Abstract

In this paper, a polyimide cantilever micro-optic switch of electromagnetic actuation is studied. The model of the electromagnetic actuation is proposed and simulated using finite element method. The best efficiency of electromagnetic force for switching operations is obtained and the parameters of the coil and magnet are determined. During the practical fabrication, the thick resist patterning and electroplating technology is employed to fabricate the electromagnetic actuation. Both the theoretical and experimental results indicate that the balanceable distance of the polyimide cantilever for implementing optical switches is about 1.28 mm with 0.4 A current pulse input, The final experimental results of optical performance for the fabricated micro-optic 1×4 switch include the switching time of about 20 ms and the insertion loss of about 0.73 dB.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Huang, H. F. Chou, and J. E. Bowers, "Dynamically reconfigurable optical packet switch (DROPS)," Opt. Express 14, 2008-2014 (2006).
    [CrossRef]
  2. L. Y. Lin and E. L. Goldstein, "The Roles of MEMS Optical Switches in Fiber-Optic Networks-What and When," Proc. SPIE 5246, 85-94 (2003).
    [CrossRef]
  3. H. T. Hsieh, C. W. Chiu, T. Tsao, F. Jiang, and G. D. John Su, "Low-Actuation-Voltage MEMS for 2-D Optical Switches," J. Lightwave Technol. 24, 4372-4379 (2006).
    [CrossRef]
  4. C. H. Ko, J. J. Yang, J. C. Chiou, S. C. Chen, and T. H. Kao, "Magnetic Analysis of A Micromachined Magnetic Actuator Using the Finite Element Method," Proc. SPIE 3893, 127-136 (2000).
    [CrossRef]
  5. V. G. Kutchoukov, J. R. Mollinger, M. Shikida, and A. Bossche, "Patterning of polyimide and metal in deep trenches," Sens. Actuators A 92, 208-213 (2001).
    [CrossRef]
  6. Y. H. Zhang, G. F. Ding, S. Fu, and B. C. Cai, "A fast switching bistable electromagnetic microactuator fabricated by UV-LIGA technology," Mechatronics 17, 165-171 (2007).
    [CrossRef]
  7. J. W. Yang, Y. H. Wu, H. G. Jia, P. Zhang, and S. R. Wang, "Design method and magnetic field analysis of axial-magnetized permanent magnet micromotor," Opt. Precision Eng. 14, 83-88 (2006).
  8. T. Zhang, Y. H. Wu, H.W. Li, B. Liu, P. Zhang, and S. Y. Wang, "Micro electromagnetic actuator with high energy density based on MEMS technology," Opt. Precision Eng. 15, 866-872 (2007).
  9. C. T. Pan and S. C. Shen, "Magnetically actuated bi-directional microactuators with permalloy and Fe/Pt hard magnet," J. Magn. Mag. Mater. 285, 422-432 (2005).
    [CrossRef]

2007 (2)

Y. H. Zhang, G. F. Ding, S. Fu, and B. C. Cai, "A fast switching bistable electromagnetic microactuator fabricated by UV-LIGA technology," Mechatronics 17, 165-171 (2007).
[CrossRef]

T. Zhang, Y. H. Wu, H.W. Li, B. Liu, P. Zhang, and S. Y. Wang, "Micro electromagnetic actuator with high energy density based on MEMS technology," Opt. Precision Eng. 15, 866-872 (2007).

2006 (3)

J. W. Yang, Y. H. Wu, H. G. Jia, P. Zhang, and S. R. Wang, "Design method and magnetic field analysis of axial-magnetized permanent magnet micromotor," Opt. Precision Eng. 14, 83-88 (2006).

