Abstract

We report terahertz-wave generation in the wavelength range of 190~210 and 457~507 µm from forward and backward difference frequency generations, respectively, in a 3.2-cm long multi-grating periodically poled lithium niobate (PPLN) crystal. The grating period of the PPLN crystal varies form 63 to 70 µm in 1-µm increments. The extraordinary refractive index of lithium niobate in the THz-wave range was precisely deduced from the quasi-phase-matching condition of the difference frequency generations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Rønne, P. ?strand, and S. R. Keiding, "THz spectroscopy of liquid H2O and D2O," Phys. Rev. Lett. 82, 2888-2891 (1999).
    [CrossRef]
  2. E. Knoesel, M. Bonn, J. Shan, and T. F. Heinz, "Charge transport and carrier dynamics in liquids probed by THz Time-Domain Spectroscopy," Phys. Rev. Lett. 86, 340-343 (2001).
    [CrossRef] [PubMed]
  3. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, "Non-destructive terahertz imaging of illicit drugs using spectral fringeprints," Opt. Express. 11, 2549-2554 (2003).
    [CrossRef] [PubMed]
  4. Q. Wu, T. D. Hewitt, and X.-C. Zhang, "Two-dimensional electro-optic imaging of THz beams," Appl. Phys. Lett. 69, 1026-1028 (1996).
    [CrossRef]
  5. P. R. Smith, D. H. Auston, and M. C. Nuss, "Subpicosecond photoconducting dipole antennas," IEEE J. Quantum Electron. 24, 255-256 (1988).
    [CrossRef]
  6. X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, "Generation of femtosecond electromagnetic pulses from semiconductor surface," Appl. Phys. Lett. 56, 1011-1013 (1990).
    [CrossRef]
  7. D. H. Levy, Free Electron Lasers and other advanced Sources of Light, (National Academy Press Washington, DC, 1994) 24-31.
  8. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, "Terahertz semiconductor-hetrostructure laser," Nature 417, 156-159 (2002).
    [CrossRef] [PubMed]
  9. M. A. Piestrup, R. N. Fleming, and R. H. Pantell, "Continuously tunable submillimeter wave source," Appl. Phys. Lett. 26, 418-419 (1975).
    [CrossRef]
  10. K. Kawase, M. Sato, T. Taniuchi, and H. Ito, "Coherent THz-wave generation from LiNbO3 with monolithic grating coupler," Appl. Phy. Lett. 68, 2483-2485 (1996).
    [CrossRef]
  11. J. Shikata, M. Sato, T. Taniuchi, and H. Ito, "Enhancement of Terahertz-wave output from LiNbO3 optical parametric oscillator by cryogenic cooling," Opt. Lett. 24, 202-204 (1999).
    [CrossRef]
  12. K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, "Arrayed silicon prism coupler for THz-wave parametric oscillator," Appl. Opt. 40, 1423-1426 (2001).
    [CrossRef]
  13. J. A. Armstrong, N. Bloemergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
    [CrossRef]
  14. Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, "Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate," Appl. Phys. Lett. 78, 2505-2507 (2000).
    [CrossRef]
  15. C. Weiss, G. Torosyan, J. P. Meyn, R. Wallenstein, R. Beigang, and Y. Avetisyan, "Tuning characteristics of narrowband THz radiation generated via optical rectification in periodically poled lithium niobate," Opt. Express 8, 497-502 (2001).
    [CrossRef] [PubMed]
  16. N. E. Yu, C. Jung, C. S. Kee, Y. L. Lee, B. A. Yu, D. K. Ko, and J. Lee, "Backward terahertz generation in periodically poled lithium niobate crystal via difference frequency generation," Jpn. J. Appl. Phys. 46, 1501-1504 (2007).
    [CrossRef]
  17. K. L. Vodopyanov, "Optical generation of narrow-band terahertz packets in periodically-inverted electro-optic crystals: conversion efficiency and optimal laser pulse format," Opt. Express 14, 2263-2276 (2006).
    [CrossRef] [PubMed]
  18. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, "Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal," Opt. Lett. 27, 1454-1456 (2002).
    [CrossRef]
  19. Y. J. Ding and J. B. Khurgin, "A new scheme for efficient generation of coherent and incoherent submillimeter to THz wave in periodically-poled lithium niobate," Opt. Commun. 148, 105-109 (1998).
    [CrossRef]
  20. S. E. Harris, "Proposed Backward Wave Oscillation in the Infrared," Appl. Phys. Lett. 9, 114-115 (1966).
    [CrossRef]
  21. C. Canalias and V. Pasiskevicius, "Mirror-less optical parametric oscillator," Nat. Photonics 1, 459-462 (2007).
    [CrossRef]
  22. W. Shi, and Y. J. Ding, "Backward parametric oscillation in second-order nonlinear medium," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper QTuF7.
  23. V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, "Investigation of the water-vapor continuum in the THz region using a multipass cell," J. Quant. Spectrosc. Radiat. Transf. 91, 287-295 (2005).
    [CrossRef]
  24. L. Pálfalvi, J. Hebling, J. Kuhl, ?. Péter, and K. Polgár, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97, 123505-123511 (2005).
    [CrossRef]
  25. E. D. Palik, Handbook of Optical Constants of Solids, 695-702 (Academic, New York, 1991).

