Abstract

We analyze a nitrogen-vacancy (NV-) colour centre based single photon source based on cavity Purcell enhancement of the zero phonon line and suppression of other transitions. Optimal performance conditions of the cavity-centre system are analyzed using Master equation and quantum trajectory methods. By coupling the centre strongly to a high-finesse optical cavity [Q~𝒪(104-105), V3] and using sub-picosecond optical excitation the system has striking performance, including effective lifetime of 70 ps, linewidth of 0.01 nm, near unit single photon emission probability and small [𝒪(10-5)] multi-photon probability.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68, 3020–3023 (1992).
    [Crossref] [PubMed]
  2. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science 306, 1330–1336 (2004).
    [Crossref] [PubMed]
  3. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London)  409, 46–52 (2001).
    [Crossref] [PubMed]
  4. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing,” Rev. Mod. Phys. 79, 135–174 (2007).
    [Crossref]
  5. E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Quantum cryptography with a photon turnstile,” Nature (London)  420, 762 (2002).
    [Crossref] [PubMed]
  6. E. Waks, C. Santori, and Y. Yamamoto, “Security aspects of quantum key distribution with sub-Poisson light,” Phys. Rev. A 66, 042315 (2002).
    [Crossref]
  7. A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
    [Crossref] [PubMed]
  8. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Buzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
    [Crossref] [PubMed]
  9. B. Barquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
    [Crossref]
  10. M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nature Physics 3, 253–255 (2007).
    [Crossref]
  11. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature (London)  431, 1075–1078 (2004).
    [Crossref] [PubMed]
  12. C. Brunel, B. Lounis, Ph. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83, 2722–2725 (1999).
    [Crossref]
  13. B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature (London)  407, 491–493 (2000).
    [Crossref] [PubMed]
  14. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single-photons,” Phys. Rev. Lett. 85, 290–293 (2000).
    [Crossref] [PubMed]
  15. T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” New J. Phys. 6, 98 (2004).
    [Crossref]
  16. C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, “Single photon emission from SiV centres in diamond produced by ion implantation,” J. Phys. B: At. Mol. Opt. Phys. 39, 37–41 (2006).
    [Crossref]
  17. E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J.-F. Roch, “Room temperature triggered single-photon source in the near infrared,” New J. Phys. 9, 434 (2007).
    [Crossref]
  18. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
    [Crossref] [PubMed]
  19. S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200K,” Nature Materials 5, 887–892 (2006).
    [Crossref] [PubMed]
  20. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London)  445, 896–899 (2007).
    [Crossref] [PubMed]
  21. A. J. Shields, “Semiconductor quantum light sources,” Nature Photonics 1, 215–223 (2007).
    [Crossref]
  22. A. D. Greentree, P. Olivero, M. Draginski, E. Trajkov, J. R. Rabeau, P. Reichart, B. C. Gibson, S. Rubanov, S. T. Huntington, D. N. Jamieson, and S. Prawer, “Critical components for diamond-based quantum coherent devices,” J. Phys.: Cond. Matt. 18, S825–S842 (2006).
    [Crossref]
  23. M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nature Physics 2, 849–855 (2006).
    [Crossref]
  24. A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nature Physics 2, 856–861 (2006).
    [Crossref]
  25. D. G. Angelakis, M. F. Santos, and S. Bose, “Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays,” Phys. Rev. A 76, 031805 (2005).
    [Crossref]
  26. J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, “Generation of single color centers by focused nitrogen implantation,” Appl. Phys. Lett. 87, 261909 (2005).
    [Crossref]
  27. D. N. Jamieson, C. Yang, T. Hopf, S. M. Hearne, C. I. Pakes, S. Prawer, M. Mitic, E. Gauja, S. E. Andreson, F. E. Hudson, A. S. Dzurak, and R. G. Clark, “Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions,” Appl. Phys. Lett. 86, 202101 (2005).
    [Crossref]
  28. J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centres in diamond using15N,” Appl. Phys. Lett. 88, 23113 (2006).
    [Crossref]
  29. J. R. Rabeau, A. Stacey, A. Rabeau, F. Jelezko, I. Mirza, J. Wrachtrup, and S. Prawer, “Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals,” Nano Letters 7, 3433–3437 (2007).
    [Crossref] [PubMed]
  30. V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J.-F. Roch, “Experimental realization of Wheeler’s delayed-choice gedanken experiment,” Science 315, 966–968 (2007).
    [Crossref] [PubMed]
  31. N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006).
    [Crossref]
  32. A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
    [Crossref] [PubMed]
  33. R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J.-P. Poizat, and P. Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
    [Crossref]
  34. C. K. Hong, Z. Y Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [Crossref] [PubMed]
  35. P. P. Rohde, T. C. Ralph, and M. A. Nielsen, “Optimal photons for quantum-information processing,” Phys. Rev. A 72, 052332 (2005).
    [Crossref]
  36. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995).
    [Crossref] [PubMed]
  37. L.-M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
    [Crossref] [PubMed]
  38. L.-M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005).
    [Crossref]
  39. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London)  425, 944–947 (2003).
    [Crossref] [PubMed]
  40. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Materials 4, 207–210 (2005).
    [Crossref]
  41. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nature Photonics 1, 449–458 (2007).
    [Crossref]
  42. P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off techniques for three-dimensional micromachining of freestanding single-crystal diamond,” Advanced Materals (Weinheim, Ger.) 17, 2427–2430 (2005).
    [Crossref]
  43. S. Tomljenovic-Hanic, M. J. Steel, C. Martijn de Sterke, and J. Salzman, “Diamond based photonic crystal microcavities,” Opt. Express 14, 3556–3562 (2006).
    [Crossref] [PubMed]
  44. J. W. Baldwin, M. Zalalutdinov, T. Feygelson, J. E. Butler, and B. H. Houston, “Fabrication of short-wavelength photonic crystals in wide-band-gap nanocrystalline diamond films,” J. Vac. Sci. Technol. B 24, 50–54 (2006).
    [Crossref]
  45. I. Bayn and J. Salzman, “High-Q photonic crystal nanocavities on diamond for quantum electrodynamics,” Eur. Phys. J. Appl. Phys. 37, 19–24 (2007).
    [Crossref]
  46. C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,”, Appl. Phys. Lett. 91, 201112 (2007).
    [Crossref]
  47. G. Davies and M. F. Hamer, “Optical studies of the 1.945eV vibronic band in diamond,” Proc. R. Soc. Lond. A: Math. and Phys. Sci. 348, 285–298 (1976).
    [Crossref]
  48. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
    [Crossref] [PubMed]
  49. Ph. Tamarat, N. B. Manson, R. L. McMurtie, A. Nitsovtsev, C. Santori, P. Neumann, T. Gaebel, F. Jelezko, P. Hemmer, and J. Wrachtrup, “The excited state structure of the nitrogen-vacancy center in diamond,” http://arxiv.org/abs/cond-mat/0610357 (2006).
  50. E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theory with application to the beam maser,” Proc. IEEE 51, 89–109 (1963).
    [Crossref]
  51. B. W. Shore and P. L. Knight, “The Jaynes-Cummings model,” J. Mod. Opt. 40, 1195–1238 (1993).
    [Crossref]
  52. C. K. Law and H. J. Kimble, “Deterministic generation of a bit-stream of single-photon pulses,” J. Mod. Opt. 44, 2067–2074 (1997).
  53. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  54. S. Haroche and J. M. Raimond, “Radiative properties of Rydberg states in resonant cavities,” in Advances in Atomic and Molecular Physics Vol. XX, D. Bates and B. Bederson, eds. (Academic, 1985), pp. 350–411.
  55. J.-M. Gérard and B. Gayral, “Strong Purcell effector for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17, 2089–2095 (1999).
    [Crossref]
  56. M. Khanbekyan, D.-G. Welsh, C. Di Fidio, and W. Vogel, “Cavity-assisted spontaneous emission as a single-photon source: Pulse shape and efficiency of one-photon Fock state preparation,” http://arxiv.org/abs/0709.2998 (2007).
  57. L. Tian and H. J. Carmichael, “Quantum trajectory simulations of the two-state behavior of an optical cavity containing one atom,” Phys. Rev. A 46, R6801–R6804 (1992).
    [Crossref] [PubMed]
  58. H. J. Carmichael, An Open System Approach to Quantum Optics (Springer, 1993).
  59. Y. Dumeige, F. Treussart, R. Alléaume, T. Gacoin, J.-F. Roch, and P. Grangier, “Photo-induced creaton of nitrogen-related color centers in diamond nanocrystals under femtosecond illumination,” J. Lumin. 109, 61–67 (2004).
    [Crossref]
  60. Ph. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centres in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
    [Crossref] [PubMed]
  61. A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, “Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms,” Phys. Rev. A 73, 013818 (2006).
    [Crossref]
  62. M. J. Fernée, H. Rubinsztein-Dunlop, and G. J. Milburn, “Improving single-photon sources with Stark tuning,” Phys. Rev. A 75, 043815 (2007).
    [Crossref]
  63. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
    [Crossref] [PubMed]

