Abstract

We developed a monolithic sensing plate for a waveguide-mode sensor. The plate consists of a SiO2 glass substrate and a thin silicon layer the surface of which is thermally oxidized to form a SiO2 glass waveguide. We confirmed that the sensing plate is suitable for high-sensitivity detection of molecular adsorption at the waveguide surface. In addition, a significant enhancement of the sensitivity of the sensor was achieved by perforating the waveguide with holes with diameters of a few tens of nanometers by selective etching of latent tracks created by swift heavy-ion irradiation. Possible strategies for optimizing the plate are discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Knoll, "Optical characterization of organic thin films and interfaces with evanescent waves," MRS Bulletin 16, 29??39 (1991).
  2. W. Knoll, "Interfaces and thin films as seen by bound electromagnetic waves," Annu. Rev. Phys. Chem. 49, 569??638 (1998).
    [CrossRef]
  3. M. Osterfeld, H. Franke, and C. Feger, "Optical gas detection using metal film enhanced leaky mode spectroscopy," Appl. Phys. Lett. 62, 2310??2312 (1993).
    [CrossRef]
  4. R. P. Podgorsek, H. Franke, J. Woods, and S. Morrill, "Monitoring the diffusion of vapour molecules in polymer films using SP-leaky-mode spectroscopy," Sens. Actuators B 51, 146??151 (1998).
    [CrossRef]
  5. K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, "Highly sensitive detection of processes occurring inside nanoporous anodic alumina templates: A waveguide optical study," J. Phys. Chem. B 108, 10812??10818 (2004).
    [CrossRef]
  6. M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, T. Ikeda, Y. Ohki, and T. Komatsubara, "Nanoscale pore fabrication for high sensitivity waveguide-mode biosensors," Microelectron. Eng. 84, 1685??1689 (2007).
    [CrossRef]
  7. K. Awazu, C. Rockstuhl, M. Fujimaki, N. Fukuda, J. Tominaga, T. Komatsubara, T. Ikeda, and Y. Ohki, "High sensitivity sensors made of perforated waveguides," Opt. Express 15, 2592??2597 (2007).
    [CrossRef] [PubMed]
  8. E. Kretschmann, "Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen," Z. Physik 241, 313??324 (1971).
    [CrossRef]
  9. M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, "Design of evanescent-field-coupled waveguide-mode sensors," Nanotechnology (to be published).
    [PubMed]
  10. T. Abe, K. Sunagawa, A. Uchiyama, K. Yoshizawa, and Y. Nakazato, "Fabrication and bonding strength of bonded silicon-quartz wafers," Jpn. J. Appl. Phys. 32, 334??337 (1993).
    [CrossRef]
  11. T. Abe, K. Ohki, A. Uchiyama, K. Nakazawa, and Y. Nakazato, "Dislocation-free silicon on sapphire by wafer bonding," Jpn. J. Appl. Phys. 33, 514??518 (1994).
    [CrossRef]
  12. Q. Y. Tong, U. Gösele, T. Martini, and M. Reiche, "Ultrathin single-crystalline silicon on quartz (SOQ) by 150°C wafer bonding," Sensor. Actuat. A 48, 117??123 (1995).
    [CrossRef]
  13. B. E. Deal and A. S. Grove, "General relationship for the thermal oxidation of silicon," J. Appl. Phys. 36, 3770??3778 (1965).
    [CrossRef]
  14. R. G. Musket, J. M. Yoshiyama, R. J. Contolini, and J. D. Porter, "Vapor etching of ion tracks in fused silica," J. Appl. Phys. 91, 5760??5764 (2002).
    [CrossRef]
  15. K. Awazu, S. Ishii, K. Shima, S. Roorda, and J. L. Brebner, "Structure of latent tracks created by swift heavy-ion bombardment of amorphous SiO2," Phys. Rev. B 62, 3689??3698 (2000).
    [CrossRef]
  16. E. D. Palik (Ed.), Handbook of optical constants of solids I, II, & III (Academic Press, San Diego, 1998).
  17. A. S. Grove, Physics and technology of semiconductor devices (John Wiley and Sons, Inc., New York, London, Sydney, 1967).
  18. S. Busse, V. Scheumann, B. Menges, and S. Mitteler, "Sensitivity studies for specific binding reactions using the biotin streptavidin system by evanescent optical methods," Biosens. Bioelectron. 17, 704??710 (2002).
    [CrossRef] [PubMed]