2007 (2)

N. E. Yu, C. Jung, C. S. Kee, Y. L. Lee, B. A. Yu, D. K. Ko, and J. Lee, "Backward terahertz generation in periodically poled lithium niobate crystal via difference frequency generation," Jpn. J. Appl. Phys. 46, 1501-1504 (2007).
[CrossRef]

C. Canalias and V. Pasiskevicius, "Mirror-less optical parametric oscillator," Nat. Photonics 1, 459-462 (2007).
[CrossRef]

2006 (1)

2005 (2)

V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, "Investigation of the water-vapor continuum in the THz region using a multipass cell," J. Quant. Spectrosc. Radiat. Transf. 91, 287-295 (2005).
[CrossRef]

L. Pálfalvi, J. Hebling, J. Kuhl, ?. Péter, and K. Polgár, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97, 123505-123511 (2005).
[CrossRef]

2003 (1)

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, "Non-destructive terahertz imaging of illicit drugs using spectral fringeprints," Opt. Express. 11, 2549-2554 (2003).
[CrossRef] [PubMed]

2002 (2)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, "Terahertz semiconductor-hetrostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, "Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal," Opt. Lett. 27, 1454-1456 (2002).
[CrossRef]

2001 (3)

2000 (1)

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, "Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate," Appl. Phys. Lett. 78, 2505-2507 (2000).
[CrossRef]

1999 (2)

1998 (1)

Y. J. Ding and J. B. Khurgin, "A new scheme for efficient generation of coherent and incoherent submillimeter to THz wave in periodically-poled lithium niobate," Opt. Commun. 148, 105-109 (1998).
[CrossRef]

1996 (2)

Q. Wu, T. D. Hewitt, and X.-C. Zhang, "Two-dimensional electro-optic imaging of THz beams," Appl. Phys. Lett. 69, 1026-1028 (1996).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, "Coherent THz-wave generation from LiNbO3 with monolithic grating coupler," Appl. Phy. Lett. 68, 2483-2485 (1996).
[CrossRef]

1990 (1)

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, "Generation of femtosecond electromagnetic pulses from semiconductor surface," Appl. Phys. Lett. 56, 1011-1013 (1990).
[CrossRef]

1988 (1)

P. R. Smith, D. H. Auston, and M. C. Nuss, "Subpicosecond photoconducting dipole antennas," IEEE J. Quantum Electron. 24, 255-256 (1988).
[CrossRef]

1975 (1)

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, "Continuously tunable submillimeter wave source," Appl. Phys. Lett. 26, 418-419 (1975).
[CrossRef]

1966 (1)

S. E. Harris, "Proposed Backward Wave Oscillation in the Infrared," Appl. Phys. Lett. 9, 114-115 (1966).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloemergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

?strand, P.

C. Rønne, P. ?strand, and S. R. Keiding, "THz spectroscopy of liquid H2O and D2O," Phys. Rev. Lett. 82, 2888-2891 (1999).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloemergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Auston, D. H.

P. R. Smith, D. H. Auston, and M. C. Nuss, "Subpicosecond photoconducting dipole antennas," IEEE J. Quantum Electron. 24, 255-256 (1988).
[CrossRef]

Avetisyan, Y.

