Abstract

We demonstrate a new type of photonic crystal nanolaser incorporated into a microfluidic chip, which is fabricated by multilayer soft lithography. Experimentally, room-temperature continuous-wave lasing operation was achieved by integrating a photonic crystal nanocavity with a microfluidic unit, in which the flow medium both enhances the rate of heat removal and modulates the refractive index contrast. Furthermore, using the proposed system, dynamic modulation of the resonance wavelength and far-field radiation pattern can be achieved by introducing a bottom reflector across which various fluids with different refractive indices are forced to flow. In particular, by maintaining a gap between the reflector and the cavity equal to the emission wavelength, highly efficient unidirectional emission can be obtained. The proposed nanolasers are ideal platforms for high-fidelity biological and chemical detection tools in micro-total-analytical or lab-on-a-chip systems.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
    [CrossRef] [PubMed]
  2. J. M. Gérard and B. Gayral, "Toward high-efficiency quantum-dot single-photon sources," Proc. SPIE 5361, 88-95 (2004).
    [CrossRef]
  3. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
    [CrossRef] [PubMed]
  4. K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007).
    [CrossRef] [PubMed]
  5. K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002).
    [PubMed]
  6. J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, Y.-H. Lee, and D.-H. Jang, "Roomtemperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," Appl. Phys. Lett. 76, 2082 (2000).
    [CrossRef]
  7. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)," Anal. Chem. 70, 4974-4984 (1998).
    [CrossRef] [PubMed]
  8. M. Adams, M. Loncar, A. Scherer, and Y. Qiu, "Microfluidic integration of porous photonic crystal nanolasers for chemical sensing," IEEE J. Sel. Areas Commun. 23, 1348-1354 (2005).
    [CrossRef]
  9. S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonators," Phys. Rev. B 73, 235117 (2006).
    [CrossRef]
  10. S.-H. Kim, S.-K. Lee, Y.-H. Lee, and S.-M. Yang, "Microfluidic channel with built-in photonic crystal nanolaser," Proc. SPIE 6645, 66451K (2007).
    [CrossRef]
  11. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308-6315 (2006).
    [CrossRef] [PubMed]
  12. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
    [CrossRef] [PubMed]
  13. M. Lon?ar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 648-650 (2003).
  14. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
    [CrossRef]
  15. O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O??Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
    [CrossRef] [PubMed]
  16. H.-Y. Ryu, M. Notomi, and Y.-H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
    [CrossRef]
  17. H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, Y.-H. Lee, and J.-S. Kim, "Nondegenerate monopole-mode twodimensional photonic band gap laser," Appl. Phys. Lett. 79, 3032-3034 (2001).
    [CrossRef]
  18. C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "Inp bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395 (2005).
    [CrossRef]
  19. B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Surfaceemitting microlaser combining two-dimensional photonic crystal membrane and vertical bragg mirror," Appl. Phys. Lett. 88, 081113 (2006).
    [CrossRef]
  20. J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco, and C. F. Gmachl, "Direct liquid cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534-535 (2006).
    [CrossRef]
  21. H.-Y. Ryu, H.-G. Park, and Y.-H. Lee, "Two-dimensional photonic crystal semiconductor lasers: Computational design, fabrication, and characterization," J. Sel. Top. Quantum Electron. 8, 891-908 (2002).
    [CrossRef]
  22. A. Taflove and S. C. Hagness, Computational Electrodynamics: the finite-difference time-domain method (Artech House, Norwood, MA, 2000), 2nd ed.
  23. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett. 29, 1093-1095 (2004).
    [CrossRef] [PubMed]
  24. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
    [CrossRef]
  25. S.-K. Lee, G.-R. Yi, and S.-M. Yang, "High-speed fabrication of patterned colloidal photonic structures in centrifugal microfluidic chips," Lab. Chip 6, 1171-1177 (2006).
    [CrossRef] [PubMed]
  26. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006).
    [CrossRef] [PubMed]
  27. E. A. Hinds, in Cavity Quantum Electrodynamics, P. R. Berman, ed. (Academic Press, Inc, Orlando, 1994).
  28. M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Toward photonic-crystal metamaterials: Creating magnetic emitters in photonic crystals," Appl. Phys. Lett. 82, 1069-1071 (2003).
    [CrossRef]
  29. M.-K. Kim, J.-K. Yang, Y.-H. Lee, and I.-K. Hwang, "Influence of etching slope on two-dimensional photonic crystal slab resonators," J. Korean Phys. Soc. 50, 1027-1031 (2007).
    [CrossRef]
  30. M. Forsberg, D. Pasquariello, M. Camacho, and D. Bergman, "InP and Si metal-oxide semiconductor structures fabricated using oxygen plasma assisted wafer bonding," J. Electron. Mater. 32, 111-116 (2003).
    [CrossRef]
  31. S.-H. Kim and Y.-H. Lee, "Symmetry relations of two-dimensional photonic crystal cavity modes," IEEE J. Quantum Electron. 39, 1081-1085 (2003).
    [CrossRef]
  32. K. Inoshita and T. Baba, "Fabrication of GaInAsP/InP photonic crystal lasers by ICP etching and control of resonant mode in point and line composite defects," IEEE J. Sel. Top. Quantum Electron. 9, 1347-1354 (2003).
    [CrossRef]
  33. H. Altug, D. Englund, and J. Vu?kovi?, "Ultra-fast photonic crystal nanolasers," Nat. Phys. 2, 484-488 (2006).
    [CrossRef]