2007 (11)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nature Physics 3, 253–255 (2007).
[Crossref]

E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J.-F. Roch, “Room temperature triggered single-photon source in the near infrared,” New J. Phys. 9, 434 (2007).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London)  445, 896–899 (2007).
[Crossref] [PubMed]

A. J. Shields, “Semiconductor quantum light sources,” Nature Photonics 1, 215–223 (2007).
[Crossref]

J. R. Rabeau, A. Stacey, A. Rabeau, F. Jelezko, I. Mirza, J. Wrachtrup, and S. Prawer, “Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals,” Nano Letters 7, 3433–3437 (2007).
[Crossref] [PubMed]

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J.-F. Roch, “Experimental realization of Wheeler’s delayed-choice gedanken experiment,” Science 315, 966–968 (2007).
[Crossref] [PubMed]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nature Photonics 1, 449–458 (2007).
[Crossref]

I. Bayn and J. Salzman, “High-Q photonic crystal nanocavities on diamond for quantum electrodynamics,” Eur. Phys. J. Appl. Phys. 37, 19–24 (2007).
[Crossref]

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,”, Appl. Phys. Lett. 91, 201112 (2007).
[Crossref]

M. J. Fernée, H. Rubinsztein-Dunlop, and G. J. Milburn, “Improving single-photon sources with Stark tuning,” Phys. Rev. A 75, 043815 (2007).
[Crossref]

2006 (12)

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[Crossref] [PubMed]

Ph. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centres in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, “Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms,” Phys. Rev. A 73, 013818 (2006).
[Crossref]

S. Tomljenovic-Hanic, M. J. Steel, C. Martijn de Sterke, and J. Salzman, “Diamond based photonic crystal microcavities,” Opt. Express 14, 3556–3562 (2006).
[Crossref] [PubMed]

J. W. Baldwin, M. Zalalutdinov, T. Feygelson, J. E. Butler, and B. H. Houston, “Fabrication of short-wavelength photonic crystals in wide-band-gap nanocrystalline diamond films,” J. Vac. Sci. Technol. B 24, 50–54 (2006).
[Crossref]

J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centres in diamond using15N,” Appl. Phys. Lett. 88, 23113 (2006).
[Crossref]

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006).
[Crossref]

C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, “Single photon emission from SiV centres in diamond produced by ion implantation,” J. Phys. B: At. Mol. Opt. Phys. 39, 37–41 (2006).
[Crossref]

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200K,” Nature Materials 5, 887–892 (2006).
[Crossref] [PubMed]

A. D. Greentree, P. Olivero, M. Draginski, E. Trajkov, J. R. Rabeau, P. Reichart, B. C. Gibson, S. Rubanov, S. T. Huntington, D. N. Jamieson, and S. Prawer, “Critical components for diamond-based quantum coherent devices,” J. Phys.: Cond. Matt. 18, S825–S842 (2006).
[Crossref]

M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nature Physics 2, 849–855 (2006).
[Crossref]

A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nature Physics 2, 856–861 (2006).
[Crossref]

2005 (9)

D. G. Angelakis, M. F. Santos, and S. Bose, “Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays,” Phys. Rev. A 76, 031805 (2005).
[Crossref]

J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, “Generation of single color centers by focused nitrogen implantation,” Appl. Phys. Lett. 87, 261909 (2005).
[Crossref]

D. N. Jamieson, C. Yang, T. Hopf, S. M. Hearne, C. I. Pakes, S. Prawer, M. Mitic, E. Gauja, S. E. Andreson, F. E. Hudson, A. S. Dzurak, and R. G. Clark, “Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions,” Appl. Phys. Lett. 86, 202101 (2005).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

B. Barquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[Crossref]

P. P. Rohde, T. C. Ralph, and M. A. Nielsen, “Optimal photons for quantum-information processing,” Phys. Rev. A 72, 052332 (2005).
[Crossref]

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off techniques for three-dimensional micromachining of freestanding single-crystal diamond,” Advanced Materals (Weinheim, Ger.) 17, 2427–2430 (2005).
[Crossref]

L.-M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005).
[Crossref]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Materials 4, 207–210 (2005).
[Crossref]

2004 (8)

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

L.-M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref] [PubMed]

Y. Dumeige, F. Treussart, R. Alléaume, T. Gacoin, J.-F. Roch, and P. Grangier, “Photo-induced creaton of nitrogen-related color centers in diamond nanocrystals under femtosecond illumination,” J. Lumin. 109, 61–67 (2004).
[Crossref]

T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” New J. Phys. 6, 98 (2004).
[Crossref]

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature (London)  431, 1075–1078 (2004).
[Crossref] [PubMed]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science 306, 1330–1336 (2004).
[Crossref] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Buzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J.-P. Poizat, and P. Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
[Crossref]

2003 (1)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London)  425, 944–947 (2003).
[Crossref] [PubMed]

2002 (4)

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref] [PubMed]

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Quantum cryptography with a photon turnstile,” Nature (London)  420, 762 (2002).
[Crossref] [PubMed]

E. Waks, C. Santori, and Y. Yamamoto, “Security aspects of quantum key distribution with sub-Poisson light,” Phys. Rev. A 66, 042315 (2002).
[Crossref]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[Crossref] [PubMed]

2001 (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London)  409, 46–52 (2001).
[Crossref] [PubMed]

2000 (2)

B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature (London)  407, 491–493 (2000).
[Crossref] [PubMed]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single-photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

1999 (2)

C. Brunel, B. Lounis, Ph. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83, 2722–2725 (1999).
[Crossref]

J.-M. Gérard and B. Gayral, “Strong Purcell effector for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17, 2089–2095 (1999).
[Crossref]

1997 (1)

C. K. Law and H. J. Kimble, “Deterministic generation of a bit-stream of single-photon pulses,” J. Mod. Opt. 44, 2067–2074 (1997).

1995 (1)

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995).
[Crossref] [PubMed]

1993 (1)

B. W. Shore and P. L. Knight, “The Jaynes-Cummings model,” J. Mod. Opt. 40, 1195–1238 (1993).
[Crossref]

1992 (2)

L. Tian and H. J. Carmichael, “Quantum trajectory simulations of the two-state behavior of an optical cavity containing one atom,” Phys. Rev. A 46, R6801–R6804 (1992).
[Crossref] [PubMed]

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68, 3020–3023 (1992).
[Crossref] [PubMed]

1987 (1)

C. K. Hong, Z. Y Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

1976 (1)

G. Davies and M. F. Hamer, “Optical studies of the 1.945eV vibronic band in diamond,” Proc. R. Soc. Lond. A: Math. and Phys. Sci. 348, 285–298 (1976).
[Crossref]

1963 (1)

E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theory with application to the beam maser,” Proc. IEEE 51, 89–109 (1963).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Akahane, Y.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Materials 4, 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London)  425, 944–947 (2003).
[Crossref] [PubMed]

Alléaume, R.

R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J.-P. Poizat, and P. Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
[Crossref]

Y. Dumeige, F. Treussart, R. Alléaume, T. Gacoin, J.-F. Roch, and P. Grangier, “Photo-induced creaton of nitrogen-related color centers in diamond nanocrystals under femtosecond illumination,” J. Lumin. 109, 61–67 (2004).
[Crossref]

Andreson, S. E.

D. N. Jamieson, C. Yang, T. Hopf, S. M. Hearne, C. I. Pakes, S. Prawer, M. Mitic, E. Gauja, S. E. Andreson, F. E. Hudson, A. S. Dzurak, and R. G. Clark, “Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions,” Appl. Phys. Lett. 86, 202101 (2005).
[Crossref]

Angelakis, D. G.

D. G. Angelakis, M. F. Santos, and S. Bose, “Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays,” Phys. Rev. A 76, 031805 (2005).
[Crossref]

Arakawa, Y.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200K,” Nature Materials 5, 887–892 (2006).
[Crossref] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

Asano, T.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nature Photonics 1, 449–458 (2007).
[Crossref]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Materials 4, 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London)  425, 944–947 (2003).
[Crossref] [PubMed]

Aspect, A.