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, "Terahertz semiconductor-hetrostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Beigang, R.

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, "Terahertz semiconductor-hetrostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Bloemergen, N.

J. A. Armstrong, N. Bloemergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Bonn, M.

E. Knoesel, M. Bonn, J. Shan, and T. F. Heinz, "Charge transport and carrier dynamics in liquids probed by THz Time-Domain Spectroscopy," Phys. Rev. Lett. 86, 340-343 (2001).
[CrossRef] [PubMed]

Canalias, C.

C. Canalias and V. Pasiskevicius, "Mirror-less optical parametric oscillator," Nat. Photonics 1, 459-462 (2007).
[CrossRef]

Davies, A. G.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, "Terahertz semiconductor-hetrostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Ding, Y. J.

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, "Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal," Opt. Lett. 27, 1454-1456 (2002).
[CrossRef]

Y. J. Ding and J. B. Khurgin, "A new scheme for efficient generation of coherent and incoherent submillimeter to THz wave in periodically-poled lithium niobate," Opt. Commun. 148, 105-109 (1998).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloemergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Fernelius, N.

Fleming, R. N.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, "Continuously tunable submillimeter wave source," Appl. Phys. Lett. 26, 418-419 (1975).
[CrossRef]

Fraser, G. T.

V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, "Investigation of the water-vapor continuum in the THz region using a multipass cell," J. Quant. Spectrosc. Radiat. Transf. 91, 287-295 (2005).
[CrossRef]

Galvanauskas, A.

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, "Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate," Appl. Phys. Lett. 78, 2505-2507 (2000).
[CrossRef]

Harris, S. E.

S. E. Harris, "Proposed Backward Wave Oscillation in the Infrared," Appl. Phys. Lett. 9, 114-115 (1966).
[CrossRef]

Hebling, J.

L. Pálfalvi, J. Hebling, J. Kuhl, ?. Péter, and K. Polgár, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97, 123505-123511 (2005).
[CrossRef]

Heinz, T. F.

E. Knoesel, M. Bonn, J. Shan, and T. F. Heinz, "Charge transport and carrier dynamics in liquids probed by THz Time-Domain Spectroscopy," Phys. Rev. Lett. 86, 340-343 (2001).
[CrossRef] [PubMed]

Hewitt, T. D.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, "Two-dimensional electro-optic imaging of THz beams," Appl. Phys. Lett. 69, 1026-1028 (1996).
[CrossRef]

Imai, K.

Inoue, H.

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, "Non-destructive terahertz imaging of illicit drugs using spectral fringeprints," Opt. Express. 11, 2549-2554 (2003).
[CrossRef] [PubMed]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, "Terahertz semiconductor-hetrostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Ito, H.

Jung, C.

N. E. Yu, C. Jung, C. S. Kee, Y. L. Lee, B. A. Yu, D. K. Ko, and J. Lee, "Backward terahertz generation in periodically poled lithium niobate crystal via difference frequency generation," Jpn. J. Appl. Phys. 46, 1501-1504 (2007).
[CrossRef]

Kawase, K.

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, "Non-destructive terahertz imaging of illicit drugs using spectral fringeprints," Opt. Express. 11, 2549-2554 (2003).
[CrossRef] [PubMed]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, "Arrayed silicon prism coupler for THz-wave parametric oscillator," Appl. Opt. 40, 1423-1426 (2001).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, "Coherent THz-wave generation from LiNbO3 with monolithic grating coupler," Appl. Phy. Lett. 68, 2483-2485 (1996).
[CrossRef]

Kee, C. S.

N. E. Yu, C. Jung, C. S. Kee, Y. L. Lee, B. A. Yu, D. K. Ko, and J. Lee, "Backward terahertz generation in periodically poled lithium niobate crystal via difference frequency generation," Jpn. J. Appl. Phys. 46, 1501-1504 (2007).
[CrossRef]

Keiding, S. R.

C. Rønne, P. ?strand, and S. R. Keiding, "THz spectroscopy of liquid H2O and D2O," Phys. Rev. Lett. 82, 2888-2891 (1999).
[CrossRef]

Khurgin, J. B.

Y. J. Ding and J. B. Khurgin, "A new scheme for efficient generation of coherent and incoherent submillimeter to THz wave in periodically-poled lithium niobate," Opt. Commun. 148, 105-109 (1998).
[CrossRef]

Knoesel, E.