2007 (3)

K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007).
[CrossRef] [PubMed]

S.-H. Kim, S.-K. Lee, Y.-H. Lee, and S.-M. Yang, "Microfluidic channel with built-in photonic crystal nanolaser," Proc. SPIE 6645, 66451K (2007).
[CrossRef]

M.-K. Kim, J.-K. Yang, Y.-H. Lee, and I.-K. Hwang, "Influence of etching slope on two-dimensional photonic crystal slab resonators," J. Korean Phys. Soc. 50, 1027-1031 (2007).
[CrossRef]

2006 (7)

B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Surfaceemitting microlaser combining two-dimensional photonic crystal membrane and vertical bragg mirror," Appl. Phys. Lett. 88, 081113 (2006).
[CrossRef]

J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco, and C. F. Gmachl, "Direct liquid cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534-535 (2006).
[CrossRef]

S.-K. Lee, G.-R. Yi, and S.-M. Yang, "High-speed fabrication of patterned colloidal photonic structures in centrifugal microfluidic chips," Lab. Chip 6, 1171-1177 (2006).
[CrossRef] [PubMed]

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006).
[CrossRef] [PubMed]

H. Altug, D. Englund, and J. Vu?kovi?, "Ultra-fast photonic crystal nanolasers," Nat. Phys. 2, 484-488 (2006).
[CrossRef]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308-6315 (2006).
[CrossRef] [PubMed]

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonators," Phys. Rev. B 73, 235117 (2006).
[CrossRef]

2005 (3)

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "Inp bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395 (2005).
[CrossRef]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

M. Adams, M. Loncar, A. Scherer, and Y. Qiu, "Microfluidic integration of porous photonic crystal nanolasers for chemical sensing," IEEE J. Sel. Areas Commun. 23, 1348-1354 (2005).
[CrossRef]

2004 (3)

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

J. M. Gérard and B. Gayral, "Toward high-efficiency quantum-dot single-photon sources," Proc. SPIE 5361, 88-95 (2004).
[CrossRef]

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett. 29, 1093-1095 (2004).
[CrossRef] [PubMed]

2003 (7)

M. Forsberg, D. Pasquariello, M. Camacho, and D. Bergman, "InP and Si metal-oxide semiconductor structures fabricated using oxygen plasma assisted wafer bonding," J. Electron. Mater. 32, 111-116 (2003).
[CrossRef]

S.-H. Kim and Y.-H. Lee, "Symmetry relations of two-dimensional photonic crystal cavity modes," IEEE J. Quantum Electron. 39, 1081-1085 (2003).
[CrossRef]

K. Inoshita and T. Baba, "Fabrication of GaInAsP/InP photonic crystal lasers by ICP etching and control of resonant mode in point and line composite defects," IEEE J. Sel. Top. Quantum Electron. 9, 1347-1354 (2003).
[CrossRef]

M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Toward photonic-crystal metamaterials: Creating magnetic emitters in photonic crystals," Appl. Phys. Lett. 82, 1069-1071 (2003).
[CrossRef]

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
[CrossRef] [PubMed]

