Abstract

We report on a simple and accurate method for determination of thermo-optical and spectroscopic parameters (thermal diffusivity, temperature coefficient of the optical path length change, pump and fluorescence quantum efficiencies, thermal loading, thermal lens focal length, etc) of relevance in the thermal lensing of end-pumped neodymium lasers operating at 1.06- and 1.3- µm channels. The comparison between thermal lensing observed in presence and absence of laser oscillation has been used to elucidate and evaluate the contribution of quantum efficiency and excited sate absorption processes to the thermal loading of Nd:YAG lasers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-State Laser engineering (Springer - Verlag, New York, 1988).
  2. A. A. Kaminskii, Laser Crystals, 2nd ed. (Springer, Berlin, 1990).
  3. T. Y. Fan, "Heat-Generation in Nd:YAG and Yb:YAG," IEEE J. Quantum Electron. 29, 1457-1459 (1993).
    [CrossRef]
  4. J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, "Heat generation in Nd:YVO4 with and without laser action," IEEE Photon. Technol. Lett. 10, 1727-1729 (1998).
    [CrossRef]
  5. C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. D. Myers, and M. J. Myers, "Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials," Opt. Express 13, 2040-2046 (2005).
    [CrossRef] [PubMed]
  6. M. Okida, M. Itoh, T. Yatagi, H. Ogilvy, J. Piper, and T. Omatsu, "Heat generation in Nd doped vanadate crystals with 1.34 μm laser action," Opt. Express 13, 4909-4915 (2005).
    [CrossRef] [PubMed]
  7. B. Neuenschwander, R. Weber, and H. P. Weber, "Determination of the thermal lens in solid-state lasers with stable cavities," IEEE J. Quantum Electron. 31, 1082-1087 (1995).
    [CrossRef]
  8. B. Ozygus and Q. C. Zhang, "Thermal lens determination of end-pumped solid-state lasers using primary degeneration modes," Appl. Phys. Lett. 71, 2590-2592 (1997).
    [CrossRef]
  9. M. Montes, D. Jaque, Z. D. Luo, and Y. D. Huang, "Short-pulse generation from a resonantly pumped NdAl3(BO3)4 microchip laser," Opt. Lett. 30, 397-399 (2005).
    [CrossRef] [PubMed]
  10. S. Fan, X. Zhang, Q. Wang, S. Li, S. Ding, and F. Su, "More precise determination of thermal lens focal length for end-pumped solid-state lasers," Opt. Commun. 266, 620-626 (2006).
    [CrossRef]
  11. C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, "Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses - A review," J. Non-Cryst. Solids 352, 3582-3597 (2006).
    [CrossRef]
  12. M. L. Baesso, J. Shen, and R. D. Snook, "Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths," J. Appl. Phys. 75, 3732-3737 (1994).
    [CrossRef]
  13. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett. 56, 1831-1833 (1990).
    [CrossRef]
  14. C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, "Thermal lens spectroscopy of Nd:YAG," Appl. Phys. Lett. 86, 034104 (2005).
    [CrossRef]
  15. J. Shen, R. D. Lowe, and R. D. Snook, "A model for cw laser induce mode-mismatched dual-beam thermal lens spectrometry," Chem. Phys. 165, 385-396 (1992).
    [CrossRef]
  16. D. C. Brown, "Heat, fluorescence, and stimulated-emission power densities and fractions in Nd:YAG," IEEE J. Quantum Electron. 34, 560-572 (1998).
    [CrossRef]
  17. S. Kück, L. Fornasiero, E. Mix, and G. Huber, "Excited state absorption and stimulated emission of Nd3+. in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3," Appl. Phys.B-Lasers and Optics 67, 151-156 (1998).
    [CrossRef]
  18. Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorge, N. Garnier, E. Descroix, M. Bon, and P. Laporte, "Excited-state-absorption and up-conversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19," Phys. Rev. B 51, 784-799 (1995).
    [CrossRef]
  19. N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, "Neodymium concentration dependence of 0.94-, 1.06- and 1.34- μm laser emission and of heating effects under 809- and 885- nm diode laser pumping of Nd:YAG," Appl. Phys.B-Lasers and Optics 82, 599-605 (2006).
    [CrossRef]
  20. R. C. Powell, Physics of Solid-State Laser Materials (Springer, New York, 1998).
    [CrossRef]