2007 (2)

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, T. Ikeda, Y. Ohki, and T. Komatsubara, "Nanoscale pore fabrication for high sensitivity waveguide-mode biosensors," Microelectron. Eng. 84, 1685??1689 (2007).
[CrossRef]

K. Awazu, C. Rockstuhl, M. Fujimaki, N. Fukuda, J. Tominaga, T. Komatsubara, T. Ikeda, and Y. Ohki, "High sensitivity sensors made of perforated waveguides," Opt. Express 15, 2592??2597 (2007).
[CrossRef] [PubMed]

2004 (1)

K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, "Highly sensitive detection of processes occurring inside nanoporous anodic alumina templates: A waveguide optical study," J. Phys. Chem. B 108, 10812??10818 (2004).
[CrossRef]

2002 (2)

R. G. Musket, J. M. Yoshiyama, R. J. Contolini, and J. D. Porter, "Vapor etching of ion tracks in fused silica," J. Appl. Phys. 91, 5760??5764 (2002).
[CrossRef]

S. Busse, V. Scheumann, B. Menges, and S. Mitteler, "Sensitivity studies for specific binding reactions using the biotin streptavidin system by evanescent optical methods," Biosens. Bioelectron. 17, 704??710 (2002).
[CrossRef] [PubMed]

2000 (1)

K. Awazu, S. Ishii, K. Shima, S. Roorda, and J. L. Brebner, "Structure of latent tracks created by swift heavy-ion bombardment of amorphous SiO2," Phys. Rev. B 62, 3689??3698 (2000).
[CrossRef]

1998 (2)

W. Knoll, "Interfaces and thin films as seen by bound electromagnetic waves," Annu. Rev. Phys. Chem. 49, 569??638 (1998).
[CrossRef]

R. P. Podgorsek, H. Franke, J. Woods, and S. Morrill, "Monitoring the diffusion of vapour molecules in polymer films using SP-leaky-mode spectroscopy," Sens. Actuators B 51, 146??151 (1998).
[CrossRef]

1995 (1)

Q. Y. Tong, U. Gösele, T. Martini, and M. Reiche, "Ultrathin single-crystalline silicon on quartz (SOQ) by 150°C wafer bonding," Sensor. Actuat. A 48, 117??123 (1995).
[CrossRef]

1994 (1)

T. Abe, K. Ohki, A. Uchiyama, K. Nakazawa, and Y. Nakazato, "Dislocation-free silicon on sapphire by wafer bonding," Jpn. J. Appl. Phys. 33, 514??518 (1994).
[CrossRef]

1993 (2)

M. Osterfeld, H. Franke, and C. Feger, "Optical gas detection using metal film enhanced leaky mode spectroscopy," Appl. Phys. Lett. 62, 2310??2312 (1993).
[CrossRef]

T. Abe, K. Sunagawa, A. Uchiyama, K. Yoshizawa, and Y. Nakazato, "Fabrication and bonding strength of bonded silicon-quartz wafers," Jpn. J. Appl. Phys. 32, 334??337 (1993).
[CrossRef]

1991 (1)

W. Knoll, "Optical characterization of organic thin films and interfaces with evanescent waves," MRS Bulletin 16, 29??39 (1991).

1971 (1)

E. Kretschmann, "Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen," Z. Physik 241, 313??324 (1971).
[CrossRef]

1965 (1)

B. E. Deal and A. S. Grove, "General relationship for the thermal oxidation of silicon," J. Appl. Phys. 36, 3770??3778 (1965).
[CrossRef]

Abe, T.

T. Abe, K. Ohki, A. Uchiyama, K. Nakazawa, and Y. Nakazato, "Dislocation-free silicon on sapphire by wafer bonding," Jpn. J. Appl. Phys. 33, 514??518 (1994).
[CrossRef]

T. Abe, K. Sunagawa, A. Uchiyama, K. Yoshizawa, and Y. Nakazato, "Fabrication and bonding strength of bonded silicon-quartz wafers," Jpn. J. Appl. Phys. 32, 334??337 (1993).
[CrossRef]

Awazu, K.