E. Knoesel, M. Bonn, J. Shan, and T. F. Heinz, "Charge transport and carrier dynamics in liquids probed by THz Time-Domain Spectroscopy," Phys. Rev. Lett. 86, 340-343 (2001).
[CrossRef] [PubMed]

Ko, D. K.

N. E. Yu, C. Jung, C. S. Kee, Y. L. Lee, B. A. Yu, D. K. Ko, and J. Lee, "Backward terahertz generation in periodically poled lithium niobate crystal via difference frequency generation," Jpn. J. Appl. Phys. 46, 1501-1504 (2007).
[CrossRef]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, "Terahertz semiconductor-hetrostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Kuhl, J.

L. Pálfalvi, J. Hebling, J. Kuhl, ?. Péter, and K. Polgár, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97, 123505-123511 (2005).
[CrossRef]

Lee, J.

N. E. Yu, C. Jung, C. S. Kee, Y. L. Lee, B. A. Yu, D. K. Ko, and J. Lee, "Backward terahertz generation in periodically poled lithium niobate crystal via difference frequency generation," Jpn. J. Appl. Phys. 46, 1501-1504 (2007).
[CrossRef]

Lee, Y. L.

N. E. Yu, C. Jung, C. S. Kee, Y. L. Lee, B. A. Yu, D. K. Ko, and J. Lee, "Backward terahertz generation in periodically poled lithium niobate crystal via difference frequency generation," Jpn. J. Appl. Phys. 46, 1501-1504 (2007).
[CrossRef]

Lee, Y. S.

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, "Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate," Appl. Phys. Lett. 78, 2505-2507 (2000).
[CrossRef]

Linfield, E. H.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, "Terahertz semiconductor-hetrostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Meade, T.

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, "Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate," Appl. Phys. Lett. 78, 2505-2507 (2000).
[CrossRef]

Meyn, J. P.

Minamide, H.

Norris, T. B.

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, "Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate," Appl. Phys. Lett. 78, 2505-2507 (2000).
[CrossRef]

Nuss, M. C.

P. R. Smith, D. H. Auston, and M. C. Nuss, "Subpicosecond photoconducting dipole antennas," IEEE J. Quantum Electron. 24, 255-256 (1988).
[CrossRef]

Ogawa, Y.

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, "Non-destructive terahertz imaging of illicit drugs using spectral fringeprints," Opt. Express. 11, 2549-2554 (2003).
[CrossRef] [PubMed]

Pálfalvi, L.

L. Pálfalvi, J. Hebling, J. Kuhl, ?. Péter, and K. Polgár, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97, 123505-123511 (2005).
[CrossRef]

Pantell, R. H.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, "Continuously tunable submillimeter wave source," Appl. Phys. Lett. 26, 418-419 (1975).
[CrossRef]

Pasiskevicius, V.

C. Canalias and V. Pasiskevicius, "Mirror-less optical parametric oscillator," Nat. Photonics 1, 459-462 (2007).
[CrossRef]

Perlin, V.

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, "Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate," Appl. Phys. Lett. 78, 2505-2507 (2000).
[CrossRef]

Pershan, P. S.

J. A. Armstrong, N. Bloemergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Péter, ?.

L. Pálfalvi, J. Hebling, J. Kuhl, ?. Péter, and K. Polgár, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97, 123505-123511 (2005).
[CrossRef]

Piestrup, M. A.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, "Continuously tunable submillimeter wave source," Appl. Phys. Lett. 26, 418-419 (1975).
[CrossRef]

Plusquellic, D. F.

V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, "Investigation of the water-vapor continuum in the THz region using a multipass cell," J. Quant. Spectrosc. Radiat. Transf. 91, 287-295 (2005).
[CrossRef]

Podobedov, V. B.

V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, "Investigation of the water-vapor continuum in the THz region using a multipass cell," J. Quant. Spectrosc. Radiat. Transf. 91, 287-295 (2005).
[CrossRef]

Polgár, K.

L. Pálfalvi, J. Hebling, J. Kuhl, ?. Péter, and K. Polgár, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97, 123505-123511 (2005).
[CrossRef]

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, "Terahertz semiconductor-hetrostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Rønne, C.

