Abstract

We report on the numerical study to model a lensless optical manipulation trap to investigate some observed features as guiding and modulation effects caused by a micro-sphere. For this we calculate the field distribution and force exerted upon a micrometer-sized spherical dielectric particle in an evanescent field. The method of calculation is based on the integral equation formalism describe by A.A. Maradudin et. al. [1] and A. Mendoza-Suárez and E.R. Méndez [2]. The numerical experiments were done considering a two-dimensional model.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, "Enhance backscattering of light from a random rouge surface," Ann. Phys. 203, 255-307 (1990).
    [CrossRef]
  2. A. Mendoza-Surez and E. R. Mndez, "Light scattering by a reentrant fractal surface," Appl. Opt. 36, 3521-3531 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ao-36-15-3521
    [CrossRef]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986) http://www.opticsinfobase.org/abstract.cfm?URI=ol-11-5-288
    [CrossRef] [PubMed]
  4. S. Kawata and T. Sugiura, "Movement of micrometer-sized particles in the evanescent field of a laser beam," Opt. Lett. 17, 772-774 (1992), http://www.opticsinfobase.org/abstract.cfm?URI=ol-17-11-772
    [CrossRef] [PubMed]
  5. S. Kawata and T. Tani, "Optically driven Mie particles in an evanescent field along a channeled waveguide," Opt. Lett. 21, 1768-1770 (1996), http://www.opticsinfobase.org/abstract.cfm?URI=ol-21-21-1768
    [CrossRef] [PubMed]
  6. T. Tanaka and S. Yamamoto "Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide," Appl. Phys. Lett. 77, 3131 (2000)
    [CrossRef]
  7. L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, "Propulsion of gold nanoparticles on optical waveguides," Opt. Commun. 208, 117-124 (2002)
  8. P. J. Reece, V. Garces-Chavez, and K. Dholakia, "Near-field optical micromanipulation with cavity enhanced evanescent waves," Appl. Phys. Lett. 88, 221116 (2006).
    [CrossRef]
  9. V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, "Extended-area optically induced organization of microparticles on a surface," Appl. Phys. Lett. 86, 031106 (2005).
    [CrossRef]
  10. M. Righini, A. S. Zelenina, C. Girard, and R. Quidanti, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477-480 (2007).
    [CrossRef]
  11. V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmons polaritons excitation, " Phys. Rev. B 73, 085417 (2006).
    [CrossRef]
  12. G. Volpe, R. Quidant, G. Badenes, and D. Petrov, "Surface Plasmon Radiation Forces," Phys. Rev. Lett. 96, 238101 (2006).
    [CrossRef] [PubMed]
  13. M. Lester and M. Nieto-Vesperinas, "Optical forces on microparticles in an evanescent laser field," Opt. Lett. 24, 936-938 (1999) http://www.opticsinfobase.org/abstract.cfm?URI=ol-24-14-936
    [CrossRef]
  14. J. R. Arias-González, M. Nieto-Vesperinas, and M. Lester, "Modeling photonic force microscopy with metallic particles under Plasmon eigenmode excitation," Phys. Rev. B 65, 115402 (2002).
    [CrossRef]
  15. J. R. Arias-Gonzàlez and M. Nieto-Vesperinas, "Radiation pressure over dielectric and metallic nanocylinders on surfaces: polarization dependence and plasmon resonance conditions," Opt. Lett. 27, 2149-2151 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-24-2149
    [CrossRef]
  16. J. R. Arias-González and M. Nieto-Vesperinas, "Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions," J. Opt. Soc. Am. A 20, 1201-1209 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=josaa-20-7-1201
    [CrossRef]
  17. P. C. Chaumet and M. Nieto-Vesperinas, "Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric surface substrate," Phys. Rev. B 61, 14119-14127 (2000).
    [CrossRef]
  18. R. Quidant, D. Petrov, and G. Badenes, "Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field," Opt. Lett. 30, 1009-1011 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-9-1009
    [CrossRef] [PubMed]
  19. E. Almaas and I. Brevik, "Radiation forces on a micrometer-sized sphere in an evanescent field," J. Opt. Soc. Am. B 12, 2429-2438 (1995). http://www.opticsinfobase.org/abstract.cfm?URI=josab-12-12-2429
    [CrossRef]
  20. S. Chang, J. H. Jo, and S. S. Lee, "Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused Gaussian beam," Opt Commun. 108, 133-143 (1994).
    [CrossRef]
  21. J. Y. Walz, "Ray optics calculation of the radiation forces exerted on a dielectric sphere in an evanescent field," Appl. Opt. 38, 5319-5330 (1999) http://www.opticsinfobase.org/abstract.cfm?URI=ao-38-25-5319
    [CrossRef]
  22. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  23. H. Ishikawa, H. Tamaru, and K. Miyano, "Observation of a modulation effect caused by a microsphere resonator strongly coupled to a dielectric substrate," Opt. Lett. 24, 643-645 (1999). http://www.opticsinfobase.org/abstract.cfm?URI=ol-24-10-643
    [CrossRef]
  24. H. Ishikawa, H. Tamaru, and K. Miyano, "Microsphere resonators strongly coupled to a plane dielectric substrate: coupling via the optical near field," J. Opt. Soc. Am. A 17, 802-813 (2000). http://www.opticsinfobase.org/abstract.cfm?URI=josaa-17-4-802
    [CrossRef]
  25. M. Tanaka and K. Tanaka, "Boundary integral equations for computer-aided design and simulations of near-field optics: two-dimensional optical manipulator," J. Opt. Soc. Am. A 15, 101-108 (1998). http://www.opticsinfobase.org/abstract.cfm?URI=josaa-15-1-101
    [CrossRef]