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, T. Ikeda, Y. Ohki, and T. Komatsubara, "Nanoscale pore fabrication for high sensitivity waveguide-mode biosensors," Microelectron. Eng. 84, 1685??1689 (2007).
[CrossRef]

K. Awazu, C. Rockstuhl, M. Fujimaki, N. Fukuda, J. Tominaga, T. Komatsubara, T. Ikeda, and Y. Ohki, "High sensitivity sensors made of perforated waveguides," Opt. Express 15, 2592??2597 (2007).
[CrossRef] [PubMed]

K. Awazu, S. Ishii, K. Shima, S. Roorda, and J. L. Brebner, "Structure of latent tracks created by swift heavy-ion bombardment of amorphous SiO2," Phys. Rev. B 62, 3689??3698 (2000).
[CrossRef]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, "Design of evanescent-field-coupled waveguide-mode sensors," Nanotechnology (to be published).
[PubMed]

Brebner, J. L.

K. Awazu, S. Ishii, K. Shima, S. Roorda, and J. L. Brebner, "Structure of latent tracks created by swift heavy-ion bombardment of amorphous SiO2," Phys. Rev. B 62, 3689??3698 (2000).
[CrossRef]

Busse, S.

S. Busse, V. Scheumann, B. Menges, and S. Mitteler, "Sensitivity studies for specific binding reactions using the biotin streptavidin system by evanescent optical methods," Biosens. Bioelectron. 17, 704??710 (2002).
[CrossRef] [PubMed]

Contolini, R. J.

R. G. Musket, J. M. Yoshiyama, R. J. Contolini, and J. D. Porter, "Vapor etching of ion tracks in fused silica," J. Appl. Phys. 91, 5760??5764 (2002).
[CrossRef]

Deal, B. E.

B. E. Deal and A. S. Grove, "General relationship for the thermal oxidation of silicon," J. Appl. Phys. 36, 3770??3778 (1965).
[CrossRef]

Feger, C.

M. Osterfeld, H. Franke, and C. Feger, "Optical gas detection using metal film enhanced leaky mode spectroscopy," Appl. Phys. Lett. 62, 2310??2312 (1993).
[CrossRef]

Franke, H.

R. P. Podgorsek, H. Franke, J. Woods, and S. Morrill, "Monitoring the diffusion of vapour molecules in polymer films using SP-leaky-mode spectroscopy," Sens. Actuators B 51, 146??151 (1998).
[CrossRef]

M. Osterfeld, H. Franke, and C. Feger, "Optical gas detection using metal film enhanced leaky mode spectroscopy," Appl. Phys. Lett. 62, 2310??2312 (1993).
[CrossRef]

Fujimaki, M.

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, T. Ikeda, Y. Ohki, and T. Komatsubara, "Nanoscale pore fabrication for high sensitivity waveguide-mode biosensors," Microelectron. Eng. 84, 1685??1689 (2007).
[CrossRef]

K. Awazu, C. Rockstuhl, M. Fujimaki, N. Fukuda, J. Tominaga, T. Komatsubara, T. Ikeda, and Y. Ohki, "High sensitivity sensors made of perforated waveguides," Opt. Express 15, 2592??2597 (2007).
[CrossRef] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, "Design of evanescent-field-coupled waveguide-mode sensors," Nanotechnology (to be published).
[PubMed]

Fukuda, N.

K. Awazu, C. Rockstuhl, M. Fujimaki, N. Fukuda, J. Tominaga, T. Komatsubara, T. Ikeda, and Y. Ohki, "High sensitivity sensors made of perforated waveguides," Opt. Express 15, 2592??2597 (2007).
[CrossRef] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, "Design of evanescent-field-coupled waveguide-mode sensors," Nanotechnology (to be published).
[PubMed]

Gösele, U.

Q. Y. Tong, U. Gösele, T. Martini, and M. Reiche, "Ultrathin single-crystalline silicon on quartz (SOQ) by 150°C wafer bonding," Sensor. Actuat. A 48, 117??123 (1995).
[CrossRef]

Grove, A. S.

B. E. Deal and A. S. Grove, "General relationship for the thermal oxidation of silicon," J. Appl. Phys. 36, 3770??3778 (1965).
[CrossRef]

Ikeda, T.

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, T. Ikeda, Y. Ohki, and T. Komatsubara, "Nanoscale pore fabrication for high sensitivity waveguide-mode biosensors," Microelectron. Eng. 84, 1685??1689 (2007).
[CrossRef]

K. Awazu, C. Rockstuhl, M. Fujimaki, N. Fukuda, J. Tominaga, T. Komatsubara, T. Ikeda, and Y. Ohki, "High sensitivity sensors made of perforated waveguides," Opt. Express 15, 2592??2597 (2007).
[CrossRef] [PubMed]

Ishii, S.