M. Lon?ar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 648-650 (2003).

2002 (2)

K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002).
[PubMed]

H.-Y. Ryu, H.-G. Park, and Y.-H. Lee, "Two-dimensional photonic crystal semiconductor lasers: Computational design, fabrication, and characterization," J. Sel. Top. Quantum Electron. 8, 891-908 (2002).
[CrossRef]

2001 (1)

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, Y.-H. Lee, and J.-S. Kim, "Nondegenerate monopole-mode twodimensional photonic band gap laser," Appl. Phys. Lett. 79, 3032-3034 (2001).
[CrossRef]

2000 (1)

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, Y.-H. Lee, and D.-H. Jang, "Roomtemperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," Appl. Phys. Lett. 76, 2082 (2000).
[CrossRef]

1999 (3)

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O??Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

1998 (1)

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)," Anal. Chem. 70, 4974-4984 (1998).
[CrossRef] [PubMed]

Adams, M.

M. Adams, M. Loncar, A. Scherer, and Y. Qiu, "Microfluidic integration of porous photonic crystal nanolasers for chemical sensing," IEEE J. Sel. Areas Commun. 23, 1348-1354 (2005).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
[CrossRef] [PubMed]

Altug, H.

H. Altug, D. Englund, and J. Vu?kovi?, "Ultra-fast photonic crystal nanolasers," Nat. Phys. 2, 484-488 (2006).
[CrossRef]

Arakawa, Y.

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308-6315 (2006).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
[CrossRef] [PubMed]

Baba, T.

K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007).
[CrossRef] [PubMed]

K. Inoshita and T. Baba, "Fabrication of GaInAsP/InP photonic crystal lasers by ICP etching and control of resonant mode in point and line composite defects," IEEE J. Sel. Top. Quantum Electron. 9, 1347-1354 (2003).
[CrossRef]

Baek, J.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Bakir, B. B.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "Inp bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395 (2005).
[CrossRef]

Ben Bakir, B.

B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Surfaceemitting microlaser combining two-dimensional photonic crystal membrane and vertical bragg mirror," Appl. Phys. Lett. 88, 081113 (2006).
[CrossRef]

Bergman, D.

M. Forsberg, D. Pasquariello, M. Camacho, and D. Bergman, "InP and Si metal-oxide semiconductor structures fabricated using oxygen plasma assisted wafer bonding," J. Electron. Mater. 32, 111-116 (2003).
[CrossRef]

Camacho, M.

M. Forsberg, D. Pasquariello, M. Camacho, and D. Bergman, "InP and Si metal-oxide semiconductor structures fabricated using oxygen plasma assisted wafer bonding," J. Electron. Mater. 32, 111-116 (2003).
[CrossRef]

Chen, J. Z.

J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco, and C. F. Gmachl, "Direct liquid cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534-535 (2006).
[CrossRef]

Chow, E.

Dapkus, P. D.

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O??Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Di Cioccio, L.

B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Surfaceemitting microlaser combining two-dimensional photonic crystal membrane and vertical bragg mirror," Appl. Phys. Lett. 88, 081113 (2006).
[CrossRef]

Duffy, D. C.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)," Anal. Chem. 70, 4974-4984 (1998).
[CrossRef] [PubMed]

Emery, T.

Englund, D.

H. Altug, D. Englund, and J. Vu?kovi?, "Ultra-fast photonic crystal nanolasers," Nat. Phys. 2, 484-488 (2006).
[CrossRef]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Erickson, D.

Fan, S.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Fedeli, J. M.

B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Surfaceemitting microlaser combining two-dimensional photonic crystal membrane and vertical bragg mirror," Appl. Phys. Lett. 88, 081113 (2006).
[CrossRef]

Forsberg, M.

M. Forsberg, D. Pasquariello, M. Camacho, and D. Bergman, "InP and Si metal-oxide semiconductor structures fabricated using oxygen plasma assisted wafer bonding," J. Electron. Mater. 32, 111-116 (2003).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Gayral, B.

J. M. Gérard and B. Gayral, "Toward high-efficiency quantum-dot single-photon sources," Proc. SPIE 5361, 88-95 (2004).
[CrossRef]

Gérard, J. M.

