Abstract

A nonlinear imaging technique with phase object, which can deduce nonlinear absorption and refraction coefficients by single laser-shot exposure, is expanded to a time-resolved pump-probe system by introducing a pump beam with a variable temporal delay. This new system, in which both degenerate and nondegenerate pump and probe beams in any polarization states can be used, can simultaneously measure dynamic nonlinear absorption and refraction conveniently. In addition, the sensitivity of this new pump-probe system is more than twice that of the Z-scan-based system. The semiconductor ZnSe is used to demonstrate this system.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Boudebs and S. Cherukulappurath, "Nonlinear optical measurements using a 4f coherent imaging system with phase objects," Phys. Rev. A 69, 053813 (2004).
    [CrossRef]
  2. J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, "Time-resolved Z-scan measurements of optical nonlinearities," J. Opt. Soc. Am. B 11, 1009-1017 (1994).
    [CrossRef]
  3. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hangan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
    [CrossRef]
  4. J.-L. Godet, H. Derbal, S. Cherukulappurath, and G. Boudebs, "Optimization and limits of optical nonlinear measurements using imaging technique," Eur. Phys. J. D 39, 307-312 (2006).
    [CrossRef]
  5. J. Sheik-Bahae, J. Wang, R. DeSalvo, D. J. Hagan, and E. W. Van Stryland, "Measurement of nondegenerate nonlinearities using a two-color Z scan," Opt. Lett. 17, 258-260 (1992).
    [CrossRef] [PubMed]
  6. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, "Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe," J. Opt. Soc. Am. B 9, 405-414 (1992).
    [CrossRef]
  7. X. Zhang, H. Fang, S. Tang, and W. Ji, "Determination of two-photon-generated free-carrier lifetime in semiconductors by a single-beam Z-scan technique," Appl. Phys. B 65, 549-554 (1997).
    [CrossRef]

2006

J.-L. Godet, H. Derbal, S. Cherukulappurath, and G. Boudebs, "Optimization and limits of optical nonlinear measurements using imaging technique," Eur. Phys. J. D 39, 307-312 (2006).
[CrossRef]

2004

G. Boudebs and S. Cherukulappurath, "Nonlinear optical measurements using a 4f coherent imaging system with phase objects," Phys. Rev. A 69, 053813 (2004).
[CrossRef]

1997

X. Zhang, H. Fang, S. Tang, and W. Ji, "Determination of two-photon-generated free-carrier lifetime in semiconductors by a single-beam Z-scan technique," Appl. Phys. B 65, 549-554 (1997).
[CrossRef]

1994

1992

1990

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hangan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Boudebs, G.

J.-L. Godet, H. Derbal, S. Cherukulappurath, and G. Boudebs, "Optimization and limits of optical nonlinear measurements using imaging technique," Eur. Phys. J. D 39, 307-312 (2006).
[CrossRef]

G. Boudebs and S. Cherukulappurath, "Nonlinear optical measurements using a 4f coherent imaging system with phase objects," Phys. Rev. A 69, 053813 (2004).
[CrossRef]

Cherukulappurath, S.

J.-L. Godet, H. Derbal, S. Cherukulappurath, and G. Boudebs, "Optimization and limits of optical nonlinear measurements using imaging technique," Eur. Phys. J. D 39, 307-312 (2006).
[CrossRef]

G. Boudebs and S. Cherukulappurath, "Nonlinear optical measurements using a 4f coherent imaging system with phase objects," Phys. Rev. A 69, 053813 (2004).
[CrossRef]

Derbal, H.

J.-L. Godet, H. Derbal, S. Cherukulappurath, and G. Boudebs, "Optimization and limits of optical nonlinear measurements using imaging technique," Eur. Phys. J. D 39, 307-312 (2006).
[CrossRef]

DeSalvo, R.

Fang, H.

X. Zhang, H. Fang, S. Tang, and W. Ji, "Determination of two-photon-generated free-carrier lifetime in semiconductors by a single-beam Z-scan technique," Appl. Phys. B 65, 549-554 (1997).
[CrossRef]

Godet, J.-L.