C. H. Huang, H. F. Chou, and J. E. Bowers, "Dynamically reconfigurable optical packet switch (DROPS)," Opt. Express 14, 2008-2014 (2006).
[CrossRef]

H. T. Hsieh, C. W. Chiu, T. Tsao, F. Jiang, and G. D. John Su, "Low-Actuation-Voltage MEMS for 2-D Optical Switches," J. Lightwave Technol. 24, 4372-4379 (2006).
[CrossRef]

2005 (1)

C. T. Pan and S. C. Shen, "Magnetically actuated bi-directional microactuators with permalloy and Fe/Pt hard magnet," J. Magn. Mag. Mater. 285, 422-432 (2005).
[CrossRef]

2003 (1)

L. Y. Lin and E. L. Goldstein, "The Roles of MEMS Optical Switches in Fiber-Optic Networks-What and When," Proc. SPIE 5246, 85-94 (2003).
[CrossRef]

2001 (1)

V. G. Kutchoukov, J. R. Mollinger, M. Shikida, and A. Bossche, "Patterning of polyimide and metal in deep trenches," Sens. Actuators A 92, 208-213 (2001).
[CrossRef]

2000 (1)

C. H. Ko, J. J. Yang, J. C. Chiou, S. C. Chen, and T. H. Kao, "Magnetic Analysis of A Micromachined Magnetic Actuator Using the Finite Element Method," Proc. SPIE 3893, 127-136 (2000).
[CrossRef]

Bossche, A.

V. G. Kutchoukov, J. R. Mollinger, M. Shikida, and A. Bossche, "Patterning of polyimide and metal in deep trenches," Sens. Actuators A 92, 208-213 (2001).
[CrossRef]

Bowers, J. E.

C. H. Huang, H. F. Chou, and J. E. Bowers, "Dynamically reconfigurable optical packet switch (DROPS)," Opt. Express 14, 2008-2014 (2006).
[CrossRef]

Cai, B. C.

Y. H. Zhang, G. F. Ding, S. Fu, and B. C. Cai, "A fast switching bistable electromagnetic microactuator fabricated by UV-LIGA technology," Mechatronics 17, 165-171 (2007).
[CrossRef]

Chen, S. C.

C. H. Ko, J. J. Yang, J. C. Chiou, S. C. Chen, and T. H. Kao, "Magnetic Analysis of A Micromachined Magnetic Actuator Using the Finite Element Method," Proc. SPIE 3893, 127-136 (2000).
[CrossRef]

Chiou, J. C.

C. H. Ko, J. J. Yang, J. C. Chiou, S. C. Chen, and T. H. Kao, "Magnetic Analysis of A Micromachined Magnetic Actuator Using the Finite Element Method," Proc. SPIE 3893, 127-136 (2000).
[CrossRef]

Chiu, C. W.

Chou, H. F.

C. H. Huang, H. F. Chou, and J. E. Bowers, "Dynamically reconfigurable optical packet switch (DROPS)," Opt. Express 14, 2008-2014 (2006).
[CrossRef]

Ding, G. F.

Y. H. Zhang, G. F. Ding, S. Fu, and B. C. Cai, "A fast switching bistable electromagnetic microactuator fabricated by UV-LIGA technology," Mechatronics 17, 165-171 (2007).
[CrossRef]

Fu, S.

Y. H. Zhang, G. F. Ding, S. Fu, and B. C. Cai, "A fast switching bistable electromagnetic microactuator fabricated by UV-LIGA technology," Mechatronics 17, 165-171 (2007).
[CrossRef]

Goldstein, E. L.

L. Y. Lin and E. L. Goldstein, "The Roles of MEMS Optical Switches in Fiber-Optic Networks-What and When," Proc. SPIE 5246, 85-94 (2003).
[CrossRef]

Hsieh, H. T.

Huang, C. H.

C. H. Huang, H. F. Chou, and J. E. Bowers, "Dynamically reconfigurable optical packet switch (DROPS)," Opt. Express 14, 2008-2014 (2006).
[CrossRef]

Jia, H. G.

J. W. Yang, Y. H. Wu, H. G. Jia, P. Zhang, and S. R. Wang, "Design method and magnetic field analysis of axial-magnetized permanent magnet micromotor," Opt. Precision Eng. 14, 83-88 (2006).

Jiang, F.

John Su, G. D.

Kao, T. H.

C. H. Ko, J. J. Yang, J. C. Chiou, S. C. Chen, and T. H. Kao, "Magnetic Analysis of A Micromachined Magnetic Actuator Using the Finite Element Method," Proc. SPIE 3893, 127-136 (2000).
[CrossRef]

Ko, C. H.