J. M. Gérard and B. Gayral, "Toward high-efficiency quantum-dot single-photon sources," Proc. SPIE 5361, 88-95 (2004).
[CrossRef]

Girolami, G.

Gmachl, C. F.

J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco, and C. F. Gmachl, "Direct liquid cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534-535 (2006).
[CrossRef]

Grot, A.

Han, I.-Y.

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, Y.-H. Lee, and D.-H. Jang, "Roomtemperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," Appl. Phys. Lett. 76, 2082 (2000).
[CrossRef]

Hattori, H. T.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "Inp bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395 (2005).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Huh, J.

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, Y.-H. Lee, and J.-S. Kim, "Nondegenerate monopole-mode twodimensional photonic band gap laser," Appl. Phys. Lett. 79, 3032-3034 (2001).
[CrossRef]

Hwang, I.-K.

M.-K. Kim, J.-K. Yang, Y.-H. Lee, and I.-K. Hwang, "Influence of etching slope on two-dimensional photonic crystal slab resonators," J. Korean Phys. Soc. 50, 1027-1031 (2007).
[CrossRef]

Hwang, J.-K.

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, Y.-H. Lee, and J.-S. Kim, "Nondegenerate monopole-mode twodimensional photonic band gap laser," Appl. Phys. Lett. 79, 3032-3034 (2001).
[CrossRef]

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, Y.-H. Lee, and D.-H. Jang, "Roomtemperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," Appl. Phys. Lett. 76, 2082 (2000).
[CrossRef]

Inoshita, K.

K. Inoshita and T. Baba, "Fabrication of GaInAsP/InP photonic crystal lasers by ICP etching and control of resonant mode in point and line composite defects," IEEE J. Sel. Top. Quantum Electron. 9, 1347-1354 (2003).
[CrossRef]

Ishida, S.

Iwamoto, S.

Jang, D.-H.

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, Y.-H. Lee, and D.-H. Jang, "Roomtemperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," Appl. Phys. Lett. 76, 2082 (2000).
[CrossRef]

Joannopoulos, J. D.

M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Toward photonic-crystal metamaterials: Creating magnetic emitters in photonic crystals," Appl. Phys. Lett. 82, 1069-1071 (2003).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

Johnson, S. G.

M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Toward photonic-crystal metamaterials: Creating magnetic emitters in photonic crystals," Appl. Phys. Lett. 82, 1069-1071 (2003).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

Ju, Y.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Kim, I.

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O??Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Kim, J.-S.

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, Y.-H. Lee, and J.-S. Kim, "Nondegenerate monopole-mode twodimensional photonic band gap laser," Appl. Phys. Lett. 79, 3032-3034 (2001).
[CrossRef]

Kim, M.-K.

M.-K. Kim, J.-K. Yang, Y.-H. Lee, and I.-K. Hwang, "Influence of etching slope on two-dimensional photonic crystal slab resonators," J. Korean Phys. Soc. 50, 1027-1031 (2007).
[CrossRef]

Kim, S.-B.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Kim, S.-H.

S.-H. Kim, S.-K. Lee, Y.-H. Lee, and S.-M. Yang, "Microfluidic channel with built-in photonic crystal nanolaser," Proc. SPIE 6645, 66451K (2007).
[CrossRef]

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonators," Phys. Rev. B 73, 235117 (2006).
[CrossRef]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

S.-H. Kim and Y.-H. Lee, "Symmetry relations of two-dimensional photonic crystal cavity modes," IEEE J. Quantum Electron. 39, 1081-1085 (2003).
[CrossRef]

Kim, S.-K.

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonators," Phys. Rev. B 73, 235117 (2006).
[CrossRef]

Kita, S.

Kolodziejski, L. A.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

Kumagai, N.

Kwon, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Leclercq, J. L.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "Inp bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395 (2005).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O??Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Lee, S.-K.

S.-H. Kim, S.-K. Lee, Y.-H. Lee, and S.-M. Yang, "Microfluidic channel with built-in photonic crystal nanolaser," Proc. SPIE 6645, 66451K (2007).
[CrossRef]

S.-K. Lee, G.-R. Yi, and S.-M. Yang, "High-speed fabrication of patterned colloidal photonic structures in centrifugal microfluidic chips," Lab. Chip 6, 1171-1177 (2006).
[CrossRef] [PubMed]

Lee, Y.-H.