2006 (3)

S. Fan, X. Zhang, Q. Wang, S. Li, S. Ding, and F. Su, "More precise determination of thermal lens focal length for end-pumped solid-state lasers," Opt. Commun. 266, 620-626 (2006).
[CrossRef]

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, "Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses - A review," J. Non-Cryst. Solids 352, 3582-3597 (2006).
[CrossRef]

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, "Neodymium concentration dependence of 0.94-, 1.06- and 1.34- μm laser emission and of heating effects under 809- and 885- nm diode laser pumping of Nd:YAG," Appl. Phys.B-Lasers and Optics 82, 599-605 (2006).
[CrossRef]

2005 (4)

1998 (3)

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, "Heat generation in Nd:YVO4 with and without laser action," IEEE Photon. Technol. Lett. 10, 1727-1729 (1998).
[CrossRef]

D. C. Brown, "Heat, fluorescence, and stimulated-emission power densities and fractions in Nd:YAG," IEEE J. Quantum Electron. 34, 560-572 (1998).
[CrossRef]

S. Kück, L. Fornasiero, E. Mix, and G. Huber, "Excited state absorption and stimulated emission of Nd3+. in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3," Appl. Phys.B-Lasers and Optics 67, 151-156 (1998).
[CrossRef]

1997 (1)

B. Ozygus and Q. C. Zhang, "Thermal lens determination of end-pumped solid-state lasers using primary degeneration modes," Appl. Phys. Lett. 71, 2590-2592 (1997).
[CrossRef]

1995 (2)

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorge, N. Garnier, E. Descroix, M. Bon, and P. Laporte, "Excited-state-absorption and up-conversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19," Phys. Rev. B 51, 784-799 (1995).
[CrossRef]

B. Neuenschwander, R. Weber, and H. P. Weber, "Determination of the thermal lens in solid-state lasers with stable cavities," IEEE J. Quantum Electron. 31, 1082-1087 (1995).
[CrossRef]

1994 (1)

M. L. Baesso, J. Shen, and R. D. Snook, "Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths," J. Appl. Phys. 75, 3732-3737 (1994).
[CrossRef]

1993 (1)

T. Y. Fan, "Heat-Generation in Nd:YAG and Yb:YAG," IEEE J. Quantum Electron. 29, 1457-1459 (1993).
[CrossRef]

1992 (1)

J. Shen, R. D. Lowe, and R. D. Snook, "A model for cw laser induce mode-mismatched dual-beam thermal lens spectrometry," Chem. Phys. 165, 385-396 (1992).
[CrossRef]

1990 (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett. 56, 1831-1833 (1990).
[CrossRef]

Andrade, A. A.

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, "Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses - A review," J. Non-Cryst. Solids 352, 3582-3597 (2006).
[CrossRef]

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, "Thermal lens spectroscopy of Nd:YAG," Appl. Phys. Lett. 86, 034104 (2005).
[CrossRef]

C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. D. Myers, and M. J. Myers, "Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials," Opt. Express 13, 2040-2046 (2005).
[CrossRef] [PubMed]

Baesso, M. L.

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, "Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses - A review," J. Non-Cryst. Solids 352, 3582-3597 (2006).
[CrossRef]

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, "Thermal lens spectroscopy of Nd:YAG," Appl. Phys. Lett. 86, 034104 (2005).
[CrossRef]

M. L. Baesso, J. Shen, and R. D. Snook, "Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths," J. Appl. Phys. 75, 3732-3737 (1994).
[CrossRef]

Blows, J. L.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, "Heat generation in Nd:YVO4 with and without laser action," IEEE Photon. Technol. Lett. 10, 1727-1729 (1998).
[CrossRef]

Bon, M.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorge, N. Garnier, E. Descroix, M. Bon, and P. Laporte, "Excited-state-absorption and up-conversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19," Phys. Rev. B 51, 784-799 (1995).
[CrossRef]

Brown, D. C.