2007 (1)

M. Righini, A. S. Zelenina, C. Girard, and R. Quidanti, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477-480 (2007).
[CrossRef]

2006 (3)

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmons polaritons excitation, " Phys. Rev. B 73, 085417 (2006).
[CrossRef]

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, "Surface Plasmon Radiation Forces," Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef] [PubMed]

P. J. Reece, V. Garces-Chavez, and K. Dholakia, "Near-field optical micromanipulation with cavity enhanced evanescent waves," Appl. Phys. Lett. 88, 221116 (2006).
[CrossRef]

2005 (2)

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, "Extended-area optically induced organization of microparticles on a surface," Appl. Phys. Lett. 86, 031106 (2005).
[CrossRef]

R. Quidant, D. Petrov, and G. Badenes, "Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field," Opt. Lett. 30, 1009-1011 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-9-1009
[CrossRef] [PubMed]

2003 (1)

2002 (3)

J. R. Arias-Gonzàlez and M. Nieto-Vesperinas, "Radiation pressure over dielectric and metallic nanocylinders on surfaces: polarization dependence and plasmon resonance conditions," Opt. Lett. 27, 2149-2151 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-24-2149
[CrossRef]

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, "Propulsion of gold nanoparticles on optical waveguides," Opt. Commun. 208, 117-124 (2002)

J. R. Arias-González, M. Nieto-Vesperinas, and M. Lester, "Modeling photonic force microscopy with metallic particles under Plasmon eigenmode excitation," Phys. Rev. B 65, 115402 (2002).
[CrossRef]

2000 (3)

P. C. Chaumet and M. Nieto-Vesperinas, "Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric surface substrate," Phys. Rev. B 61, 14119-14127 (2000).
[CrossRef]

T. Tanaka and S. Yamamoto "Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide," Appl. Phys. Lett. 77, 3131 (2000)
[CrossRef]

H. Ishikawa, H. Tamaru, and K. Miyano, "Microsphere resonators strongly coupled to a plane dielectric substrate: coupling via the optical near field," J. Opt. Soc. Am. A 17, 802-813 (2000). http://www.opticsinfobase.org/abstract.cfm?URI=josaa-17-4-802
[CrossRef]

1999 (3)

1998 (1)

1997 (1)

1996 (1)

1995 (1)

1994 (1)

S. Chang, J. H. Jo, and S. S. Lee, "Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused Gaussian beam," Opt Commun. 108, 133-143 (1994).
[CrossRef]

1992 (1)

1990 (1)

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, "Enhance backscattering of light from a random rouge surface," Ann. Phys. 203, 255-307 (1990).
[CrossRef]

1986 (1)

Almaas, E.

Arias-González, J. R.