M.-K. Kim, J.-K. Yang, Y.-H. Lee, and I.-K. Hwang, "Influence of etching slope on two-dimensional photonic crystal slab resonators," J. Korean Phys. Soc. 50, 1027-1031 (2007).
[CrossRef]

S.-H. Kim, S.-K. Lee, Y.-H. Lee, and S.-M. Yang, "Microfluidic channel with built-in photonic crystal nanolaser," Proc. SPIE 6645, 66451K (2007).
[CrossRef]

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonators," Phys. Rev. B 73, 235117 (2006).
[CrossRef]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

S.-H. Kim and Y.-H. Lee, "Symmetry relations of two-dimensional photonic crystal cavity modes," IEEE J. Quantum Electron. 39, 1081-1085 (2003).
[CrossRef]

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

H.-Y. Ryu, H.-G. Park, and Y.-H. Lee, "Two-dimensional photonic crystal semiconductor lasers: Computational design, fabrication, and characterization," J. Sel. Top. Quantum Electron. 8, 891-908 (2002).
[CrossRef]

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, Y.-H. Lee, and J.-S. Kim, "Nondegenerate monopole-mode twodimensional photonic band gap laser," Appl. Phys. Lett. 79, 3032-3034 (2001).
[CrossRef]

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, Y.-H. Lee, and D.-H. Jang, "Roomtemperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," Appl. Phys. Lett. 76, 2082 (2000).
[CrossRef]

Letartre, X.

B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Surfaceemitting microlaser combining two-dimensional photonic crystal membrane and vertical bragg mirror," Appl. Phys. Lett. 88, 081113 (2006).
[CrossRef]

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "Inp bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395 (2005).
[CrossRef]

Liu, Z.

J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco, and C. F. Gmachl, "Direct liquid cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534-535 (2006).
[CrossRef]

Lon?ar, M.

M. Lon?ar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 648-650 (2003).

Loncar, M.

M. Adams, M. Loncar, A. Scherer, and Y. Qiu, "Microfluidic integration of porous photonic crystal nanolasers for chemical sensing," IEEE J. Sel. Areas Commun. 23, 1348-1354 (2005).
[CrossRef]

McDonald, J. C.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)," Anal. Chem. 70, 4974-4984 (1998).
[CrossRef] [PubMed]

Mirkarimi, L. W.

Monat, C.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "Inp bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395 (2005).
[CrossRef]

Mouette, J.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "Inp bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395 (2005).
[CrossRef]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Nakata, Y.

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
[CrossRef] [PubMed]

Nomura, M.

Notomi, M.

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

Nozaki, K.

O??Brien, J. D.

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O??Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Painter, O.

K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002).
[PubMed]

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O??Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Park, H.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

H.-Y. Ryu, H.-G. Park, and Y.-H. Lee, "Two-dimensional photonic crystal semiconductor lasers: Computational design, fabrication, and characterization," J. Sel. Top. Quantum Electron. 8, 891-908 (2002).
[CrossRef]

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, Y.-H. Lee, and J.-S. Kim, "Nondegenerate monopole-mode twodimensional photonic band gap laser," Appl. Phys. Lett. 79, 3032-3034 (2001).
[CrossRef]

Park, H.-K.

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, Y.-H. Lee, and D.-H. Jang, "Roomtemperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," Appl. Phys. Lett. 76, 2082 (2000).
[CrossRef]

Pasquariello, D.

M. Forsberg, D. Pasquariello, M. Camacho, and D. Bergman, "InP and Si metal-oxide semiconductor structures fabricated using oxygen plasma assisted wafer bonding," J. Electron. Mater. 32, 111-116 (2003).
[CrossRef]

Pendry, J. B.

M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Toward photonic-crystal metamaterials: Creating magnetic emitters in photonic crystals," Appl. Phys. Lett. 82, 1069-1071 (2003).
[CrossRef]

Povinelli, M. L.

M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Toward photonic-crystal metamaterials: Creating magnetic emitters in photonic crystals," Appl. Phys. Lett. 82, 1069-1071 (2003).
[CrossRef]

Psaltis, D.

Qiu, Y.

M. Adams, M. Loncar, A. Scherer, and Y. Qiu, "Microfluidic integration of porous photonic crystal nanolasers for chemical sensing," IEEE J. Sel. Areas Commun. 23, 1348-1354 (2005).
[CrossRef]

M. Lon?ar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 648-650 (2003).

Rockwood, T.