K. Awazu, S. Ishii, K. Shima, S. Roorda, and J. L. Brebner, "Structure of latent tracks created by swift heavy-ion bombardment of amorphous SiO2," Phys. Rev. B 62, 3689??3698 (2000).
[CrossRef]

Knoll, W.

K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, "Highly sensitive detection of processes occurring inside nanoporous anodic alumina templates: A waveguide optical study," J. Phys. Chem. B 108, 10812??10818 (2004).
[CrossRef]

W. Knoll, "Interfaces and thin films as seen by bound electromagnetic waves," Annu. Rev. Phys. Chem. 49, 569??638 (1998).
[CrossRef]

W. Knoll, "Optical characterization of organic thin films and interfaces with evanescent waves," MRS Bulletin 16, 29??39 (1991).

Koganezawa, Y.

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, "Design of evanescent-field-coupled waveguide-mode sensors," Nanotechnology (to be published).
[PubMed]

Komatsubara, T.

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, T. Ikeda, Y. Ohki, and T. Komatsubara, "Nanoscale pore fabrication for high sensitivity waveguide-mode biosensors," Microelectron. Eng. 84, 1685??1689 (2007).
[CrossRef]

K. Awazu, C. Rockstuhl, M. Fujimaki, N. Fukuda, J. Tominaga, T. Komatsubara, T. Ikeda, and Y. Ohki, "High sensitivity sensors made of perforated waveguides," Opt. Express 15, 2592??2597 (2007).
[CrossRef] [PubMed]

Kretschmann, E.

E. Kretschmann, "Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen," Z. Physik 241, 313??324 (1971).
[CrossRef]

Lau, K. H. A.

K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, "Highly sensitive detection of processes occurring inside nanoporous anodic alumina templates: A waveguide optical study," J. Phys. Chem. B 108, 10812??10818 (2004).
[CrossRef]

Martini, T.

Q. Y. Tong, U. Gösele, T. Martini, and M. Reiche, "Ultrathin single-crystalline silicon on quartz (SOQ) by 150°C wafer bonding," Sensor. Actuat. A 48, 117??123 (1995).
[CrossRef]

Menges, B.

S. Busse, V. Scheumann, B. Menges, and S. Mitteler, "Sensitivity studies for specific binding reactions using the biotin streptavidin system by evanescent optical methods," Biosens. Bioelectron. 17, 704??710 (2002).
[CrossRef] [PubMed]

Mitteler, S.

S. Busse, V. Scheumann, B. Menges, and S. Mitteler, "Sensitivity studies for specific binding reactions using the biotin streptavidin system by evanescent optical methods," Biosens. Bioelectron. 17, 704??710 (2002).
[CrossRef] [PubMed]

Morrill, S.

R. P. Podgorsek, H. Franke, J. Woods, and S. Morrill, "Monitoring the diffusion of vapour molecules in polymer films using SP-leaky-mode spectroscopy," Sens. Actuators B 51, 146??151 (1998).
[CrossRef]

Musket, R. G.

R. G. Musket, J. M. Yoshiyama, R. J. Contolini, and J. D. Porter, "Vapor etching of ion tracks in fused silica," J. Appl. Phys. 91, 5760??5764 (2002).
[CrossRef]

Nakazato, Y.

T. Abe, K. Ohki, A. Uchiyama, K. Nakazawa, and Y. Nakazato, "Dislocation-free silicon on sapphire by wafer bonding," Jpn. J. Appl. Phys. 33, 514??518 (1994).
[CrossRef]

T. Abe, K. Sunagawa, A. Uchiyama, K. Yoshizawa, and Y. Nakazato, "Fabrication and bonding strength of bonded silicon-quartz wafers," Jpn. J. Appl. Phys. 32, 334??337 (1993).
[CrossRef]

Nakazawa, K.

T. Abe, K. Ohki, A. Uchiyama, K. Nakazawa, and Y. Nakazato, "Dislocation-free silicon on sapphire by wafer bonding," Jpn. J. Appl. Phys. 33, 514??518 (1994).
[CrossRef]

Ohki, K.

T. Abe, K. Ohki, A. Uchiyama, K. Nakazawa, and Y. Nakazato, "Dislocation-free silicon on sapphire by wafer bonding," Jpn. J. Appl. Phys. 33, 514??518 (1994).
[CrossRef]

Ohki, Y.