J. R. Arias-González and M. Nieto-Vesperinas, "Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions," J. Opt. Soc. Am. A 20, 1201-1209 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=josaa-20-7-1201
[CrossRef]

J. R. Arias-González, M. Nieto-Vesperinas, and M. Lester, "Modeling photonic force microscopy with metallic particles under Plasmon eigenmode excitation," Phys. Rev. B 65, 115402 (2002).
[CrossRef]

Arias-Gonzàlez, J. R.

Ashkin, A.

Badenes, G.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmons polaritons excitation, " Phys. Rev. B 73, 085417 (2006).
[CrossRef]

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, "Surface Plasmon Radiation Forces," Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef] [PubMed]

R. Quidant, D. Petrov, and G. Badenes, "Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field," Opt. Lett. 30, 1009-1011 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-9-1009
[CrossRef] [PubMed]

Bjorkholm, J. E.

Brevik, I.

Chang, S.

S. Chang, J. H. Jo, and S. S. Lee, "Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused Gaussian beam," Opt Commun. 108, 133-143 (1994).
[CrossRef]

Chaumet, P. C.

P. C. Chaumet and M. Nieto-Vesperinas, "Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric surface substrate," Phys. Rev. B 61, 14119-14127 (2000).
[CrossRef]

Chu, S.

Dholakia, K.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmons polaritons excitation, " Phys. Rev. B 73, 085417 (2006).
[CrossRef]

P. J. Reece, V. Garces-Chavez, and K. Dholakia, "Near-field optical micromanipulation with cavity enhanced evanescent waves," Appl. Phys. Lett. 88, 221116 (2006).
[CrossRef]

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, "Extended-area optically induced organization of microparticles on a surface," Appl. Phys. Lett. 86, 031106 (2005).
[CrossRef]

Dziedzic, J. M.

Garces-Chavez, V.

P. J. Reece, V. Garces-Chavez, and K. Dholakia, "Near-field optical micromanipulation with cavity enhanced evanescent waves," Appl. Phys. Lett. 88, 221116 (2006).
[CrossRef]

Garcés-Chávez, V.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmons polaritons excitation, " Phys. Rev. B 73, 085417 (2006).
[CrossRef]

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, "Extended-area optically induced organization of microparticles on a surface," Appl. Phys. Lett. 86, 031106 (2005).
[CrossRef]

Girard, C.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidanti, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477-480 (2007).
[CrossRef]

Ishikawa, H.

Jo, J. H.

S. Chang, J. H. Jo, and S. S. Lee, "Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused Gaussian beam," Opt Commun. 108, 133-143 (1994).
[CrossRef]

Kawata, S.

Lee, S. S.

S. Chang, J. H. Jo, and S. S. Lee, "Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused Gaussian beam," Opt Commun. 108, 133-143 (1994).
[CrossRef]

Lester, M.

J. R. Arias-González, M. Nieto-Vesperinas, and M. Lester, "Modeling photonic force microscopy with metallic particles under Plasmon eigenmode excitation," Phys. Rev. B 65, 115402 (2002).
[CrossRef]

M. Lester and M. Nieto-Vesperinas, "Optical forces on microparticles in an evanescent laser field," Opt. Lett. 24, 936-938 (1999) http://www.opticsinfobase.org/abstract.cfm?URI=ol-24-14-936
[CrossRef]

Luff, B. J.

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, "Propulsion of gold nanoparticles on optical waveguides," Opt. Commun. 208, 117-124 (2002)

Maradudin, A. A.

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, "Enhance backscattering of light from a random rouge surface," Ann. Phys. 203, 255-307 (1990).
[CrossRef]

McGurn, A. R.

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, "Enhance backscattering of light from a random rouge surface," Ann. Phys. 203, 255-307 (1990).
[CrossRef]

Méndez, E. R.

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, "Enhance backscattering of light from a random rouge surface," Ann. Phys. 203, 255-307 (1990).
[CrossRef]

Mendoza-Surez, A.

Michel, T.

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, "Enhance backscattering of light from a random rouge surface," Ann. Phys. 203, 255-307 (1990).
[CrossRef]

Miyano, K.

Mndez, E. R.

Ng, L. N.