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J.-F. Roch, “Experimental realization of Wheeler’s delayed-choice gedanken experiment,” Science 315, 966–968 (2007).
[Crossref] [PubMed]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London)  445, 896–899 (2007).
[Crossref] [PubMed]

Awschalom, D. D.

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,”, Appl. Phys. Lett. 91, 201112 (2007).
[Crossref]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London)  445, 896–899 (2007).
[Crossref] [PubMed]

Baldwin, J. W.

J. W. Baldwin, M. Zalalutdinov, T. Feygelson, J. E. Butler, and B. H. Houston, “Fabrication of short-wavelength photonic crystals in wide-band-gap nanocrystalline diamond films,” J. Vac. Sci. Technol. B 24, 50–54 (2006).
[Crossref]

Barquié, B.

B. Barquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[Crossref]

Bayn, I.

I. Bayn and J. Salzman, “High-Q photonic crystal nanocavities on diamond for quantum electrodynamics,” Eur. Phys. J. Appl. Phys. 37, 19–24 (2007).
[Crossref]

Bergamini, S.

B. Barquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[Crossref]

Beugnon, J.

B. Barquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[Crossref]

Beveratos, A.

R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J.-P. Poizat, and P. Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
[Crossref]

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref] [PubMed]

Boca, A.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Buzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

Boozer, A. D.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Buzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

Bose, S.

D. G. Angelakis, M. F. Santos, and S. Bose, “Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays,” Phys. Rev. A 76, 031805 (2005).
[Crossref]

Brandão, F. G. S. L.

M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nature Physics 2, 849–855 (2006).
[Crossref]

Brouri, R.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref] [PubMed]

Brouri-Tualle, R.

R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J.-P. Poizat, and P. Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
[Crossref]

Browaeys, A.

B. Barquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[Crossref]

Brunel, C.

C. Brunel, B. Lounis, Ph. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83, 2722–2725 (1999).
[Crossref]

Buck, J. R.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Buzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

Burchard, B.

C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, “Single photon emission from SiV centres in diamond produced by ion implantation,” J. Phys. B: At. Mol. Opt. Phys. 39, 37–41 (2006).
[Crossref]

J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, “Generation of single color centers by focused nitrogen implantation,” Appl. Phys. Lett. 87, 261909 (2005).
[Crossref]

Butler, J. E.

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,”, Appl. Phys. Lett. 91, 201112 (2007).
[Crossref]

J. W. Baldwin, M. Zalalutdinov, T. Feygelson, J. E. Butler, and B. H. Houston, “Fabrication of short-wavelength photonic crystals in wide-band-gap nanocrystalline diamond films,” J. Vac. Sci. Technol. B 24, 50–54 (2006).
[Crossref]

Buzmich, A.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Buzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

Carmichael, H. J.

L. Tian and H. J. Carmichael, “Quantum trajectory simulations of the two-state behavior of an optical cavity containing one atom,” Phys. Rev. A 46, R6801–R6804 (1992).
[Crossref] [PubMed]

H. J. Carmichael, An Open System Approach to Quantum Optics (Springer, 1993).

Carri, J.

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68, 3020–3023 (1992).
[Crossref] [PubMed]

Chang, D. E.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[Crossref] [PubMed]

Clark, R. G.

D. N. Jamieson, C. Yang, T. Hopf, S. M. Hearne, C. I. Pakes, S. Prawer, M. Mitic, E. Gauja, S. E. Andreson, F. E. Hudson, A. S. Dzurak, and R. G. Clark, “Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions,” Appl. Phys. Lett. 86, 202101 (2005).
[Crossref]

Cole, J. H.

A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nature Physics 2, 856–861 (2006).
[Crossref]

Cummings, F. W.

E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theory with application to the beam maser,” Proc. IEEE 51, 89–109 (1963).
[Crossref]

Davies, G.

G. Davies and M. F. Hamer, “Optical studies of the 1.945eV vibronic band in diamond,” Proc. R. Soc. Lond. A: Math. and Phys. Sci. 348, 285–298 (1976).
[Crossref]

de Sterke, C. Martijn

Di Fidio, C.

M. Khanbekyan, D.-G. Welsh, C. Di Fidio, and W. Vogel, “Cavity-assisted spontaneous emission as a single-photon source: Pulse shape and efficiency of one-photon Fock state preparation,” http://arxiv.org/abs/0709.2998 (2007).

Dingjan, J.

B. Barquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[Crossref]

Domhan, M.

J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centres in diamond using15N,” Appl. Phys. Lett. 88, 23113 (2006).
[Crossref]

J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, “Generation of single color centers by focused nitrogen implantation,” Appl. Phys. Lett. 87, 261909 (2005).
[Crossref]

T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” New J. Phys. 6, 98 (2004).
[Crossref]

Dowling, J. P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Draginski, M.

A. D. Greentree, P. Olivero, M. Draginski, E. Trajkov, J. R. Rabeau, P. Reichart, B. C. Gibson, S. Rubanov, S. T. Huntington, D. N. Jamieson, and S. Prawer, “Critical components for diamond-based quantum coherent devices,” J. Phys.: Cond. Matt. 18, S825–S842 (2006).
[Crossref]

Duan, L.-M.

L.-M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005).
[Crossref]

L.-M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref] [PubMed]

Dumeige, Y.

R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J.-P. Poizat, and P. Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
[Crossref]

Y. Dumeige, F. Treussart, R. Alléaume, T. Gacoin, J.-F. Roch, and P. Grangier, “Photo-induced creaton of nitrogen-related color centers in diamond nanocrystals under femtosecond illumination,” J. Lumin. 109, 61–67 (2004).
[Crossref]

Dzurak, A. S.

D. N. Jamieson, C. Yang, T. Hopf, S. M. Hearne, C. I. Pakes, S. Prawer, M. Mitic, E. Gauja, S. E. Andreson, F. E. Hudson, A. S. Dzurak, and R. G. Clark, “Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions,” Appl. Phys. Lett. 86, 202101 (2005).
[Crossref]

Englund, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London)  445, 896–899 (2007).
[Crossref] [PubMed]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Quantum cryptography with a photon turnstile,” Nature (London)  420, 762 (2002).
[Crossref] [PubMed]

Fernée, M. J.

M. J. Fernée, H. Rubinsztein-Dunlop, and G. J. Milburn, “Improving single-photon sources with Stark tuning,” Phys. Rev. A 75, 043815 (2007).
[Crossref]

Feygelson, T.

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,”, Appl. Phys. Lett. 91, 201112 (2007).
[Crossref]

J. W. Baldwin, M. Zalalutdinov, T. Feygelson, J. E. Butler, and B. H. Houston, “Fabrication of short-wavelength photonic crystals in wide-band-gap nanocrystalline diamond films,” J. Vac. Sci. Technol. B 24, 50–54 (2006).
[Crossref]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nature Photonics 1, 449–458 (2007).
[Crossref]

Gacoin, T.

Y. Dumeige, F. Treussart, R. Alléaume, T. Gacoin, J.-F. Roch, and P. Grangier, “Photo-induced creaton of nitrogen-related color centers in diamond nanocrystals under femtosecond illumination,” J. Lumin. 109, 61–67 (2004).
[Crossref]

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref] [PubMed]

Gaebel, T.

J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centres in diamond using15N,” Appl. Phys. Lett. 88, 23113 (2006).
[Crossref]

Ph. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centres in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, “Generation of single color centers by focused nitrogen implantation,” Appl. Phys. Lett. 87, 261909 (2005).
[Crossref]

T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” New J. Phys. 6, 98 (2004).
[Crossref]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

Ph. Tamarat, N. B. Manson, R. L. McMurtie, A. Nitsovtsev, C. Santori, P. Neumann, T. Gaebel, F. Jelezko, P. Hemmer, and J. Wrachtrup, “The excited state structure of the nitrogen-vacancy center in diamond,” http://arxiv.org/abs/cond-mat/0610357 (2006).

Gauja, E.

D. N. Jamieson, C. Yang, T. Hopf, S. M. Hearne, C. I. Pakes, S. Prawer, M. Mitic, E. Gauja, S. E. Andreson, F. E. Hudson, A. S. Dzurak, and R. G. Clark, “Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions,” Appl. Phys. Lett. 86, 202101 (2005).
[Crossref]

Gayral, B.

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London)  445, 896–899 (2007).
[Crossref] [PubMed]

Gérard, J.-M.

Gibson, B. C.