Rojo-Romeo, P.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "Inp bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395 (2005).
[CrossRef]

Rumala, Y. S.

J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco, and C. F. Gmachl, "Direct liquid cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534-535 (2006).
[CrossRef]

Ryu, H.-Y.

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

H.-Y. Ryu, H.-G. Park, and Y.-H. Lee, "Two-dimensional photonic crystal semiconductor lasers: Computational design, fabrication, and characterization," J. Sel. Top. Quantum Electron. 8, 891-908 (2002).
[CrossRef]

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, Y.-H. Lee, and J.-S. Kim, "Nondegenerate monopole-mode twodimensional photonic band gap laser," Appl. Phys. Lett. 79, 3032-3034 (2001).
[CrossRef]

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, Y.-H. Lee, and D.-H. Jang, "Roomtemperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," Appl. Phys. Lett. 76, 2082 (2000).
[CrossRef]

Scherer, A.

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006).
[CrossRef] [PubMed]

M. Adams, M. Loncar, A. Scherer, and Y. Qiu, "Microfluidic integration of porous photonic crystal nanolasers for chemical sensing," IEEE J. Sel. Areas Commun. 23, 1348-1354 (2005).
[CrossRef]

M. Lon?ar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 648-650 (2003).

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O??Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Schueller, O. J. A.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)," Anal. Chem. 70, 4974-4984 (1998).
[CrossRef] [PubMed]

Seassal, C.

B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Surfaceemitting microlaser combining two-dimensional photonic crystal membrane and vertical bragg mirror," Appl. Phys. Lett. 88, 081113 (2006).
[CrossRef]

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "Inp bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395 (2005).
[CrossRef]

Sigalas, M.

Sivco, D. L.

J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco, and C. F. Gmachl, "Direct liquid cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534-535 (2006).
[CrossRef]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
[CrossRef] [PubMed]

Song, D.-S.

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, Y.-H. Lee, and D.-H. Jang, "Roomtemperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," Appl. Phys. Lett. 76, 2082 (2000).
[CrossRef]

Song, H.-W.

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, Y.-H. Lee, and D.-H. Jang, "Roomtemperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," Appl. Phys. Lett. 76, 2082 (2000).
[CrossRef]

Srinivasan, K.

Touraille, E.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "Inp bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395 (2005).
[CrossRef]

Viktorovitch, P.

B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Surfaceemitting microlaser combining two-dimensional photonic crystal membrane and vertical bragg mirror," Appl. Phys. Lett. 88, 081113 (2006).
[CrossRef]

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "Inp bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395 (2005).
[CrossRef]

Villeneuve, P. R.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

Vu?kovi?, J.

H. Altug, D. Englund, and J. Vu?kovi?, "Ultra-fast photonic crystal nanolasers," Nat. Phys. 2, 484-488 (2006).
[CrossRef]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Watanabe, K.

Whitesides, G. M.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)," Anal. Chem. 70, 4974-4984 (1998).
[CrossRef] [PubMed]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Yang, J.-K.

M.-K. Kim, J.-K. Yang, Y.-H. Lee, and I.-K. Hwang, "Influence of etching slope on two-dimensional photonic crystal slab resonators," J. Korean Phys. Soc. 50, 1027-1031 (2007).
[CrossRef]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Yang, S.-M.

S.-H. Kim, S.-K. Lee, Y.-H. Lee, and S.-M. Yang, "Microfluidic channel with built-in photonic crystal nanolaser," Proc. SPIE 6645, 66451K (2007).
[CrossRef]

S.-K. Lee, G.-R. Yi, and S.-M. Yang, "High-speed fabrication of patterned colloidal photonic structures in centrifugal microfluidic chips," Lab. Chip 6, 1171-1177 (2006).
[CrossRef] [PubMed]

Yariv, A.

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O??Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Yi, G.-R.

S.-K. Lee, G.-R. Yi, and S.-M. Yang, "High-speed fabrication of patterned colloidal photonic structures in centrifugal microfluidic chips," Lab. Chip 6, 1171-1177 (2006).
[CrossRef] [PubMed]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Zussy, M.