C. H. Ko, J. J. Yang, J. C. Chiou, S. C. Chen, and T. H. Kao, "Magnetic Analysis of A Micromachined Magnetic Actuator Using the Finite Element Method," Proc. SPIE 3893, 127-136 (2000).
[CrossRef]

Kutchoukov, V. G.

V. G. Kutchoukov, J. R. Mollinger, M. Shikida, and A. Bossche, "Patterning of polyimide and metal in deep trenches," Sens. Actuators A 92, 208-213 (2001).
[CrossRef]

Li, H.W.

T. Zhang, Y. H. Wu, H.W. Li, B. Liu, P. Zhang, and S. Y. Wang, "Micro electromagnetic actuator with high energy density based on MEMS technology," Opt. Precision Eng. 15, 866-872 (2007).

Lin, L. Y.

L. Y. Lin and E. L. Goldstein, "The Roles of MEMS Optical Switches in Fiber-Optic Networks-What and When," Proc. SPIE 5246, 85-94 (2003).
[CrossRef]

Liu, B.

T. Zhang, Y. H. Wu, H.W. Li, B. Liu, P. Zhang, and S. Y. Wang, "Micro electromagnetic actuator with high energy density based on MEMS technology," Opt. Precision Eng. 15, 866-872 (2007).

Mollinger, J. R.

V. G. Kutchoukov, J. R. Mollinger, M. Shikida, and A. Bossche, "Patterning of polyimide and metal in deep trenches," Sens. Actuators A 92, 208-213 (2001).
[CrossRef]

Pan, C. T.

C. T. Pan and S. C. Shen, "Magnetically actuated bi-directional microactuators with permalloy and Fe/Pt hard magnet," J. Magn. Mag. Mater. 285, 422-432 (2005).
[CrossRef]

Shen, S. C.

C. T. Pan and S. C. Shen, "Magnetically actuated bi-directional microactuators with permalloy and Fe/Pt hard magnet," J. Magn. Mag. Mater. 285, 422-432 (2005).
[CrossRef]

Shikida, M.

V. G. Kutchoukov, J. R. Mollinger, M. Shikida, and A. Bossche, "Patterning of polyimide and metal in deep trenches," Sens. Actuators A 92, 208-213 (2001).
[CrossRef]

Tsao, T.

Wang, S. R.

J. W. Yang, Y. H. Wu, H. G. Jia, P. Zhang, and S. R. Wang, "Design method and magnetic field analysis of axial-magnetized permanent magnet micromotor," Opt. Precision Eng. 14, 83-88 (2006).

Wang, S. Y.

T. Zhang, Y. H. Wu, H.W. Li, B. Liu, P. Zhang, and S. Y. Wang, "Micro electromagnetic actuator with high energy density based on MEMS technology," Opt. Precision Eng. 15, 866-872 (2007).

Wu, Y. H.

T. Zhang, Y. H. Wu, H.W. Li, B. Liu, P. Zhang, and S. Y. Wang, "Micro electromagnetic actuator with high energy density based on MEMS technology," Opt. Precision Eng. 15, 866-872 (2007).

J. W. Yang, Y. H. Wu, H. G. Jia, P. Zhang, and S. R. Wang, "Design method and magnetic field analysis of axial-magnetized permanent magnet micromotor," Opt. Precision Eng. 14, 83-88 (2006).

Yang, J. J.

C. H. Ko, J. J. Yang, J. C. Chiou, S. C. Chen, and T. H. Kao, "Magnetic Analysis of A Micromachined Magnetic Actuator Using the Finite Element Method," Proc. SPIE 3893, 127-136 (2000).
[CrossRef]

Yang, J. W.

J. W. Yang, Y. H. Wu, H. G. Jia, P. Zhang, and S. R. Wang, "Design method and magnetic field analysis of axial-magnetized permanent magnet micromotor," Opt. Precision Eng. 14, 83-88 (2006).

Zhang, P.

T. Zhang, Y. H. Wu, H.W. Li, B. Liu, P. Zhang, and S. Y. Wang, "Micro electromagnetic actuator with high energy density based on MEMS technology," Opt. Precision Eng. 15, 866-872 (2007).