D. C. Brown, "Heat, fluorescence, and stimulated-emission power densities and fractions in Nd:YAG," IEEE J. Quantum Electron. 34, 560-572 (1998).
[CrossRef]

Catunda, T.

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, "Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses - A review," J. Non-Cryst. Solids 352, 3582-3597 (2006).
[CrossRef]

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, "Thermal lens spectroscopy of Nd:YAG," Appl. Phys. Lett. 86, 034104 (2005).
[CrossRef]

C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. D. Myers, and M. J. Myers, "Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials," Opt. Express 13, 2040-2046 (2005).
[CrossRef] [PubMed]

Dawes, J.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, "Heat generation in Nd:YVO4 with and without laser action," IEEE Photon. Technol. Lett. 10, 1727-1729 (1998).
[CrossRef]

Descroix, E.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorge, N. Garnier, E. Descroix, M. Bon, and P. Laporte, "Excited-state-absorption and up-conversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19," Phys. Rev. B 51, 784-799 (1995).
[CrossRef]

Ding, S.

S. Fan, X. Zhang, Q. Wang, S. Li, S. Ding, and F. Su, "More precise determination of thermal lens focal length for end-pumped solid-state lasers," Opt. Commun. 266, 620-626 (2006).
[CrossRef]

Fan, S.

S. Fan, X. Zhang, Q. Wang, S. Li, S. Ding, and F. Su, "More precise determination of thermal lens focal length for end-pumped solid-state lasers," Opt. Commun. 266, 620-626 (2006).
[CrossRef]

Fan, T. Y.

T. Y. Fan, "Heat-Generation in Nd:YAG and Yb:YAG," IEEE J. Quantum Electron. 29, 1457-1459 (1993).
[CrossRef]

Fields, R. A.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett. 56, 1831-1833 (1990).
[CrossRef]

Fincher, C. L.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett. 56, 1831-1833 (1990).
[CrossRef]

Fornasiero, L.

S. Kück, L. Fornasiero, E. Mix, and G. Huber, "Excited state absorption and stimulated emission of Nd3+. in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3," Appl. Phys.B-Lasers and Optics 67, 151-156 (1998).
[CrossRef]

Garnier, N.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorge, N. Garnier, E. Descroix, M. Bon, and P. Laporte, "Excited-state-absorption and up-conversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19," Phys. Rev. B 51, 784-799 (1995).
[CrossRef]

Guyot, Y.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorge, N. Garnier, E. Descroix, M. Bon, and P. Laporte, "Excited-state-absorption and up-conversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19," Phys. Rev. B 51, 784-799 (1995).
[CrossRef]

Huang, Y. D.

Huber, G.

S. Kück, L. Fornasiero, E. Mix, and G. Huber, "Excited state absorption and stimulated emission of Nd3+. in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3," Appl. Phys.B-Lasers and Optics 67, 151-156 (1998).
[CrossRef]

Innocenzi, M. E.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett. 56, 1831-1833 (1990).
[CrossRef]

Itoh, M.

Jacinto, C.

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, "Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses - A review," J. Non-Cryst. Solids 352, 3582-3597 (2006).
[CrossRef]

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, "Thermal lens spectroscopy of Nd:YAG," Appl. Phys. Lett. 86, 034104 (2005).
[CrossRef]

C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. D. Myers, and M. J. Myers, "Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials," Opt. Express 13, 2040-2046 (2005).
[CrossRef] [PubMed]

Jaque, D.

Kan, H.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, "Neodymium concentration dependence of 0.94-, 1.06- and 1.34- μm laser emission and of heating effects under 809- and 885- nm diode laser pumping of Nd:YAG," Appl. Phys.B-Lasers and Optics 82, 599-605 (2006).
[CrossRef]

Kück, S.