K. Awazu, C. Rockstuhl, M. Fujimaki, N. Fukuda, J. Tominaga, T. Komatsubara, T. Ikeda, and Y. Ohki, "High sensitivity sensors made of perforated waveguides," Opt. Express 15, 2592??2597 (2007).
[CrossRef] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, T. Ikeda, Y. Ohki, and T. Komatsubara, "Nanoscale pore fabrication for high sensitivity waveguide-mode biosensors," Microelectron. Eng. 84, 1685??1689 (2007).
[CrossRef]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, "Design of evanescent-field-coupled waveguide-mode sensors," Nanotechnology (to be published).
[PubMed]

Osterfeld, M.

M. Osterfeld, H. Franke, and C. Feger, "Optical gas detection using metal film enhanced leaky mode spectroscopy," Appl. Phys. Lett. 62, 2310??2312 (1993).
[CrossRef]

Podgorsek, R. P.

R. P. Podgorsek, H. Franke, J. Woods, and S. Morrill, "Monitoring the diffusion of vapour molecules in polymer films using SP-leaky-mode spectroscopy," Sens. Actuators B 51, 146??151 (1998).
[CrossRef]

Porter, J. D.

R. G. Musket, J. M. Yoshiyama, R. J. Contolini, and J. D. Porter, "Vapor etching of ion tracks in fused silica," J. Appl. Phys. 91, 5760??5764 (2002).
[CrossRef]

Reiche, M.

Q. Y. Tong, U. Gösele, T. Martini, and M. Reiche, "Ultrathin single-crystalline silicon on quartz (SOQ) by 150°C wafer bonding," Sensor. Actuat. A 48, 117??123 (1995).
[CrossRef]

Rockstuhl, C.

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, T. Ikeda, Y. Ohki, and T. Komatsubara, "Nanoscale pore fabrication for high sensitivity waveguide-mode biosensors," Microelectron. Eng. 84, 1685??1689 (2007).
[CrossRef]

K. Awazu, C. Rockstuhl, M. Fujimaki, N. Fukuda, J. Tominaga, T. Komatsubara, T. Ikeda, and Y. Ohki, "High sensitivity sensors made of perforated waveguides," Opt. Express 15, 2592??2597 (2007).
[CrossRef] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, "Design of evanescent-field-coupled waveguide-mode sensors," Nanotechnology (to be published).
[PubMed]

Roorda, S.

K. Awazu, S. Ishii, K. Shima, S. Roorda, and J. L. Brebner, "Structure of latent tracks created by swift heavy-ion bombardment of amorphous SiO2," Phys. Rev. B 62, 3689??3698 (2000).
[CrossRef]

Sander, M. S.

K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, "Highly sensitive detection of processes occurring inside nanoporous anodic alumina templates: A waveguide optical study," J. Phys. Chem. B 108, 10812??10818 (2004).
[CrossRef]

Scheumann, V.

S. Busse, V. Scheumann, B. Menges, and S. Mitteler, "Sensitivity studies for specific binding reactions using the biotin streptavidin system by evanescent optical methods," Biosens. Bioelectron. 17, 704??710 (2002).
[CrossRef] [PubMed]

Shima, K.

K. Awazu, S. Ishii, K. Shima, S. Roorda, and J. L. Brebner, "Structure of latent tracks created by swift heavy-ion bombardment of amorphous SiO2," Phys. Rev. B 62, 3689??3698 (2000).
[CrossRef]

Sunagawa, K.

T. Abe, K. Sunagawa, A. Uchiyama, K. Yoshizawa, and Y. Nakazato, "Fabrication and bonding strength of bonded silicon-quartz wafers," Jpn. J. Appl. Phys. 32, 334??337 (1993).
[CrossRef]

Tamada, K.

K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, "Highly sensitive detection of processes occurring inside nanoporous anodic alumina templates: A waveguide optical study," J. Phys. Chem. B 108, 10812??10818 (2004).
[CrossRef]

Tan, L. S.

K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, "Highly sensitive detection of processes occurring inside nanoporous anodic alumina templates: A waveguide optical study," J. Phys. Chem. B 108, 10812??10818 (2004).
[CrossRef]

Tominaga, J.