J. W. Yang, Y. H. Wu, H. G. Jia, P. Zhang, and S. R. Wang, "Design method and magnetic field analysis of axial-magnetized permanent magnet micromotor," Opt. Precision Eng. 14, 83-88 (2006).

Zhang, T.

T. Zhang, Y. H. Wu, H.W. Li, B. Liu, P. Zhang, and S. Y. Wang, "Micro electromagnetic actuator with high energy density based on MEMS technology," Opt. Precision Eng. 15, 866-872 (2007).

Zhang, Y. H.

Y. H. Zhang, G. F. Ding, S. Fu, and B. C. Cai, "A fast switching bistable electromagnetic microactuator fabricated by UV-LIGA technology," Mechatronics 17, 165-171 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Magn. Mag. Matier. (1)

C. T. Pan and S. C. Shen, "Magnetically actuated bi-directional microactuators with permalloy and Fe/Pt hard magnet," J. Magn. Mag. Mater. 285, 422-432 (2005).
[CrossRef]

Mechatronics (1)

Y. H. Zhang, G. F. Ding, S. Fu, and B. C. Cai, "A fast switching bistable electromagnetic microactuator fabricated by UV-LIGA technology," Mechatronics 17, 165-171 (2007).
[CrossRef]

Opt. Express (1)

C. H. Huang, H. F. Chou, and J. E. Bowers, "Dynamically reconfigurable optical packet switch (DROPS)," Opt. Express 14, 2008-2014 (2006).
[CrossRef]

Opt. Precision Eng. (2)

J. W. Yang, Y. H. Wu, H. G. Jia, P. Zhang, and S. R. Wang, "Design method and magnetic field analysis of axial-magnetized permanent magnet micromotor," Opt. Precision Eng. 14, 83-88 (2006).

T. Zhang, Y. H. Wu, H.W. Li, B. Liu, P. Zhang, and S. Y. Wang, "Micro electromagnetic actuator with high energy density based on MEMS technology," Opt. Precision Eng. 15, 866-872 (2007).

Proc. SPIE (2)

L. Y. Lin and E. L. Goldstein, "The Roles of MEMS Optical Switches in Fiber-Optic Networks-What and When," Proc. SPIE 5246, 85-94 (2003).
[CrossRef]

C. H. Ko, J. J. Yang, J. C. Chiou, S. C. Chen, and T. H. Kao, "Magnetic Analysis of A Micromachined Magnetic Actuator Using the Finite Element Method," Proc. SPIE 3893, 127-136 (2000).
[CrossRef]

Sens. Actuators A (1)

V. G. Kutchoukov, J. R. Mollinger, M. Shikida, and A. Bossche, "Patterning of polyimide and metal in deep trenches," Sens. Actuators A 92, 208-213 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Schematic structure of the micro-optic switch of EM actuation.

Fig. 2.
Fig. 2.

Two-dimention axis-symmetrical section odel of the coil and magnet.

Fig. 3.
Fig. 3.

Magnetic flux of the EM actuation.

Fig. 4.
Fig. 4.

EM force versus the thickness of the coil.

Fig. 5.
Fig. 5.

EM force versus the width of the coil.

Fig. 6.
Fig. 6.

EM force versus the height of the magnet.

Fig. 7.
Fig. 7.

EM force versus the radius of the magnet.

Fig. 8.
Fig. 8.

EM force versus the distance between he coil and magnet.

Fig. 9.
Fig. 9.

EM force versus the current.

Fig. 10.
Fig. 10.

Processing program for fabricating the PI cantilevers and the planar coils for the EM micro-optic switch.

Fig. 11.
Fig. 11.

Top-view structure of the polyimide cantilever.

Fig. 12.
Fig. 12.

Photo-picture of the planar coil after electro-plating.

Fig. 13.
Fig. 13.

Photo-picture of the planar coil after etching.

Fig. 14
Fig. 14

Photo-picture of the fabricated optical switch.

Fig. 15.
Fig. 15.

Schematic diagram of the experiment devices: (a) measuring displacement; (b) measuring response time

Fig. 16.
Fig. 16.

Displacement of the cantilever versus the current.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F = 1 2 μ 0 S Φ 2
F z = V d ( M   B z ) d z d V = M V B z z
R = ρ l w t

Metrics