J.-L. Godet, H. Derbal, S. Cherukulappurath, and G. Boudebs, "Optimization and limits of optical nonlinear measurements using imaging technique," Eur. Phys. J. D 39, 307-312 (2006).
[CrossRef]

Hagan, D. J.

Hangan, D. J.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hangan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Ji, W.

X. Zhang, H. Fang, S. Tang, and W. Ji, "Determination of two-photon-generated free-carrier lifetime in semiconductors by a single-beam Z-scan technique," Appl. Phys. B 65, 549-554 (1997).
[CrossRef]

Said, A. A.

Sheik-Bahae, J.

Sheik-Bahae, M.

Tang, S.

X. Zhang, H. Fang, S. Tang, and W. Ji, "Determination of two-photon-generated free-carrier lifetime in semiconductors by a single-beam Z-scan technique," Appl. Phys. B 65, 549-554 (1997).
[CrossRef]

Van Stryland, E. W.

Wang, J.

Wei, T.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hangan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Wei, T. H.

Young, J.

Zhang, X.

X. Zhang, H. Fang, S. Tang, and W. Ji, "Determination of two-photon-generated free-carrier lifetime in semiconductors by a single-beam Z-scan technique," Appl. Phys. B 65, 549-554 (1997).
[CrossRef]

Appl. Phys. B

X. Zhang, H. Fang, S. Tang, and W. Ji, "Determination of two-photon-generated free-carrier lifetime in semiconductors by a single-beam Z-scan technique," Appl. Phys. B 65, 549-554 (1997).
[CrossRef]

Eur. Phys. J. D

J.-L. Godet, H. Derbal, S. Cherukulappurath, and G. Boudebs, "Optimization and limits of optical nonlinear measurements using imaging technique," Eur. Phys. J. D 39, 307-312 (2006).
[CrossRef]

IEEE J. Quantum Electron.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hangan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. A

G. Boudebs and S. Cherukulappurath, "Nonlinear optical measurements using a 4f coherent imaging system with phase objects," Phys. Rev. A 69, 053813 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of time-resolved pump-probe system based on nonlinear-imaging technique with phase object. BS is beam splitter; M1–M3 are mirrors; L1–L5 are convex lenses; A is aperture with phase object; tf is natural filter; NL is nonlinear material.

Fig. 2.
Fig. 2.

(a) Schematic of aperture with PO. (b) Profile of numerical simulated nonlinear image 0 ΔΦ>0.

Fig. 3.
Fig. 3.

Absolute value of ΔT varies with ratio of pump and probe beam radii ω e0/ω p0 in third-order nonlinear refraction measurement of samples with (ZnSe) and without (CS2) nonlinear absorption.

Fig.4.
Fig.4.

Nonlinear absorption signal 1-Tν varies with ratio of pump and probe beam radii ω e0/ω p0, in which Tν is normalized transmittance at zero time delay.

Fig. 5.
Fig. 5.

(a) Linear image in the experiment. (b) Nonlinear image at zero temporal delay in the pump-probe experiment.

Fig. 6.
Fig. 6.

Normalized transmittance as function of temporal delay of ZnSe. Dots are experiment results and line is numerically simulated curve.

Fig. 7.
Fig. 7.

ΔT as function of temporal delay. Dots are experiment results and line is numerically simulated curve.

Tables (1)

Tables Icon

Table 1. Comparison of the Photophysical Parameters Obtained in This Paper with Those in Earlier Literature

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ α b = 2 β I e ,
Δ n b = 2 n 2 I e ,
Δ α f = σ Δ N ( t ) ,
Δ n f = η Δ N ( t ) ,
d Δ N dt = β 2 ћ ω I e 2 Δ N τ r ,
d I e dz = α I e β I e 2 ,
d I p dz = α I p 2 β I e I p σ α Δ N I p ,
d ϕ p dz = 2 ω c n 2 I e + η Δ N ,

Metrics