K. Awazu, C. Rockstuhl, M. Fujimaki, N. Fukuda, J. Tominaga, T. Komatsubara, T. Ikeda, and Y. Ohki, "High sensitivity sensors made of perforated waveguides," Opt. Express 15, 2592??2597 (2007).
[CrossRef] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, T. Ikeda, Y. Ohki, and T. Komatsubara, "Nanoscale pore fabrication for high sensitivity waveguide-mode biosensors," Microelectron. Eng. 84, 1685??1689 (2007).
[CrossRef]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, "Design of evanescent-field-coupled waveguide-mode sensors," Nanotechnology (to be published).
[PubMed]

Tong, Q. Y.

Q. Y. Tong, U. Gösele, T. Martini, and M. Reiche, "Ultrathin single-crystalline silicon on quartz (SOQ) by 150°C wafer bonding," Sensor. Actuat. A 48, 117??123 (1995).
[CrossRef]

Uchiyama, A.

T. Abe, K. Ohki, A. Uchiyama, K. Nakazawa, and Y. Nakazato, "Dislocation-free silicon on sapphire by wafer bonding," Jpn. J. Appl. Phys. 33, 514??518 (1994).
[CrossRef]

T. Abe, K. Sunagawa, A. Uchiyama, K. Yoshizawa, and Y. Nakazato, "Fabrication and bonding strength of bonded silicon-quartz wafers," Jpn. J. Appl. Phys. 32, 334??337 (1993).
[CrossRef]

Wang, X.

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, T. Ikeda, Y. Ohki, and T. Komatsubara, "Nanoscale pore fabrication for high sensitivity waveguide-mode biosensors," Microelectron. Eng. 84, 1685??1689 (2007).
[CrossRef]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, "Design of evanescent-field-coupled waveguide-mode sensors," Nanotechnology (to be published).
[PubMed]

Woods, J.

R. P. Podgorsek, H. Franke, J. Woods, and S. Morrill, "Monitoring the diffusion of vapour molecules in polymer films using SP-leaky-mode spectroscopy," Sens. Actuators B 51, 146??151 (1998).
[CrossRef]

Yoshiyama, J. M.

R. G. Musket, J. M. Yoshiyama, R. J. Contolini, and J. D. Porter, "Vapor etching of ion tracks in fused silica," J. Appl. Phys. 91, 5760??5764 (2002).
[CrossRef]

Yoshizawa, K.

T. Abe, K. Sunagawa, A. Uchiyama, K. Yoshizawa, and Y. Nakazato, "Fabrication and bonding strength of bonded silicon-quartz wafers," Jpn. J. Appl. Phys. 32, 334??337 (1993).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

W. Knoll, "Interfaces and thin films as seen by bound electromagnetic waves," Annu. Rev. Phys. Chem. 49, 569??638 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

M. Osterfeld, H. Franke, and C. Feger, "Optical gas detection using metal film enhanced leaky mode spectroscopy," Appl. Phys. Lett. 62, 2310??2312 (1993).
[CrossRef]

Biosens. Bioelectron. (1)

S. Busse, V. Scheumann, B. Menges, and S. Mitteler, "Sensitivity studies for specific binding reactions using the biotin streptavidin system by evanescent optical methods," Biosens. Bioelectron. 17, 704??710 (2002).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

B. E. Deal and A. S. Grove, "General relationship for the thermal oxidation of silicon," J. Appl. Phys. 36, 3770??3778 (1965).
[CrossRef]

R. G. Musket, J. M. Yoshiyama, R. J. Contolini, and J. D. Porter, "Vapor etching of ion tracks in fused silica," J. Appl. Phys. 91, 5760??5764 (2002).
[CrossRef]

J. Phys. Chem. B (1)

K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, "Highly sensitive detection of processes occurring inside nanoporous anodic alumina templates: A waveguide optical study," J. Phys. Chem. B 108, 10812??10818 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (2)

T. Abe, K. Sunagawa, A. Uchiyama, K. Yoshizawa, and Y. Nakazato, "Fabrication and bonding strength of bonded silicon-quartz wafers," Jpn. J. Appl. Phys. 32, 334??337 (1993).
[CrossRef]

T. Abe, K. Ohki, A. Uchiyama, K. Nakazawa, and Y. Nakazato, "Dislocation-free silicon on sapphire by wafer bonding," Jpn. J. Appl. Phys. 33, 514??518 (1994).
[CrossRef]

Microelectron. Eng. (1)

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, T. Ikeda, Y. Ohki, and T. Komatsubara, "Nanoscale pore fabrication for high sensitivity waveguide-mode biosensors," Microelectron. Eng. 84, 1685??1689 (2007).
[CrossRef]

MRS Bulletin (1)

W. Knoll, "Optical characterization of organic thin films and interfaces with evanescent waves," MRS Bulletin 16, 29??39 (1991).