S. Kück, L. Fornasiero, E. Mix, and G. Huber, "Excited state absorption and stimulated emission of Nd3+. in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3," Appl. Phys.B-Lasers and Optics 67, 151-156 (1998).
[CrossRef]

Laporte, P.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorge, N. Garnier, E. Descroix, M. Bon, and P. Laporte, "Excited-state-absorption and up-conversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19," Phys. Rev. B 51, 784-799 (1995).
[CrossRef]

Li, S.

S. Fan, X. Zhang, Q. Wang, S. Li, S. Ding, and F. Su, "More precise determination of thermal lens focal length for end-pumped solid-state lasers," Opt. Commun. 266, 620-626 (2006).
[CrossRef]

Lima, S. M.

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, "Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses - A review," J. Non-Cryst. Solids 352, 3582-3597 (2006).
[CrossRef]

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, "Thermal lens spectroscopy of Nd:YAG," Appl. Phys. Lett. 86, 034104 (2005).
[CrossRef]

Lowe, R. D.

J. Shen, R. D. Lowe, and R. D. Snook, "A model for cw laser induce mode-mismatched dual-beam thermal lens spectrometry," Chem. Phys. 165, 385-396 (1992).
[CrossRef]

Luo, Z. D.

Lupei, V.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, "Neodymium concentration dependence of 0.94-, 1.06- and 1.34- μm laser emission and of heating effects under 809- and 885- nm diode laser pumping of Nd:YAG," Appl. Phys.B-Lasers and Optics 82, 599-605 (2006).
[CrossRef]

Manaa, H.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorge, N. Garnier, E. Descroix, M. Bon, and P. Laporte, "Excited-state-absorption and up-conversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19," Phys. Rev. B 51, 784-799 (1995).
[CrossRef]

Messias, D. N.

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, "Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses - A review," J. Non-Cryst. Solids 352, 3582-3597 (2006).
[CrossRef]

Mix, E.

S. Kück, L. Fornasiero, E. Mix, and G. Huber, "Excited state absorption and stimulated emission of Nd3+. in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3," Appl. Phys.B-Lasers and Optics 67, 151-156 (1998).
[CrossRef]

Moncorge, R.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorge, N. Garnier, E. Descroix, M. Bon, and P. Laporte, "Excited-state-absorption and up-conversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19," Phys. Rev. B 51, 784-799 (1995).
[CrossRef]

Montes, M.

Myers, J. D.

Myers, M. J.

Neuenschwander, B.

B. Neuenschwander, R. Weber, and H. P. Weber, "Determination of the thermal lens in solid-state lasers with stable cavities," IEEE J. Quantum Electron. 31, 1082-1087 (1995).
[CrossRef]

Ogilvy, H.

Okida, M.

Oliveira, S. L.

Omatsu, T.

M. Okida, M. Itoh, T. Yatagi, H. Ogilvy, J. Piper, and T. Omatsu, "Heat generation in Nd doped vanadate crystals with 1.34 μm laser action," Opt. Express 13, 4909-4915 (2005).
[CrossRef] [PubMed]

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, "Heat generation in Nd:YVO4 with and without laser action," IEEE Photon. Technol. Lett. 10, 1727-1729 (1998).
[CrossRef]

Ozygus, B.

B. Ozygus and Q. C. Zhang, "Thermal lens determination of end-pumped solid-state lasers using primary degeneration modes," Appl. Phys. Lett. 71, 2590-2592 (1997).
[CrossRef]

Pask, H.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, "Heat generation in Nd:YVO4 with and without laser action," IEEE Photon. Technol. Lett. 10, 1727-1729 (1998).
[CrossRef]

Pavel, N.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, "Neodymium concentration dependence of 0.94-, 1.06- and 1.34- μm laser emission and of heating effects under 809- and 885- nm diode laser pumping of Nd:YAG," Appl. Phys.B-Lasers and Optics 82, 599-605 (2006).
[CrossRef]

Piper, J.