A. D. Greentree, P. Olivero, M. Draginski, E. Trajkov, J. R. Rabeau, P. Reichart, B. C. Gibson, S. Rubanov, S. T. Huntington, D. N. Jamieson, and S. Prawer, “Critical components for diamond-based quantum coherent devices,” J. Phys.: Cond. Matt. 18, S825–S842 (2006).
[Crossref]

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off techniques for three-dimensional micromachining of freestanding single-crystal diamond,” Advanced Materals (Weinheim, Ger.) 17, 2427–2430 (2005).
[Crossref]

Giovannetti, V.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science 306, 1330–1336 (2004).
[Crossref] [PubMed]

Götzinger, S.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200K,” Nature Materials 5, 887–892 (2006).
[Crossref] [PubMed]

Grangier, P.

E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J.-F. Roch, “Room temperature triggered single-photon source in the near infrared,” New J. Phys. 9, 434 (2007).
[Crossref]

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J.-F. Roch, “Experimental realization of Wheeler’s delayed-choice gedanken experiment,” Science 315, 966–968 (2007).
[Crossref] [PubMed]

B. Barquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[Crossref]

R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J.-P. Poizat, and P. Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
[Crossref]

Y. Dumeige, F. Treussart, R. Alléaume, T. Gacoin, J.-F. Roch, and P. Grangier, “Photo-induced creaton of nitrogen-related color centers in diamond nanocrystals under femtosecond illumination,” J. Lumin. 109, 61–67 (2004).
[Crossref]

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref] [PubMed]

Greentree, A. D.

A. D. Greentree, P. Olivero, M. Draginski, E. Trajkov, J. R. Rabeau, P. Reichart, B. C. Gibson, S. Rubanov, S. T. Huntington, D. N. Jamieson, and S. Prawer, “Critical components for diamond-based quantum coherent devices,” J. Phys.: Cond. Matt. 18, S825–S842 (2006).
[Crossref]

A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nature Physics 2, 856–861 (2006).
[Crossref]

Ph. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centres in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, “Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms,” Phys. Rev. A 73, 013818 (2006).
[Crossref]

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off techniques for three-dimensional micromachining of freestanding single-crystal diamond,” Advanced Materals (Weinheim, Ger.) 17, 2427–2430 (2005).
[Crossref]

Grosshans, F.

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J.-F. Roch, “Experimental realization of Wheeler’s delayed-choice gedanken experiment,” Science 315, 966–968 (2007).
[Crossref] [PubMed]

Gruber, A.

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” New J. Phys. 6, 98 (2004).
[Crossref]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London)  445, 896–899 (2007).
[Crossref] [PubMed]

Hamer, M. F.

G. Davies and M. F. Hamer, “Optical studies of the 1.945eV vibronic band in diamond,” Proc. R. Soc. Lond. A: Math. and Phys. Sci. 348, 285–298 (1976).
[Crossref]

Hanson, R.

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,”, Appl. Phys. Lett. 91, 201112 (2007).
[Crossref]

Haroche, S.

S. Haroche and J. M. Raimond, “Radiative properties of Rydberg states in resonant cavities,” in Advances in Atomic and Molecular Physics Vol. XX, D. Bates and B. Bederson, eds. (Academic, 1985), pp. 350–411.

Harrison, J. P.

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006).
[Crossref]

Hartmann, M. J.

M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nature Physics 2, 849–855 (2006).
[Crossref]

Hayasaka, K.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature (London)  431, 1075–1078 (2004).
[Crossref] [PubMed]

Hearne, S. M.

D. N. Jamieson, C. Yang, T. Hopf, S. M. Hearne, C. I. Pakes, S. Prawer, M. Mitic, E. Gauja, S. E. Andreson, F. E. Hudson, A. S. Dzurak, and R. G. Clark, “Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions,” Appl. Phys. Lett. 86, 202101 (2005).
[Crossref]

Hemmer, P.

Ph. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centres in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

Ph. Tamarat, N. B. Manson, R. L. McMurtie, A. Nitsovtsev, C. Santori, P. Neumann, T. Gaebel, F. Jelezko, P. Hemmer, and J. Wrachtrup, “The excited state structure of the nitrogen-vacancy center in diamond,” http://arxiv.org/abs/cond-mat/0610357 (2006).

Hemmer, P. R.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[Crossref] [PubMed]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London)  445, 896–899 (2007).
[Crossref] [PubMed]

Hennrich, M.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[Crossref] [PubMed]

Hijlkema, M.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nature Physics 3, 253–255 (2007).
[Crossref]

Hollenberg, L. C. L.

A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nature Physics 2, 856–861 (2006).
[Crossref]

A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, “Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms,” Phys. Rev. A 73, 013818 (2006).
[Crossref]

Ph. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centres in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

Hong, C. K.

C. K. Hong, Z. Y Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Hood, C. J.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995).
[Crossref] [PubMed]

Hopf, T.

D. N. Jamieson, C. Yang, T. Hopf, S. M. Hearne, C. I. Pakes, S. Prawer, M. Mitic, E. Gauja, S. E. Andreson, F. E. Hudson, A. S. Dzurak, and R. G. Clark, “Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions,” Appl. Phys. Lett. 86, 202101 (2005).
[Crossref]

Hoshino, K.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200K,” Nature Materials 5, 887–892 (2006).
[Crossref] [PubMed]

Houston, B. H.

J. W. Baldwin, M. Zalalutdinov, T. Feygelson, J. E. Butler, and B. H. Houston, “Fabrication of short-wavelength photonic crystals in wide-band-gap nanocrystalline diamond films,” J. Vac. Sci. Technol. B 24, 50–54 (2006).
[Crossref]

Hu, E. L.

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,”, Appl. Phys. Lett. 91, 201112 (2007).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London)  445, 896–899 (2007).
[Crossref] [PubMed]

Hudson, F. E.

D. N. Jamieson, C. Yang, T. Hopf, S. M. Hearne, C. I. Pakes, S. Prawer, M. Mitic, E. Gauja, S. E. Andreson, F. E. Hudson, A. S. Dzurak, and R. G. Clark, “Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions,” Appl. Phys. Lett. 86, 202101 (2005).
[Crossref]

Huntington, S. T.

A. D. Greentree, P. Olivero, M. Draginski, E. Trajkov, J. R. Rabeau, P. Reichart, B. C. Gibson, S. Rubanov, S. T. Huntington, D. N. Jamieson, and S. Prawer, “Critical components for diamond-based quantum coherent devices,” J. Phys.: Cond. Matt. 18, S825–S842 (2006).
[Crossref]

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off techniques for three-dimensional micromachining of freestanding single-crystal diamond,” Advanced Materals (Weinheim, Ger.) 17, 2427–2430 (2005).
[Crossref]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London)  445, 896–899 (2007).
[Crossref] [PubMed]

Inoue, K.

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Quantum cryptography with a photon turnstile,” Nature (London)  420, 762 (2002).
[Crossref] [PubMed]

Jacques, V.

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J.-F. Roch, “Experimental realization of Wheeler’s delayed-choice gedanken experiment,” Science 315, 966–968 (2007).
[Crossref] [PubMed]

Jamieson, D. N.

J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centres in diamond using15N,” Appl. Phys. Lett. 88, 23113 (2006).
[Crossref]

A. D. Greentree, P. Olivero, M. Draginski, E. Trajkov, J. R. Rabeau, P. Reichart, B. C. Gibson, S. Rubanov, S. T. Huntington, D. N. Jamieson, and S. Prawer, “Critical components for diamond-based quantum coherent devices,” J. Phys.: Cond. Matt. 18, S825–S842 (2006).
[Crossref]

D. N. Jamieson, C. Yang, T. Hopf, S. M. Hearne, C. I. Pakes, S. Prawer, M. Mitic, E. Gauja, S. E. Andreson, F. E. Hudson, A. S. Dzurak, and R. G. Clark, “Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions,” Appl. Phys. Lett. 86, 202101 (2005).
[Crossref]

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off techniques for three-dimensional micromachining of freestanding single-crystal diamond,” Advanced Materals (Weinheim, Ger.) 17, 2427–2430 (2005).
[Crossref]

Jaynes, E. T.

E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theory with application to the beam maser,” Proc. IEEE 51, 89–109 (1963).
[Crossref]

Jelezko, F.