B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Surfaceemitting microlaser combining two-dimensional photonic crystal membrane and vertical bragg mirror," Appl. Phys. Lett. 88, 081113 (2006).
[CrossRef]

Anal. Chem. (1)

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)," Anal. Chem. 70, 4974-4984 (1998).
[CrossRef] [PubMed]

Appl. Phys. Lett. (6)

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, Y.-H. Lee, and D.-H. Jang, "Roomtemperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," Appl. Phys. Lett. 76, 2082 (2000).
[CrossRef]

M. Lon?ar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 648-650 (2003).

H.-Y. Ryu, M. Notomi, and Y.-H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, Y.-H. Lee, and J.-S. Kim, "Nondegenerate monopole-mode twodimensional photonic band gap laser," Appl. Phys. Lett. 79, 3032-3034 (2001).
[CrossRef]

B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Surfaceemitting microlaser combining two-dimensional photonic crystal membrane and vertical bragg mirror," Appl. Phys. Lett. 88, 081113 (2006).
[CrossRef]

M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Toward photonic-crystal metamaterials: Creating magnetic emitters in photonic crystals," Appl. Phys. Lett. 82, 1069-1071 (2003).
[CrossRef]

Electron. Lett. (1)

J. Z. Chen, Z. Liu, Y. S. Rumala, D. L. Sivco, and C. F. Gmachl, "Direct liquid cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534-535 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

S.-H. Kim and Y.-H. Lee, "Symmetry relations of two-dimensional photonic crystal cavity modes," IEEE J. Quantum Electron. 39, 1081-1085 (2003).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

M. Adams, M. Loncar, A. Scherer, and Y. Qiu, "Microfluidic integration of porous photonic crystal nanolasers for chemical sensing," IEEE J. Sel. Areas Commun. 23, 1348-1354 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "Inp bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395 (2005).
[CrossRef]

K. Inoshita and T. Baba, "Fabrication of GaInAsP/InP photonic crystal lasers by ICP etching and control of resonant mode in point and line composite defects," IEEE J. Sel. Top. Quantum Electron. 9, 1347-1354 (2003).
[CrossRef]

J. Electron. Mater. (1)

M. Forsberg, D. Pasquariello, M. Camacho, and D. Bergman, "InP and Si metal-oxide semiconductor structures fabricated using oxygen plasma assisted wafer bonding," J. Electron. Mater. 32, 111-116 (2003).
[CrossRef]

J. Korean Phys. Soc. (1)

M.-K. Kim, J.-K. Yang, Y.-H. Lee, and I.-K. Hwang, "Influence of etching slope on two-dimensional photonic crystal slab resonators," J. Korean Phys. Soc. 50, 1027-1031 (2007).
[CrossRef]

J. Sel. Top. Quantum Electron. (1)

H.-Y. Ryu, H.-G. Park, and Y.-H. Lee, "Two-dimensional photonic crystal semiconductor lasers: Computational design, fabrication, and characterization," J. Sel. Top. Quantum Electron. 8, 891-908 (2002).
[CrossRef]

Lab. Chip (1)

S.-K. Lee, G.-R. Yi, and S.-M. Yang, "High-speed fabrication of patterned colloidal photonic structures in centrifugal microfluidic chips," Lab. Chip 6, 1171-1177 (2006).
[CrossRef] [PubMed]

Nat. Phys. (1)

H. Altug, D. Englund, and J. Vu?kovi?, "Ultra-fast photonic crystal nanolasers," Nat. Phys. 2, 484-488 (2006).
[CrossRef]

Nature (London) (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (2)

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonators," Phys. Rev. B 73, 235117 (2006).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Proc. SPIE (2)

S.-H. Kim, S.-K. Lee, Y.-H. Lee, and S.-M. Yang, "Microfluidic channel with built-in photonic crystal nanolaser," Proc. SPIE 6645, 66451K (2007).
[CrossRef]

J. M. Gérard and B. Gayral, "Toward high-efficiency quantum-dot single-photon sources," Proc. SPIE 5361, 88-95 (2004).
[CrossRef]

Science (2)

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O??Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Sens. Actuators B (1)

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Other (2)

E. A. Hinds, in Cavity Quantum Electrodynamics, P. R. Berman, ed. (Academic Press, Inc, Orlando, 1994).

A. Taflove and S. C. Hagness, Computational Electrodynamics: the finite-difference time-domain method (Artech House, Norwood, MA, 2000), 2nd ed.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Simple description of the fabrication process. (b) Schematic of the proposed photonic crystal nanolaser integrated with a microfluidic channel, where optical pumping and collection can be performed through the thin glass side with the assistance of a long working distance infra-red objective lens. (c) The deformed hexapole mode cavity. Here, two air-holes facing each other are enlarged by p to generate well-directed vertical emission. (d) ~100 nm thick gold film deposited at the bottom of the microfluidic channel can be used to enhance the directivity of the laser emission.