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, "Propulsion of gold nanoparticles on optical waveguides," Opt. Commun. 208, 117-124 (2002)

Nieto-Vesperinas, M.

Petrov, D.

Quidant, R.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmons polaritons excitation, " Phys. Rev. B 73, 085417 (2006).
[CrossRef]

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, "Surface Plasmon Radiation Forces," Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef] [PubMed]

R. Quidant, D. Petrov, and G. Badenes, "Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field," Opt. Lett. 30, 1009-1011 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-9-1009
[CrossRef] [PubMed]

Quidanti, R.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidanti, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477-480 (2007).
[CrossRef]

Reece, P. J.

P. J. Reece, V. Garces-Chavez, and K. Dholakia, "Near-field optical micromanipulation with cavity enhanced evanescent waves," Appl. Phys. Lett. 88, 221116 (2006).
[CrossRef]

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmons polaritons excitation, " Phys. Rev. B 73, 085417 (2006).
[CrossRef]

Righini, M.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidanti, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477-480 (2007).
[CrossRef]

Spalding, G. C.

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, "Extended-area optically induced organization of microparticles on a surface," Appl. Phys. Lett. 86, 031106 (2005).
[CrossRef]

Sugiura, T.

Tamaru, H.

Tanaka, K.

Tanaka, M.

Tanaka, T.

T. Tanaka and S. Yamamoto "Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide," Appl. Phys. Lett. 77, 3131 (2000)
[CrossRef]

Tani, T.

Torner, L.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmons polaritons excitation, " Phys. Rev. B 73, 085417 (2006).
[CrossRef]

Volpe, G.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, "Surface Plasmon Radiation Forces," Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef] [PubMed]

Walz, J. Y.

Wilkinson, J. S.

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, "Propulsion of gold nanoparticles on optical waveguides," Opt. Commun. 208, 117-124 (2002)

Yamamoto, S.

T. Tanaka and S. Yamamoto "Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide," Appl. Phys. Lett. 77, 3131 (2000)
[CrossRef]

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidanti, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477-480 (2007).
[CrossRef]

Zervas, M. N.

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, "Propulsion of gold nanoparticles on optical waveguides," Opt. Commun. 208, 117-124 (2002)

Ann. Phys. (1)

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, "Enhance backscattering of light from a random rouge surface," Ann. Phys. 203, 255-307 (1990).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

T. Tanaka and S. Yamamoto "Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide," Appl. Phys. Lett. 77, 3131 (2000)
[CrossRef]

P. J. Reece, V. Garces-Chavez, and K. Dholakia, "Near-field optical micromanipulation with cavity enhanced evanescent waves," Appl. Phys. Lett. 88, 221116 (2006).
[CrossRef]

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, "Extended-area optically induced organization of microparticles on a surface," Appl. Phys. Lett. 86, 031106 (2005).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. B (1)

Nat. Phys. (1)

M. Righini, A. S. Zelenina, C. Girard, and R. Quidanti, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477-480 (2007).
[CrossRef]

Opt Commun. (1)

S. Chang, J. H. Jo, and S. S. Lee, "Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused Gaussian beam," Opt Commun. 108, 133-143 (1994).
[CrossRef]

Opt. Lett. (7)

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986) http://www.opticsinfobase.org/abstract.cfm?URI=ol-11-5-288
[CrossRef] [PubMed]

S. Kawata and T. Sugiura, "Movement of micrometer-sized particles in the evanescent field of a laser beam," Opt. Lett. 17, 772-774 (1992), http://www.opticsinfobase.org/abstract.cfm?URI=ol-17-11-772
[CrossRef] [PubMed]

M. Lester and M. Nieto-Vesperinas, "Optical forces on microparticles in an evanescent laser field," Opt. Lett. 24, 936-938 (1999) http://www.opticsinfobase.org/abstract.cfm?URI=ol-24-14-936
[CrossRef]

S. Kawata and T. Tani, "Optically driven Mie particles in an evanescent field along a channeled waveguide," Opt. Lett. 21, 1768-1770 (1996), http://www.opticsinfobase.org/abstract.cfm?URI=ol-21-21-1768
[CrossRef] [PubMed]