J. R. Rabeau, A. Stacey, A. Rabeau, F. Jelezko, I. Mirza, J. Wrachtrup, and S. Prawer, “Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals,” Nano Letters 7, 3433–3437 (2007).
[Crossref] [PubMed]

J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centres in diamond using15N,” Appl. Phys. Lett. 88, 23113 (2006).
[Crossref]

Ph. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centres in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, “Generation of single color centers by focused nitrogen implantation,” Appl. Phys. Lett. 87, 261909 (2005).
[Crossref]

T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” New J. Phys. 6, 98 (2004).
[Crossref]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

Ph. Tamarat, N. B. Manson, R. L. McMurtie, A. Nitsovtsev, C. Santori, P. Neumann, T. Gaebel, F. Jelezko, P. Hemmer, and J. Wrachtrup, “The excited state structure of the nitrogen-vacancy center in diamond,” http://arxiv.org/abs/cond-mat/0610357 (2006).

Jones, M. P. A.

B. Barquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[Crossref]

Kako, S.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200K,” Nature Materials 5, 887–892 (2006).
[Crossref] [PubMed]

Keller, M.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature (London)  431, 1075–1078 (2004).
[Crossref] [PubMed]

Khan, M.

Ph. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centres in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

Khanbekyan, M.

M. Khanbekyan, D.-G. Welsh, C. Di Fidio, and W. Vogel, “Cavity-assisted spontaneous emission as a single-photon source: Pulse shape and efficiency of one-photon Fock state preparation,” http://arxiv.org/abs/0709.2998 (2007).

Kimble, H. J.

L.-M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005).
[Crossref]

L.-M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Buzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

C. K. Law and H. J. Kimble, “Deterministic generation of a bit-stream of single-photon pulses,” J. Mod. Opt. 44, 2067–2074 (1997).

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995).
[Crossref] [PubMed]

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68, 3020–3023 (1992).
[Crossref] [PubMed]

Knight, P. L.

B. W. Shore and P. L. Knight, “The Jaynes-Cummings model,” J. Mod. Opt. 40, 1195–1238 (1993).
[Crossref]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London)  409, 46–52 (2001).
[Crossref] [PubMed]

Kok, P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Kuhn, A.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nature Physics 3, 253–255 (2007).
[Crossref]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[Crossref] [PubMed]

Kurtsiefer, C.

C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, “Single photon emission from SiV centres in diamond produced by ion implantation,” J. Phys. B: At. Mol. Opt. Phys. 39, 37–41 (2006).
[Crossref]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single-photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London)  409, 46–52 (2001).
[Crossref] [PubMed]

Lange, B.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature (London)  431, 1075–1078 (2004).
[Crossref] [PubMed]

Lange, W.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature (London)  431, 1075–1078 (2004).
[Crossref] [PubMed]

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995).
[Crossref] [PubMed]

Law, C. K.

C. K. Law and H. J. Kimble, “Deterministic generation of a bit-stream of single-photon pulses,” J. Mod. Opt. 44, 2067–2074 (1997).

Lloyd, S.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science 306, 1330–1336 (2004).
[Crossref] [PubMed]

Lounis, B.

B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature (London)  407, 491–493 (2000).
[Crossref] [PubMed]

C. Brunel, B. Lounis, Ph. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83, 2722–2725 (1999).
[Crossref]

Lukin, M. D.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[Crossref] [PubMed]

Mabuchi, H.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995).
[Crossref] [PubMed]

Maccone, L.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science 306, 1330–1336 (2004).
[Crossref] [PubMed]

Mandel, L.

C. K. Hong, Z. Y Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Manson, N. B.

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006).
[Crossref]

Ph. Tamarat, N. B. Manson, R. L. McMurtie, A. Nitsovtsev, C. Santori, P. Neumann, T. Gaebel, F. Jelezko, P. Hemmer, and J. Wrachtrup, “The excited state structure of the nitrogen-vacancy center in diamond,” http://arxiv.org/abs/cond-mat/0610357 (2006).

Mayer, S.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single-photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

McKeever, J.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Buzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

McMurtie, R. L.

Ph. Tamarat, N. B. Manson, R. L. McMurtie, A. Nitsovtsev, C. Santori, P. Neumann, T. Gaebel, F. Jelezko, P. Hemmer, and J. Wrachtrup, “The excited state structure of the nitrogen-vacancy center in diamond,” http://arxiv.org/abs/cond-mat/0610357 (2006).

Meijer, J.

J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, “Generation of single color centers by focused nitrogen implantation,” Appl. Phys. Lett. 87, 261909 (2005).
[Crossref]

Messin, G.

B. Barquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[Crossref]

R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J.-P. Poizat, and P. Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
[Crossref]

Milburn, G. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

M. J. Fernée, H. Rubinsztein-Dunlop, and G. J. Milburn, “Improving single-photon sources with Stark tuning,” Phys. Rev. A 75, 043815 (2007).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London)  409, 46–52 (2001).
[Crossref] [PubMed]

Miller, R.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Buzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

Mirza, I.

J. R. Rabeau, A. Stacey, A. Rabeau, F. Jelezko, I. Mirza, J. Wrachtrup, and S. Prawer, “Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals,” Nano Letters 7, 3433–3437 (2007).
[Crossref] [PubMed]

Mitic, M.

D. N. Jamieson, C. Yang, T. Hopf, S. M. Hearne, C. I. Pakes, S. Prawer, M. Mitic, E. Gauja, S. E. Andreson, F. E. Hudson, A. S. Dzurak, and R. G. Clark, “Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions,” Appl. Phys. Lett. 86, 202101 (2005).
[Crossref]

Moerner, W. E.

B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature (London)  407, 491–493 (2000).
[Crossref] [PubMed]

Moore, D.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off techniques for three-dimensional micromachining of freestanding single-crystal diamond,” Advanced Materals (Weinheim, Ger.) 17, 2427–2430 (2005).
[Crossref]

Munro, W. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

Nemoto, K.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Neumann, P.

Ph. Tamarat, N. B. Manson, R. L. McMurtie, A. Nitsovtsev, C. Santori, P. Neumann, T. Gaebel, F. Jelezko, P. Hemmer, and J. Wrachtrup, “The excited state structure of the nitrogen-vacancy center in diamond,” http://arxiv.org/abs/cond-mat/0610357 (2006).

Nielsen, M. A.

P. P. Rohde, T. C. Ralph, and M. A. Nielsen, “Optimal photons for quantum-information processing,” Phys. Rev. A 72, 052332 (2005).
[Crossref]

Nitsovtsev, A.

Ph. Tamarat, N. B. Manson, R. L. McMurtie, A. Nitsovtsev, C. Santori, P. Neumann, T. Gaebel, F. Jelezko, P. Hemmer, and J. Wrachtrup, “The excited state structure of the nitrogen-vacancy center in diamond,” http://arxiv.org/abs/cond-mat/0610357 (2006).

Noda, S.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nature Photonics 1, 449–458 (2007).
[Crossref]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Materials 4, 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London)  425, 944–947 (2003).
[Crossref] [PubMed]

Olivero, P.

A. D. Greentree, P. Olivero, M. Draginski, E. Trajkov, J. R. Rabeau, P. Reichart, B. C. Gibson, S. Rubanov, S. T. Huntington, D. N. Jamieson, and S. Prawer, “Critical components for diamond-based quantum coherent devices,” J. Phys.: Cond. Matt. 18, S825–S842 (2006).
[Crossref]

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off techniques for three-dimensional micromachining of freestanding single-crystal diamond,” Advanced Materals (Weinheim, Ger.) 17, 2427–2430 (2005).
[Crossref]

Orrit, M.

C. Brunel, B. Lounis, Ph. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83, 2722–2725 (1999).
[Crossref]

Ou, Z. Y

C. K. Hong, Z. Y Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Pakes, C. I.

D. N. Jamieson, C. Yang, T. Hopf, S. M. Hearne, C. I. Pakes, S. Prawer, M. Mitic, E. Gauja, S. E. Andreson, F. E. Hudson, A. S. Dzurak, and R. G. Clark, “Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions,” Appl. Phys. Lett. 86, 202101 (2005).
[Crossref]

Plenio, M. B.

M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nature Physics 2, 849–855 (2006).
[Crossref]

Poizat, J.-P.

R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J.-P. Poizat, and P. Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
[Crossref]

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref] [PubMed]

Polzik, E. S.

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68, 3020–3023 (1992).
[Crossref] [PubMed]

Popa, I.

J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centres in diamond using15N,” Appl. Phys. Lett. 88, 23113 (2006).
[Crossref]

J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, “Generation of single color centers by focused nitrogen implantation,” Appl. Phys. Lett. 87, 261909 (2005).
[Crossref]

T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” New J. Phys. 6, 98 (2004).
[Crossref]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

Prawer, S.