Nanotechnology (1)

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, "Design of evanescent-field-coupled waveguide-mode sensors," Nanotechnology (to be published).
[PubMed]

Opt. Express (1)

Phys. Rev. B (1)

K. Awazu, S. Ishii, K. Shima, S. Roorda, and J. L. Brebner, "Structure of latent tracks created by swift heavy-ion bombardment of amorphous SiO2," Phys. Rev. B 62, 3689??3698 (2000).
[CrossRef]

Sensor. Actuat. A (1)

Q. Y. Tong, U. Gösele, T. Martini, and M. Reiche, "Ultrathin single-crystalline silicon on quartz (SOQ) by 150°C wafer bonding," Sensor. Actuat. A 48, 117??123 (1995).
[CrossRef]

Sensor. Actuat. B (1)

R. P. Podgorsek, H. Franke, J. Woods, and S. Morrill, "Monitoring the diffusion of vapour molecules in polymer films using SP-leaky-mode spectroscopy," Sens. Actuators B 51, 146??151 (1998).
[CrossRef]

Z. Physik (1)

E. Kretschmann, "Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen," Z. Physik 241, 313??324 (1971).
[CrossRef]

Other (2)

E. D. Palik (Ed.), Handbook of optical constants of solids I, II, & III (Academic Press, San Diego, 1998).

A. S. Grove, Physics and technology of semiconductor devices (John Wiley and Sons, Inc., New York, London, Sydney, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the experimental setup using the Kretschmann configuration.

Fig. 2.
Fig. 2.

Observed reflectivity of the sensor with a monolithic sensing plate as a function of the incident angle (black circles). The red curve is drawn by fitting the experimental result to the theoretical result calculated by using the thin-film transfer-matrix technique.

Fig. 3.
Fig. 3.

(a) Reflectivity observed before (circles) and after (red triangles) the adsorption of streptavidin on biotin as a function of the angle of incidence. The monolithic sensing plate was used for the observation. (b) Change in reflectivity (ΔR) as a result of the adsorption obtained by subtracting the spectrum before the adsorption from that after the adsorption.

Fig. 4.
Fig. 4.

Reflectivity before (circles) and after (red triangles) the adsorption of streptavidin on biotin as a function of the incident angle, as observed by using the perforated plate.

Fig. 5.
Fig. 5.

(a) SEM micrograph of the surface of the perforated waveguide of the monolithic sensing plate, and (b) SEM micrograph of the surface of the perforated SiO2 glass deposited by radio-frequency magnetron sputtering.

Fig. 6.
Fig. 6.

Simulated amplitude of the electric field of the waveguide mode excited in the sensing plate consisting of a SiO2 substrate, a 220-nm thick Si reflecting layer, and a 480-nm thick SiO2 glass waveguide. The incident light is an S-polarized beam with a wavelength of 632.8 nm and irradiates the sensing plate through an isosceles SiO2 glass prism with a vertex angle of 30°. The surface of the waveguide is assumed to be immersed in water. The incident angle corresponds to the angle at which the strongest resonance is observed. The illuminating plane wave propagates in the positive z-direction. The substrate, the reflecting layer, and the waveguide are lined from left to right. Each boundary is indicated by a green line. The strength of the field is indicated by the color bar.

Fig. 7.
Fig. 7.

Simulated correlation between the maximum ΔR obtained by a waveguide-mode sensor with a monolithic sensing plate that can be fabricated from the SOQ substrate and the values of t WG and t RE. The maximum ΔR was calculated by using the thin-film transfer-matrix technique for the case of a monolayer with n=1.45 and a thickness of 5 nm adhering to the surface of the waveguide. The solid and the dotted curves represent the maximum positive and negative values of ΔR, respectively.

Fig. 8.
Fig. 8.

Simulated correlation between t RE and the maximum ΔR calculated by using the thin-film transfer-matrix technique for the case of a monolayer with n=1.45 and a thickness of 5 nm adhering at the surface of the waveguide. The value of t WG was fixed to be 480 nm. The solid and the dotted curves represent the maximum positive and negative values of ΔR, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

t RE = 440 nm t WG 2.2 .

Metrics