Fig. 2.
Fig. 2.

(a) FDTD simulation of near-field (|E|2) distributions of the dipole mode and the hexapole mode. The thickness of the InP slab and the lattice constant (a) were chosen to be 200 nm and 500 nm, respectively. Other structural parameters [See Fig. 1(c)] are as follows: r=0.35a, mr=0.25a, and p=0.05a. (b) A photonic crystal slab nanocavity completely immersed in a liquid with refractive index n bg. (c) FDTD simulation of cavity quality factors and resonant wavelengths of the dipole mode and the hexapole mode, where the background refractive index was varied from 1.0 to 1.4.

Fig. 3.
Fig. 3.

Calculated far-field radiation patterns for the two representative modes (Fig. 2), the hexapole mode and the dipole mode, in which the photonic crystal nanocavity is assumed to be immersed in a liquid of refractive index n bg. All the far-field data (x,y) in this article are represented using a simple mapping defined by x=sin θ cos ϕ and y=sin θ sin ϕ (the radius of the plot corresponds to θ). Here, it is assumed that the far-field patterns are measured inside the liquid.

Fig. 4.
Fig. 4.

FDTD simulation of far-field emission from a photonic crystal nanocavity with a bottom reflector. Here, it is assumed that the far-field patterns are measured inside the glass. The InP slab thickness and the lattice constant of the photonic crystal (a) are assumed to be 200 nm and 530 nm, respectively. Other structural parameters [see Fig. 1(c)] are as follows: r=0.35a, mr=0.25a, and p=0.05a (a) The microfluidic channel is filled with water, and the height of the channel (d) is adjustable. (b) Calculated far-field emission patterns from the modified hexapole mode. In each pattern, the effective gap size, n(water)×d, is normalized by the wavelength (λ). A fraction of angle integrated power within the numerical aperture (NA) of 0.4 in the glass, η=[∫ θ≤(NA=0.4)(dP/dΩ)dΩ]/[∫ θ≤90° (dP/dΩ)dΩ], is also presented. (c) Far-field emission patterns from structures with gaps equal to multiples of the wavelength, such as 2λ and 3λ. (d) Cavity Q factor as a function of the effective gap size, n(water)×d. A horizontal dotted line represents the Q factor in the absence of the gold mirror.

Fig. 5.
Fig. 5.

(a) A sample after completion of the fabrication process. (b) A photo taken during the photoluminescence measurement. A long-working distance objective lens is positioned on the glass substrate side, facilitating optical pumping and collection of the emitted laser light. (c) Optical microscope image showing that the photonic crystal nanocavities are well aligned with a winding microfluidic channel of width ~100 µm. (d) Scanning electron microscope image of the fabricated photonic crystal nanocavity. The measured hole-to-hole distance (lattice constant) is ~530 nm.

Fig. 6.
Fig. 6.

(a) Measured photoluminescence spectra for systems with air or flowing water inside the microfluidic channel. (b) Wavelength tuning characteristics of two PhC nanocavities (C1 and C2) with different air-hole sizes. (c) and (d) Comparison between the measurement and the FDTD simulation for the C1 cavity. The observed wavelength shift agrees well with the simulation result obtained assuming that the water does not fill the air-holes of the photonic crystal slab.

Fig. 7.
Fig. 7.

Room-temperature continuous-wave lasing under the constant flow of water at a rate of rate of 5 µl/h. (a) Measured wavelength tuning characteristics as water flows inside the microfluidic channel. The peak wavelength shows a redshift of ~23 nm. The inset shows the contour FDTD simulation of the laser mode (Deformed hexapole). (b) Light-in versus light-out (L-L) curve, in which the pump power (Light-in) was measured in front of the sample (on top of the glass substrate).

Metrics