C. Rønne, P. ?strand, and S. R. Keiding, "THz spectroscopy of liquid H2O and D2O," Phys. Rev. Lett. 82, 2888-2891 (1999).
[CrossRef]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, "Terahertz semiconductor-hetrostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Sato, M.

J. Shikata, M. Sato, T. Taniuchi, and H. Ito, "Enhancement of Terahertz-wave output from LiNbO3 optical parametric oscillator by cryogenic cooling," Opt. Lett. 24, 202-204 (1999).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, "Coherent THz-wave generation from LiNbO3 with monolithic grating coupler," Appl. Phy. Lett. 68, 2483-2485 (1996).
[CrossRef]

Shan, J.

E. Knoesel, M. Bonn, J. Shan, and T. F. Heinz, "Charge transport and carrier dynamics in liquids probed by THz Time-Domain Spectroscopy," Phys. Rev. Lett. 86, 340-343 (2001).
[CrossRef] [PubMed]

Shi, W.

Shikata, J.

Smith, P. R.

P. R. Smith, D. H. Auston, and M. C. Nuss, "Subpicosecond photoconducting dipole antennas," IEEE J. Quantum Electron. 24, 255-256 (1988).
[CrossRef]

Taniuchi, T.

J. Shikata, M. Sato, T. Taniuchi, and H. Ito, "Enhancement of Terahertz-wave output from LiNbO3 optical parametric oscillator by cryogenic cooling," Opt. Lett. 24, 202-204 (1999).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, "Coherent THz-wave generation from LiNbO3 with monolithic grating coupler," Appl. Phy. Lett. 68, 2483-2485 (1996).
[CrossRef]

Torosyan, G.

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, "Terahertz semiconductor-hetrostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Vodopyanov, K.

Vodopyanov, K. L.

Wallenstein, R.

Watanabe, Y.

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, "Non-destructive terahertz imaging of illicit drugs using spectral fringeprints," Opt. Express. 11, 2549-2554 (2003).
[CrossRef] [PubMed]

Weiss, C.

Winful, H.

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, "Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate," Appl. Phys. Lett. 78, 2505-2507 (2000).
[CrossRef]

Wu, Q.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, "Two-dimensional electro-optic imaging of THz beams," Appl. Phys. Lett. 69, 1026-1028 (1996).
[CrossRef]

Yu, B. A.

N. E. Yu, C. Jung, C. S. Kee, Y. L. Lee, B. A. Yu, D. K. Ko, and J. Lee, "Backward terahertz generation in periodically poled lithium niobate crystal via difference frequency generation," Jpn. J. Appl. Phys. 46, 1501-1504 (2007).
[CrossRef]

Yu, N. E.

N. E. Yu, C. Jung, C. S. Kee, Y. L. Lee, B. A. Yu, D. K. Ko, and J. Lee, "Backward terahertz generation in periodically poled lithium niobate crystal via difference frequency generation," Jpn. J. Appl. Phys. 46, 1501-1504 (2007).
[CrossRef]

Zhang, X.-C.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, "Two-dimensional electro-optic imaging of THz beams," Appl. Phys. Lett. 69, 1026-1028 (1996).
[CrossRef]

Appl. Opt. (1)

Appl. Phy. Lett. (1)

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, "Coherent THz-wave generation from LiNbO3 with monolithic grating coupler," Appl. Phy. Lett. 68, 2483-2485 (1996).
[CrossRef]

Appl. Phys. Lett. (5)

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, "Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate," Appl. Phys. Lett. 78, 2505-2507 (2000).
[CrossRef]

S. E. Harris, "Proposed Backward Wave Oscillation in the Infrared," Appl. Phys. Lett. 9, 114-115 (1966).
[CrossRef]

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, "Continuously tunable submillimeter wave source," Appl. Phys. Lett. 26, 418-419 (1975).
[CrossRef]

Q. Wu, T. D. Hewitt, and X.-C. Zhang, "Two-dimensional electro-optic imaging of THz beams," Appl. Phys. Lett. 69, 1026-1028 (1996).
[CrossRef]

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, "Generation of femtosecond electromagnetic pulses from semiconductor surface," Appl. Phys. Lett. 56, 1011-1013 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. R. Smith, D. H. Auston, and M. C. Nuss, "Subpicosecond photoconducting dipole antennas," IEEE J. Quantum Electron. 24, 255-256 (1988).
[CrossRef]