J. R. Rabeau, A. Stacey, A. Rabeau, F. Jelezko, I. Mirza, J. Wrachtrup, and S. Prawer, “Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals,” Nano Letters 7, 3433–3437 (2007).
[Crossref] [PubMed]

E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J.-F. Roch, “Room temperature triggered single-photon source in the near infrared,” New J. Phys. 9, 434 (2007).
[Crossref]

A. D. Greentree, P. Olivero, M. Draginski, E. Trajkov, J. R. Rabeau, P. Reichart, B. C. Gibson, S. Rubanov, S. T. Huntington, D. N. Jamieson, and S. Prawer, “Critical components for diamond-based quantum coherent devices,” J. Phys.: Cond. Matt. 18, S825–S842 (2006).
[Crossref]

J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centres in diamond using15N,” Appl. Phys. Lett. 88, 23113 (2006).
[Crossref]

A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, “Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms,” Phys. Rev. A 73, 013818 (2006).
[Crossref]

Ph. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centres in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off techniques for three-dimensional micromachining of freestanding single-crystal diamond,” Advanced Materals (Weinheim, Ger.) 17, 2427–2430 (2005).
[Crossref]

D. N. Jamieson, C. Yang, T. Hopf, S. M. Hearne, C. I. Pakes, S. Prawer, M. Mitic, E. Gauja, S. E. Andreson, F. E. Hudson, A. S. Dzurak, and R. G. Clark, “Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions,” Appl. Phys. Lett. 86, 202101 (2005).
[Crossref]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Rabeau, A.

J. R. Rabeau, A. Stacey, A. Rabeau, F. Jelezko, I. Mirza, J. Wrachtrup, and S. Prawer, “Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals,” Nano Letters 7, 3433–3437 (2007).
[Crossref] [PubMed]

Rabeau, J. R.

J. R. Rabeau, A. Stacey, A. Rabeau, F. Jelezko, I. Mirza, J. Wrachtrup, and S. Prawer, “Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals,” Nano Letters 7, 3433–3437 (2007).
[Crossref] [PubMed]

E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J.-F. Roch, “Room temperature triggered single-photon source in the near infrared,” New J. Phys. 9, 434 (2007).
[Crossref]

A. D. Greentree, P. Olivero, M. Draginski, E. Trajkov, J. R. Rabeau, P. Reichart, B. C. Gibson, S. Rubanov, S. T. Huntington, D. N. Jamieson, and S. Prawer, “Critical components for diamond-based quantum coherent devices,” J. Phys.: Cond. Matt. 18, S825–S842 (2006).
[Crossref]

J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centres in diamond using15N,” Appl. Phys. Lett. 88, 23113 (2006).
[Crossref]

Ph. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centres in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off techniques for three-dimensional micromachining of freestanding single-crystal diamond,” Advanced Materals (Weinheim, Ger.) 17, 2427–2430 (2005).
[Crossref]

Raimond, J. M.

S. Haroche and J. M. Raimond, “Radiative properties of Rydberg states in resonant cavities,” in Advances in Atomic and Molecular Physics Vol. XX, D. Bates and B. Bederson, eds. (Academic, 1985), pp. 350–411.

Ralph, T. C.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

P. P. Rohde, T. C. Ralph, and M. A. Nielsen, “Optimal photons for quantum-information processing,” Phys. Rev. A 72, 052332 (2005).
[Crossref]

Reichart, P.

J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centres in diamond using15N,” Appl. Phys. Lett. 88, 23113 (2006).
[Crossref]

A. D. Greentree, P. Olivero, M. Draginski, E. Trajkov, J. R. Rabeau, P. Reichart, B. C. Gibson, S. Rubanov, S. T. Huntington, D. N. Jamieson, and S. Prawer, “Critical components for diamond-based quantum coherent devices,” J. Phys.: Cond. Matt. 18, S825–S842 (2006).
[Crossref]

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off techniques for three-dimensional micromachining of freestanding single-crystal diamond,” Advanced Materals (Weinheim, Ger.) 17, 2427–2430 (2005).
[Crossref]

Rempe, G.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nature Physics 3, 253–255 (2007).
[Crossref]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[Crossref] [PubMed]

Roch, J.-F.

E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J.-F. Roch, “Room temperature triggered single-photon source in the near infrared,” New J. Phys. 9, 434 (2007).
[Crossref]

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J.-F. Roch, “Experimental realization of Wheeler’s delayed-choice gedanken experiment,” Science 315, 966–968 (2007).
[Crossref] [PubMed]

R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J.-P. Poizat, and P. Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
[Crossref]

Y. Dumeige, F. Treussart, R. Alléaume, T. Gacoin, J.-F. Roch, and P. Grangier, “Photo-induced creaton of nitrogen-related color centers in diamond nanocrystals under femtosecond illumination,” J. Lumin. 109, 61–67 (2004).
[Crossref]

Roger, G.

E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J.-F. Roch, “Room temperature triggered single-photon source in the near infrared,” New J. Phys. 9, 434 (2007).
[Crossref]

Rohde, P. P.

P. P. Rohde, T. C. Ralph, and M. A. Nielsen, “Optimal photons for quantum-information processing,” Phys. Rev. A 72, 052332 (2005).
[Crossref]

Rubanov, S.

A. D. Greentree, P. Olivero, M. Draginski, E. Trajkov, J. R. Rabeau, P. Reichart, B. C. Gibson, S. Rubanov, S. T. Huntington, D. N. Jamieson, and S. Prawer, “Critical components for diamond-based quantum coherent devices,” J. Phys.: Cond. Matt. 18, S825–S842 (2006).
[Crossref]

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off techniques for three-dimensional micromachining of freestanding single-crystal diamond,” Advanced Materals (Weinheim, Ger.) 17, 2427–2430 (2005).
[Crossref]

Rubinsztein-Dunlop, H.

M. J. Fernée, H. Rubinsztein-Dunlop, and G. J. Milburn, “Improving single-photon sources with Stark tuning,” Phys. Rev. A 75, 043815 (2007).
[Crossref]

Salzman, J.

I. Bayn and J. Salzman, “High-Q photonic crystal nanocavities on diamond for quantum electrodynamics,” Eur. Phys. J. Appl. Phys. 37, 19–24 (2007).
[Crossref]

S. Tomljenovic-Hanic, M. J. Steel, C. Martijn de Sterke, and J. Salzman, “Diamond based photonic crystal microcavities,” Opt. Express 14, 3556–3562 (2006).
[Crossref] [PubMed]

A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, “Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms,” Phys. Rev. A 73, 013818 (2006).
[Crossref]

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off techniques for three-dimensional micromachining of freestanding single-crystal diamond,” Advanced Materals (Weinheim, Ger.) 17, 2427–2430 (2005).
[Crossref]

Santori, C.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200K,” Nature Materials 5, 887–892 (2006).
[Crossref] [PubMed]

E. Waks, C. Santori, and Y. Yamamoto, “Security aspects of quantum key distribution with sub-Poisson light,” Phys. Rev. A 66, 042315 (2002).
[Crossref]

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Quantum cryptography with a photon turnstile,” Nature (London)  420, 762 (2002).
[Crossref] [PubMed]

Ph. Tamarat, N. B. Manson, R. L. McMurtie, A. Nitsovtsev, C. Santori, P. Neumann, T. Gaebel, F. Jelezko, P. Hemmer, and J. Wrachtrup, “The excited state structure of the nitrogen-vacancy center in diamond,” http://arxiv.org/abs/cond-mat/0610357 (2006).

Santos, M. F.

D. G. Angelakis, M. F. Santos, and S. Bose, “Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays,” Phys. Rev. A 76, 031805 (2005).
[Crossref]

Sellars, M. J.

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006).
[Crossref]

Shields, A. J.

A. J. Shields, “Semiconductor quantum light sources,” Nature Photonics 1, 215–223 (2007).
[Crossref]

Shore, B. W.

B. W. Shore and P. L. Knight, “The Jaynes-Cummings model,” J. Mod. Opt. 40, 1195–1238 (1993).
[Crossref]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

Solomon, G. S.

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Quantum cryptography with a photon turnstile,” Nature (London)  420, 762 (2002).
[Crossref] [PubMed]

Song, B.-S.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Materials 4, 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London)  425, 944–947 (2003).
[Crossref] [PubMed]

Sørensen, A. S.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[Crossref] [PubMed]

Sortais, Y.

B. Barquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[Crossref]

Specht, H. P.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nature Physics 3, 253–255 (2007).
[Crossref]

Stacey, A.

