1322-1324 (1997).
[CrossRef]

L. Chrostowski, X. Zhao, C. J. Chang-Hasnain, R. Shau, M. Ortsiefer, and M. C. Amann, "50-GHz Optically Injection-Locked 1.55-μm VCSELs," IEEE Photon. Technol. Lett. 18, 367-369 (2006).
[CrossRef]

J. Lightwave Technol. (1)

R. S. Tucker, "High-speed modulation of semiconductor lasers," J. Lightwave Technol. 3, 1180-1192 (1985).
[CrossRef]

Opt. Lett. (1)

Other (5)

H. L. T. Lee, R. J. Ram, O. Kjebon, and R. Schatz, "Bandwidth enhancement and chirp reduction in DBR lasers by strong optical injection," in Conf. on Lasers and Electro-Optics, Postconf. Tech. Digest (OSA, 2000), 99-100.

H. K. Sung, E. K. Lau, M. C. Wu, D. Tishinin, K. Y. Liou, and W. T. Tsang, "Large-signal analog modulation response of monolithic optical injection-locked DFB lasers," in Conf. on Lasers and Electro-Optics, Tech. Digest (OSA, 2005), 1025-1027.

E. K. Lau, H. K. Sung, and M. C. Wu, "Ultra-high, 72 GHz resonance frequency and 44 GHz bandwidth of injection-locked 1.55-μm DFB lasers," in Opt. Fiber Commun. Conf., Tech. Digest (IEEE, 2006), 1-3.

X. Zhao, D. Parekh, E. K. Lau, H. K. Sung, M. C. Wu, and C. J. Chang-Hasnain, "Optoelectronic Oscillator Using Injection-Locked VCSELs," in Annu. Meeting IEEE Lasers and Electro-Optics Soc., Tech. Digest (IEEE, 2007), 190-191.

H. K. Sung, E. K. Lau, X. Zhao, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, "Optically injection-locked optoelectronic oscillators with low RF threshold gain," in Conf. on Lasers and Electro-Optics, Tech. Digest (OSA, 2007), 1-2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Frequency response comparison between (a) DFB and (b) VCSEL, both with Qc =6800. Each response curve shows the maximum resonance frequency for a given injection ratio, labeled on the curve. The maximum resonance frequency of each laser is the same for any given injection ratio.

Fig. 2.
Fig. 2.

(a) Dependence of the frequency response on bias current. Thick, overlain lines show the 3-dB frequency range. (b) Dependence of the low-pass pole frequency, fP , to current, along with corresponding 3-dB frequencies, f 3dB . The 3-dB bandwidth of the free-running laser is also shown (f3dB,FR ).

Fig. 3.
Fig. 3.

Optical injection locking experimental setup. VNA: vector network analyzer, PD: photodetector, OSA: optical spectrum analyzer, PC: polarization controller.

Fig. 4.
Fig. 4.

Evolution of injection-locked laser across locking range: (a) DFB frequency response and (b) corresponding optical spectra for +14 dB injection ratio. The detuning frequencies are varied from -47 to +67 GHz, in 12.7 GHz increments. The solid black lines represent the freerunning case. The curves are offset for clarity. (c) DFB frequency response for different injection ratios (-16, -11, -6, -1, 4, 6, 9, 10, 11, 12, 13, 13.5 and 14 dB) and (d) corresponding optical spectra. (e) DFB resonance frequency as a function of detuning frequency and injection ratio, contour plot. Red O- and green X-marks are the bias points from (a) and (c), respectively. Frequency response curves in (a) and (c) are smoothed 0.5% for clarity.

Fig. 5.
Fig. 5.

Evolution of injection-locked VCSEL for different detuning frequencies: (a) frequency response (smoothed 0.5% for clarity) and (b) corresponding optical spectra for +13.6 dB injection ratio. The detuning frequencies are 88, 93, 98, and 102 GHz. The solid black line represents the free-running case. The curves are offset for clarity.

Fig. 6.
Fig. 6.

(a) Experimental and theoretical frequency responses of optical injection-locked VCSEL at different DC bias currents. Experimental VCSEL curves (dotted) are shown for I=1.3× and 5×Ith . Theoretical curves (solid) are shown for I=1.3×, 5×, and 9×Ith . 3-dB frequencies of 1.4 and 80 GHz for the experimental curves, respectively, are shown in circles. (b) Extracted low-pass pole values (fP ) for the three bias points, with corresponding 3-dB frequencies (f 3dB ). Experimental free-running 3-dB frequencies also marked (f3dB,FR ).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ω R 2 = ω R 0 2 + Δ ω R 2
Δ ω R = κ R int sin ( ϕ 0 )
Δ ω R , max = ω 0 2 Q c R ext
ω P [ 1 + 2 α Q c R ext Q tot sin ( ϕ 0 ) ] g S 0

Metrics