R. Quidant, D. Petrov, and G. Badenes, "Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field," Opt. Lett. 30, 1009-1011 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-9-1009
[CrossRef] [PubMed]

H. Ishikawa, H. Tamaru, and K. Miyano, "Observation of a modulation effect caused by a microsphere resonator strongly coupled to a dielectric substrate," Opt. Lett. 24, 643-645 (1999). http://www.opticsinfobase.org/abstract.cfm?URI=ol-24-10-643
[CrossRef]

J. R. Arias-Gonzàlez and M. Nieto-Vesperinas, "Radiation pressure over dielectric and metallic nanocylinders on surfaces: polarization dependence and plasmon resonance conditions," Opt. Lett. 27, 2149-2151 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-24-2149
[CrossRef]

Optics Communications (1)

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, "Propulsion of gold nanoparticles on optical waveguides," Opt. Commun. 208, 117-124 (2002)

Phys. Rev. B (3)

J. R. Arias-González, M. Nieto-Vesperinas, and M. Lester, "Modeling photonic force microscopy with metallic particles under Plasmon eigenmode excitation," Phys. Rev. B 65, 115402 (2002).
[CrossRef]

P. C. Chaumet and M. Nieto-Vesperinas, "Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric surface substrate," Phys. Rev. B 61, 14119-14127 (2000).
[CrossRef]

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmons polaritons excitation, " Phys. Rev. B 73, 085417 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, "Surface Plasmon Radiation Forces," Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef] [PubMed]

Other (1)

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 2.
Fig. 2.

Diagram of the system used in the calculations of the field distribution and optical forces exerted on a particle illuminated by an evanescent field created al the flat surface S1 by an incidence field Einc incident at an incident angle θinc higher that the critical angle.

Fig. 3.
Fig. 3.

Numerical calculation of the near and far-field distribution of a spherical particle in an evanescent field at a height of h=0.3µm from a flat surface where the evanescent field is created.

Fig. 4.
Fig. 4.

Numerical calculation of the near and far-field distributions of a spherical particle (d=6µm) in an evanescent field at different heights from a flat surface where the evanescent field is created, (a) h=1.0µm, (b) h=0.8µm, (c) h=0.6µm, (d) h=0.4µm, (e) h=0.2µm and (f) h=0.1µm.

Fig. 5.
Fig. 5.

Results of the numerical calculation of the field (logarithm of the absolute value of the field) and forces acting on the segments of the particle plus the direction of the total force exerted on the particle (arrow at the center of the particle).

Fig. 6.
Fig. 6.

Natural logarithm of the of the absolute value of the nondimensinal force parameter Qz for different size particles when the particle is at a fixed x-position (x=0) and a distance h from the flat surface.

Fig. 7.
Fig. 7.

Comparison of the x (continuous line) and z (dotted line) forces components (dimensionless parameters Qx and |Qz|) exerted on a dielectric particle of 4.0 µm radius. Inset: variation of the x and z components vs. the distance h from the flat surface.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E I ( r ) = E inc ( r ) + 1 4 π s 1 { E I ( R ) ( n ̂ ( R ) · G I ( r R ) ) G I ( r R ) ( n ̂ ( R ) · E I ( R ) ) } d s I , z < 0
E II ( r ) = 1 4 π s 1 { E I ( R ) ( n ̂ ( R ) · G II ( r R ) ) G II ( r R ) ( n ̂ ( R ) · E I ( R ) ) } d s 1
+ 1 4 π s 2 { E II ( R ) ( n ̂ p ( R ) · G II ( r R ) ) G II ( r R ) ( n ̂ p ( R ) · E II ( R ) ) } d s 2 , z > 0
E III ( r ) = 1 4 π s 2 { E II ( R ) ( n ̂ p ( R ) · G III ( r R ) ) G III ( r R ) ( n ̂ p ( R ) · E II ( R ) ) } d s 2 ,
G l ( r r ) = i π H 0 ( 1 ) ( n l k 0 r r ) ,
F = s 2 { ε 2 e [ ( E · n ) E * ] ε 4 ( E · E * ) n + μ 2 e [ μ ( H · n ) H * ] μ 4 ( H · H * ) n } d s 2 ,
Q x = F x ε E inc 2 d , Q z = F z ε E inc 2 d .

Metrics