J. R. Rabeau, A. Stacey, A. Rabeau, F. Jelezko, I. Mirza, J. Wrachtrup, and S. Prawer, “Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals,” Nano Letters 7, 3433–3437 (2007).
[Crossref] [PubMed]

Steel, M. J.

Tahan, C.

A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nature Physics 2, 856–861 (2006).
[Crossref]

Tamanyan, G.

J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centres in diamond using15N,” Appl. Phys. Lett. 88, 23113 (2006).
[Crossref]

Tamarat, Ph.

Ph. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centres in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

C. Brunel, B. Lounis, Ph. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83, 2722–2725 (1999).
[Crossref]

Ph. Tamarat, N. B. Manson, R. L. McMurtie, A. Nitsovtsev, C. Santori, P. Neumann, T. Gaebel, F. Jelezko, P. Hemmer, and J. Wrachtrup, “The excited state structure of the nitrogen-vacancy center in diamond,” http://arxiv.org/abs/cond-mat/0610357 (2006).

Tian, L.

L. Tian and H. J. Carmichael, “Quantum trajectory simulations of the two-state behavior of an optical cavity containing one atom,” Phys. Rev. A 46, R6801–R6804 (1992).
[Crossref] [PubMed]

Tomljenovic-Hanic, S.

Trajkov, E.

A. D. Greentree, P. Olivero, M. Draginski, E. Trajkov, J. R. Rabeau, P. Reichart, B. C. Gibson, S. Rubanov, S. T. Huntington, D. N. Jamieson, and S. Prawer, “Critical components for diamond-based quantum coherent devices,” J. Phys.: Cond. Matt. 18, S825–S842 (2006).
[Crossref]

Treussart, F.

E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J.-F. Roch, “Room temperature triggered single-photon source in the near infrared,” New J. Phys. 9, 434 (2007).
[Crossref]

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J.-F. Roch, “Experimental realization of Wheeler’s delayed-choice gedanken experiment,” Science 315, 966–968 (2007).
[Crossref] [PubMed]

R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J.-P. Poizat, and P. Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
[Crossref]

Y. Dumeige, F. Treussart, R. Alléaume, T. Gacoin, J.-F. Roch, and P. Grangier, “Photo-induced creaton of nitrogen-related color centers in diamond nanocrystals under femtosecond illumination,” J. Lumin. 109, 61–67 (2004).
[Crossref]

Turchette, Q. A.

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995).
[Crossref] [PubMed]

Villing, A.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref] [PubMed]

Vogel, W.

M. Khanbekyan, D.-G. Welsh, C. Di Fidio, and W. Vogel, “Cavity-assisted spontaneous emission as a single-photon source: Pulse shape and efficiency of one-photon Fock state preparation,” http://arxiv.org/abs/0709.2998 (2007).

Vuckovic, J.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Quantum cryptography with a photon turnstile,” Nature (London)  420, 762 (2002).
[Crossref] [PubMed]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Quantum cryptography with a photon turnstile,” Nature (London)  420, 762 (2002).
[Crossref] [PubMed]

E. Waks, C. Santori, and Y. Yamamoto, “Security aspects of quantum key distribution with sub-Poisson light,” Phys. Rev. A 66, 042315 (2002).
[Crossref]

Walther, H.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature (London)  431, 1075–1078 (2004).
[Crossref] [PubMed]

Wang, B.

L.-M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005).
[Crossref]

Wang, C.

C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, “Single photon emission from SiV centres in diamond produced by ion implantation,” J. Phys. B: At. Mol. Opt. Phys. 39, 37–41 (2006).
[Crossref]

Wang, C. F.

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,”, Appl. Phys. Lett. 91, 201112 (2007).
[Crossref]

Weber, B.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nature Physics 3, 253–255 (2007).
[Crossref]

Webster, S. C.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nature Physics 3, 253–255 (2007).
[Crossref]

Weinfurter, H.

C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, “Single photon emission from SiV centres in diamond produced by ion implantation,” J. Phys. B: At. Mol. Opt. Phys. 39, 37–41 (2006).
[Crossref]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single-photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Welsh, D.-G.

M. Khanbekyan, D.-G. Welsh, C. Di Fidio, and W. Vogel, “Cavity-assisted spontaneous emission as a single-photon source: Pulse shape and efficiency of one-photon Fock state preparation,” http://arxiv.org/abs/0709.2998 (2007).

Wilson, H.

Ph. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centres in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London)  445, 896–899 (2007).
[Crossref] [PubMed]

Wittmann, C.

J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, “Generation of single color centers by focused nitrogen implantation,” Appl. Phys. Lett. 87, 261909 (2005).
[Crossref]

Wrachtrup, J

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

Wrachtrup, J.

J. R. Rabeau, A. Stacey, A. Rabeau, F. Jelezko, I. Mirza, J. Wrachtrup, and S. Prawer, “Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals,” Nano Letters 7, 3433–3437 (2007).
[Crossref] [PubMed]

J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centres in diamond using15N,” Appl. Phys. Lett. 88, 23113 (2006).
[Crossref]

Ph. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centres in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, “Generation of single color centers by focused nitrogen implantation,” Appl. Phys. Lett. 87, 261909 (2005).
[Crossref]

T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” New J. Phys. 6, 98 (2004).
[Crossref]

Ph. Tamarat, N. B. Manson, R. L. McMurtie, A. Nitsovtsev, C. Santori, P. Neumann, T. Gaebel, F. Jelezko, P. Hemmer, and J. Wrachtrup, “The excited state structure of the nitrogen-vacancy center in diamond,” http://arxiv.org/abs/cond-mat/0610357 (2006).

Wu, E.

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J.-F. Roch, “Experimental realization of Wheeler’s delayed-choice gedanken experiment,” Science 315, 966–968 (2007).
[Crossref] [PubMed]

E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J.-F. Roch, “Room temperature triggered single-photon source in the near infrared,” New J. Phys. 9, 434 (2007).
[Crossref]

Yamamoto, Y.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200K,” Nature Materials 5, 887–892 (2006).
[Crossref] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Quantum cryptography with a photon turnstile,” Nature (London)  420, 762 (2002).
[Crossref] [PubMed]

E. Waks, C. Santori, and Y. Yamamoto, “Security aspects of quantum key distribution with sub-Poisson light,” Phys. Rev. A 66, 042315 (2002).
[Crossref]

Yang, C.

D. N. Jamieson, C. Yang, T. Hopf, S. M. Hearne, C. I. Pakes, S. Prawer, M. Mitic, E. Gauja, S. E. Andreson, F. E. Hudson, A. S. Dzurak, and R. G. Clark, “Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions,” Appl. Phys. Lett. 86, 202101 (2005).
[Crossref]

Yang, J.

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,”, Appl. Phys. Lett. 91, 201112 (2007).
[Crossref]

Zalalutdinov, M.

J. W. Baldwin, M. Zalalutdinov, T. Feygelson, J. E. Butler, and B. H. Houston, “Fabrication of short-wavelength photonic crystals in wide-band-gap nanocrystalline diamond films,” J. Vac. Sci. Technol. B 24, 50–54 (2006).
[Crossref]

Zarda, P.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single-photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Zeng, H.

E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J.-F. Roch, “Room temperature triggered single-photon source in the near infrared,” New J. Phys. 9, 434 (2007).
[Crossref]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

Advanced Materals (Weinheim, Ger.) (1)

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Ion-beam-assisted lift-off techniques for three-dimensional micromachining of freestanding single-crystal diamond,” Advanced Materals (Weinheim, Ger.) 17, 2427–2430 (2005).
[Crossref]

Appl. Phys. Lett. (4)

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,”, Appl. Phys. Lett. 91, 201112 (2007).
[Crossref]

J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, “Generation of single color centers by focused nitrogen implantation,” Appl. Phys. Lett. 87, 261909 (2005).
[Crossref]

D. N. Jamieson, C. Yang, T. Hopf, S. M. Hearne, C. I. Pakes, S. Prawer, M. Mitic, E. Gauja, S. E. Andreson, F. E. Hudson, A. S. Dzurak, and R. G. Clark, “Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions,” Appl. Phys. Lett. 86, 202101 (2005).
[Crossref]

J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centres in diamond using15N,” Appl. Phys. Lett. 88, 23113 (2006).
[Crossref]

Eur. Phys. J. Appl. Phys. (1)

I. Bayn and J. Salzman, “High-Q photonic crystal nanocavities on diamond for quantum electrodynamics,” Eur. Phys. J. Appl. Phys. 37, 19–24 (2007).
[Crossref]

J. Lightwave Technol. (1)

J. Lumin. (1)

Y. Dumeige, F. Treussart, R. Alléaume, T. Gacoin, J.-F. Roch, and P. Grangier, “Photo-induced creaton of nitrogen-related color centers in diamond nanocrystals under femtosecond illumination,” J. Lumin. 109, 61–67 (2004).
[Crossref]

J. Mod. Opt. (2)

B. W. Shore and P. L. Knight, “The Jaynes-Cummings model,” J. Mod. Opt. 40, 1195–1238 (1993).
[Crossref]

C. K. Law and H. J. Kimble, “Deterministic generation of a bit-stream of single-photon pulses,” J. Mod. Opt. 44, 2067–2074 (1997).