Rivoire, J. Y.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorge, N. Garnier, E. Descroix, M. Bon, and P. Laporte, "Excited-state-absorption and up-conversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19," Phys. Rev. B 51, 784-799 (1995).
[CrossRef]

Saikawa, J.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, "Neodymium concentration dependence of 0.94-, 1.06- and 1.34- μm laser emission and of heating effects under 809- and 885- nm diode laser pumping of Nd:YAG," Appl. Phys.B-Lasers and Optics 82, 599-605 (2006).
[CrossRef]

Shen, J.

M. L. Baesso, J. Shen, and R. D. Snook, "Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths," J. Appl. Phys. 75, 3732-3737 (1994).
[CrossRef]

J. Shen, R. D. Lowe, and R. D. Snook, "A model for cw laser induce mode-mismatched dual-beam thermal lens spectrometry," Chem. Phys. 165, 385-396 (1992).
[CrossRef]

Snook, R. D.

M. L. Baesso, J. Shen, and R. D. Snook, "Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths," J. Appl. Phys. 75, 3732-3737 (1994).
[CrossRef]

J. Shen, R. D. Lowe, and R. D. Snook, "A model for cw laser induce mode-mismatched dual-beam thermal lens spectrometry," Chem. Phys. 165, 385-396 (1992).
[CrossRef]

Su, F.

S. Fan, X. Zhang, Q. Wang, S. Li, S. Ding, and F. Su, "More precise determination of thermal lens focal length for end-pumped solid-state lasers," Opt. Commun. 266, 620-626 (2006).
[CrossRef]

Taira, T.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, "Neodymium concentration dependence of 0.94-, 1.06- and 1.34- μm laser emission and of heating effects under 809- and 885- nm diode laser pumping of Nd:YAG," Appl. Phys.B-Lasers and Optics 82, 599-605 (2006).
[CrossRef]

Tateda, M.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, "Heat generation in Nd:YVO4 with and without laser action," IEEE Photon. Technol. Lett. 10, 1727-1729 (1998).
[CrossRef]

Wang, Q.

S. Fan, X. Zhang, Q. Wang, S. Li, S. Ding, and F. Su, "More precise determination of thermal lens focal length for end-pumped solid-state lasers," Opt. Commun. 266, 620-626 (2006).
[CrossRef]

Weber, H. P.

B. Neuenschwander, R. Weber, and H. P. Weber, "Determination of the thermal lens in solid-state lasers with stable cavities," IEEE J. Quantum Electron. 31, 1082-1087 (1995).
[CrossRef]

Weber, R.

B. Neuenschwander, R. Weber, and H. P. Weber, "Determination of the thermal lens in solid-state lasers with stable cavities," IEEE J. Quantum Electron. 31, 1082-1087 (1995).
[CrossRef]

Yatagi, T.

Yura, H. T.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett. 56, 1831-1833 (1990).
[CrossRef]

Zhang, Q. C.

B. Ozygus and Q. C. Zhang, "Thermal lens determination of end-pumped solid-state lasers using primary degeneration modes," Appl. Phys. Lett. 71, 2590-2592 (1997).
[CrossRef]

Zhang, X.

S. Fan, X. Zhang, Q. Wang, S. Li, S. Ding, and F. Su, "More precise determination of thermal lens focal length for end-pumped solid-state lasers," Opt. Commun. 266, 620-626 (2006).
[CrossRef]

Appl. Phys. Lett. (3)

B. Ozygus and Q. C. Zhang, "Thermal lens determination of end-pumped solid-state lasers using primary degeneration modes," Appl. Phys. Lett. 71, 2590-2592 (1997).
[CrossRef]

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett. 56, 1831-1833 (1990).
[CrossRef]

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, "Thermal lens spectroscopy of Nd:YAG," Appl. Phys. Lett. 86, 034104 (2005).
[CrossRef]

B-Lasers and Optics (2)

S. Kück, L. Fornasiero, E. Mix, and G. Huber, "Excited state absorption and stimulated emission of Nd3+. in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3," Appl. Phys.B-Lasers and Optics 67, 151-156 (1998).
[CrossRef]