J. Appl. Phys. (1)

L. Pálfalvi, J. Hebling, J. Kuhl, ?. Péter, and K. Polgár, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97, 123505-123511 (2005).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (1)

V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, "Investigation of the water-vapor continuum in the THz region using a multipass cell," J. Quant. Spectrosc. Radiat. Transf. 91, 287-295 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

N. E. Yu, C. Jung, C. S. Kee, Y. L. Lee, B. A. Yu, D. K. Ko, and J. Lee, "Backward terahertz generation in periodically poled lithium niobate crystal via difference frequency generation," Jpn. J. Appl. Phys. 46, 1501-1504 (2007).
[CrossRef]

Nat. Photonics (1)

C. Canalias and V. Pasiskevicius, "Mirror-less optical parametric oscillator," Nat. Photonics 1, 459-462 (2007).
[CrossRef]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, "Terahertz semiconductor-hetrostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

Y. J. Ding and J. B. Khurgin, "A new scheme for efficient generation of coherent and incoherent submillimeter to THz wave in periodically-poled lithium niobate," Opt. Commun. 148, 105-109 (1998).
[CrossRef]

Opt. Express (2)

Opt. Express. (1)

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, "Non-destructive terahertz imaging of illicit drugs using spectral fringeprints," Opt. Express. 11, 2549-2554 (2003).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. (1)

J. A. Armstrong, N. Bloemergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Phys. Rev. Lett. (2)

C. Rønne, P. ?strand, and S. R. Keiding, "THz spectroscopy of liquid H2O and D2O," Phys. Rev. Lett. 82, 2888-2891 (1999).
[CrossRef]

E. Knoesel, M. Bonn, J. Shan, and T. F. Heinz, "Charge transport and carrier dynamics in liquids probed by THz Time-Domain Spectroscopy," Phys. Rev. Lett. 86, 340-343 (2001).
[CrossRef] [PubMed]

Other (3)

D. H. Levy, Free Electron Lasers and other advanced Sources of Light, (National Academy Press Washington, DC, 1994) 24-31.

W. Shi, and Y. J. Ding, "Backward parametric oscillation in second-order nonlinear medium," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper QTuF7.

E. D. Palik, Handbook of Optical Constants of Solids, 695-702 (Academic, New York, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Setup of the collinearly quasi-phase-matched forward and backward THz difference frequency generations in a multi-grating PPLN crystal. The two-stage amplifier, marked by a dashed-line box, generates 17-µJ pump energy in a 400-ps pulse width with two frequency components from the seeding DFBDL and the ECDL. The 17-µJ pump energy is injected to into the PPLN DFG for generating coherent THz radiation. The frequency tuning of the THz wave is achieved by varying the frequency difference between the two diode lasers matched to the QPM conditions of the DFG PPLN. (HR: high reflection, HT: high transmission, OPA: optical parametric amplifier, DFG: difference frequency generator, FP: Fabry-Perot spectrometer, ECDL: external-cavity diode laser, DFBDL: distributed-feedback diode laser, EDFA: Erbium-doped fiber amplifier.)

Fig. 2.
Fig. 2.

(a). Forward THz-wave phase-matching curves measured by the 4K Si bolometer for the PPLN gratings with 63, 64, 65, 66, 67, 68 and 69-µm periods. The solid curves are the best fits of the Lorentzian function in Eq. (1). (b) When taking the phase matching cure for the 70-µm period PPLN DFG, we found absorption of ambient water vapor near 211.5 µm [23].

Fig. 3.
Fig. 3.

Backward THz-wave phase matching curves measured by the 4K Si bolometer for the PPLN with 63, 64, 65, 66, 67, 68, 69 and 70-µm periods. The solid curves are the best fits of the Lorentzian function in Eq. (1).

Fig. 4.
Fig. 4.

The THz extraordinary refractive indices deduced from the (a) forward and (b) backward THz-wave difference frequency generations. The fitting curves from Refs. [24, 25] are also shown for comparison.

Tables (1)

Tables Icon

Table 1. Summary of the forward and backward THz difference frequency generations

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I THz j Δ kL + α THz 2 L 2 ,

Metrics