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, "Neodymium concentration dependence of 0.94-, 1.06- and 1.34- μm laser emission and of heating effects under 809- and 885- nm diode laser pumping of Nd:YAG," Appl. Phys.B-Lasers and Optics 82, 599-605 (2006).
[CrossRef]

Chem. Phys. (1)

J. Shen, R. D. Lowe, and R. D. Snook, "A model for cw laser induce mode-mismatched dual-beam thermal lens spectrometry," Chem. Phys. 165, 385-396 (1992).
[CrossRef]

IEEE J. Quantum Electron. (3)

D. C. Brown, "Heat, fluorescence, and stimulated-emission power densities and fractions in Nd:YAG," IEEE J. Quantum Electron. 34, 560-572 (1998).
[CrossRef]

B. Neuenschwander, R. Weber, and H. P. Weber, "Determination of the thermal lens in solid-state lasers with stable cavities," IEEE J. Quantum Electron. 31, 1082-1087 (1995).
[CrossRef]

T. Y. Fan, "Heat-Generation in Nd:YAG and Yb:YAG," IEEE J. Quantum Electron. 29, 1457-1459 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, "Heat generation in Nd:YVO4 with and without laser action," IEEE Photon. Technol. Lett. 10, 1727-1729 (1998).
[CrossRef]

J. Appl. Phys. (1)

M. L. Baesso, J. Shen, and R. D. Snook, "Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths," J. Appl. Phys. 75, 3732-3737 (1994).
[CrossRef]

J. Non-Cryst. Solids (1)

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, "Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses - A review," J. Non-Cryst. Solids 352, 3582-3597 (2006).
[CrossRef]

Opt. Commun. (1)

S. Fan, X. Zhang, Q. Wang, S. Li, S. Ding, and F. Su, "More precise determination of thermal lens focal length for end-pumped solid-state lasers," Opt. Commun. 266, 620-626 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorge, N. Garnier, E. Descroix, M. Bon, and P. Laporte, "Excited-state-absorption and up-conversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19," Phys. Rev. B 51, 784-799 (1995).
[CrossRef]

Other (3)

R. C. Powell, Physics of Solid-State Laser Materials (Springer, New York, 1998).
[CrossRef]

W. Koechner, Solid-State Laser engineering (Springer - Verlag, New York, 1988).

A. A. Kaminskii, Laser Crystals, 2nd ed. (Springer, Berlin, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup for thermal lens experiments intra-cavity.

Fig. 2.
Fig. 2.

Normalized TL signal from Nd:YAG crystal with (at 1.064 µm) and without laser action. The absorbed pump powers were 0.40 and 0.44 W for no-lasing and lasing conditions, respectively.

Fig. 3.
Fig. 3.

(a) Laser emission at 1.064 µm (top), TL dioptric power (bottom) with (circles) and without (squares) lasing at 1.064 µm; (b) Laser emission at 1.34 µm (top), and TL dioptric power (bottom) with (circles) and without (squares) lasing at 1.34 µm as a function of the absorbed pump power for Nd:YAG doped with 1.0 at.%.

Fig. 4.
Fig. 4.

(a) Visible luminescence spectra of the Nd:YAG crystal in the presence and absence of laser oscillation at 1.34 µm. The absorbed pump power was 0.40 W. (b) Fluorescence quantum efficiency versus σESASE obtained from the φ 1.34 µm lasing and φ no lasing data using Eq. (3).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = I ( 0 ) { 1 θ 2 a tan [ 2 m V [ ( 1 + 2 m ) 2 + V 2 ] t c 2 t + 1 + 2 m + V 2 ] } 2
θ = P abs λ p K ( ds dT ) φ
φ = 1 η p [ ( 1 η l ) η f λ ex λ em + η l λ ex λ l 1 1 + σ ESA σ SE ]
D TL = λ p θ π w ex 2 = P abs π w ex 2 K ( ds dT ) φ = C φ P abs
D TL no lasing D TL lasing = φ no lasing φ lasing = 1 η f λ ex λ em 1 λ ex λ l

Metrics