J. Phys. B: At. Mol. Opt. Phys. (1)

C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, “Single photon emission from SiV centres in diamond produced by ion implantation,” J. Phys. B: At. Mol. Opt. Phys. 39, 37–41 (2006).
[Crossref]

J. Phys.: Cond. Matt. (1)

A. D. Greentree, P. Olivero, M. Draginski, E. Trajkov, J. R. Rabeau, P. Reichart, B. C. Gibson, S. Rubanov, S. T. Huntington, D. N. Jamieson, and S. Prawer, “Critical components for diamond-based quantum coherent devices,” J. Phys.: Cond. Matt. 18, S825–S842 (2006).
[Crossref]

J. Vac. Sci. Technol. B (1)

J. W. Baldwin, M. Zalalutdinov, T. Feygelson, J. E. Butler, and B. H. Houston, “Fabrication of short-wavelength photonic crystals in wide-band-gap nanocrystalline diamond films,” J. Vac. Sci. Technol. B 24, 50–54 (2006).
[Crossref]

Nano Letters (1)

J. R. Rabeau, A. Stacey, A. Rabeau, F. Jelezko, I. Mirza, J. Wrachtrup, and S. Prawer, “Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals,” Nano Letters 7, 3433–3437 (2007).
[Crossref] [PubMed]

Nature (6)

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoǧlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London)  445, 896–899 (2007).
[Crossref] [PubMed]

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature (London)  431, 1075–1078 (2004).
[Crossref] [PubMed]

B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature (London)  407, 491–493 (2000).
[Crossref] [PubMed]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London)  409, 46–52 (2001).
[Crossref] [PubMed]

E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Quantum cryptography with a photon turnstile,” Nature (London)  420, 762 (2002).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London)  425, 944–947 (2003).
[Crossref] [PubMed]

Nature Materials (2)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Materials 4, 207–210 (2005).
[Crossref]

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200K,” Nature Materials 5, 887–892 (2006).
[Crossref] [PubMed]

Nature Photonics (2)

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nature Photonics 1, 449–458 (2007).
[Crossref]

A. J. Shields, “Semiconductor quantum light sources,” Nature Photonics 1, 215–223 (2007).
[Crossref]

Nature Physics (3)

M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nature Physics 2, 849–855 (2006).
[Crossref]

A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nature Physics 2, 856–861 (2006).
[Crossref]

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nature Physics 3, 253–255 (2007).
[Crossref]

New J. Phys. (3)

T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” New J. Phys. 6, 98 (2004).
[Crossref]

E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J.-F. Roch, “Room temperature triggered single-photon source in the near infrared,” New J. Phys. 9, 434 (2007).
[Crossref]

R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J.-P. Poizat, and P. Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004).
[Crossref]

Opt. Express (1)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. A (7)

L.-M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005).
[Crossref]

A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, “Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms,” Phys. Rev. A 73, 013818 (2006).
[Crossref]

M. J. Fernée, H. Rubinsztein-Dunlop, and G. J. Milburn, “Improving single-photon sources with Stark tuning,” Phys. Rev. A 75, 043815 (2007).
[Crossref]

L. Tian and H. J. Carmichael, “Quantum trajectory simulations of the two-state behavior of an optical cavity containing one atom,” Phys. Rev. A 46, R6801–R6804 (1992).
[Crossref] [PubMed]

P. P. Rohde, T. C. Ralph, and M. A. Nielsen, “Optimal photons for quantum-information processing,” Phys. Rev. A 72, 052332 (2005).
[Crossref]

D. G. Angelakis, M. F. Santos, and S. Bose, “Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays,” Phys. Rev. A 76, 031805 (2005).
[Crossref]

E. Waks, C. Santori, and Y. Yamamoto, “Security aspects of quantum key distribution with sub-Poisson light,” Phys. Rev. A 66, 042315 (2002).
[Crossref]

Phys. Rev. B (1)

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006).
[Crossref]

Phys. Rev. Lett. (12)

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref] [PubMed]

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995).
[Crossref] [PubMed]

L.-M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[Crossref] [PubMed]

C. K. Hong, Z. Y Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[Crossref] [PubMed]

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68, 3020–3023 (1992).
[Crossref] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single-photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

C. Brunel, B. Lounis, Ph. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83, 2722–2725 (1999).
[Crossref]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[Crossref] [PubMed]

Ph. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centres in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

Proc. IEEE (1)

E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theory with application to the beam maser,” Proc. IEEE 51, 89–109 (1963).
[Crossref]

Proc. R. Soc. Lond. A: Math. and Phys. Sci. (1)

G. Davies and M. F. Hamer, “Optical studies of the 1.945eV vibronic band in diamond,” Proc. R. Soc. Lond. A: Math. and Phys. Sci. 348, 285–298 (1976).
[Crossref]

Rev. Mod. Phys. (1)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Science (4)

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science 306, 1330–1336 (2004).
[Crossref] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Buzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004).
[Crossref] [PubMed]

B. Barquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005).
[Crossref]

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J.-F. Roch, “Experimental realization of Wheeler’s delayed-choice gedanken experiment,” Science 315, 966–968 (2007).
[Crossref] [PubMed]

Other (4)

Ph. Tamarat, N. B. Manson, R. L. McMurtie, A. Nitsovtsev, C. Santori, P. Neumann, T. Gaebel, F. Jelezko, P. Hemmer, and J. Wrachtrup, “The excited state structure of the nitrogen-vacancy center in diamond,” http://arxiv.org/abs/cond-mat/0610357 (2006).

S. Haroche and J. M. Raimond, “Radiative properties of Rydberg states in resonant cavities,” in Advances in Atomic and Molecular Physics Vol. XX, D. Bates and B. Bederson, eds. (Academic, 1985), pp. 350–411.

H. J. Carmichael, An Open System Approach to Quantum Optics (Springer, 1993).

M. Khanbekyan, D.-G. Welsh, C. Di Fidio, and W. Vogel, “Cavity-assisted spontaneous emission as a single-photon source: Pulse shape and efficiency of one-photon Fock state preparation,” http://arxiv.org/abs/0709.2998 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Theoretical model of a cavity-centre system for single photon generation: the NV centre is modelled as a multi-level atom with a single excited state |e〉 and a ground state with vibrational sublevels {|gj 〉}. The centre is pumped with an external classical field r(t) (white arrow) acting as the trigger pulse, the transition |e〉-|gi 〉 is coupled to a lossy single-modal cavity with coupling strength Ω i (grey) and cavity decay rate κ (black). γ g i e (dashed) is the atomic decay rate for radiative transitions |e〉-|gi 〉 while γ g m g n (dotted) are that for the non-radiative phononic transitions |gn 〉-|gm 〉.

Fig. 2.
Fig. 2.

a. Probability of the cavity-centre system (ωC =ωZPL , V=λ 3 ZPL ) to emit a single photon per top-hat excitation pulse as a function of pulse width T and absorption rate r 0. Dash-dotted line denotes the pulse width parameter used in Ref. [59] where the illumination irreversibly transforms the centre into a different centre and is therefore a practical cutoff. Circle labels the parameters [yield P 1=0.996 and P ≥2~��(10-5)] used for the demonstration of single-photon generation with the cavity-centre system. b. Zero (dotted), single (solid) and multi- (dashed) photon probability as a function of pulse width with constant absorption rate r 0=1013 Hz.

Fig. 3.
Fig. 3.

Evolution of a cavity-centre system (ωC =ωZPL , V3 ZPL, κ=2.5Ω0) in response to a top-hat excitation pulse (r 0=1013 Hz, T=0.56 ps). a. Population in |e,0 C ,0 W 〉 (the excited centre, black dash-dotted) and |g 0,0 C ,1 W 〉 or ρWW (the outcoupled waveguide mode, black/red solid) as a function of time. b. Time derivatives of ρWW , proportional to the output intensity, with an integrated area of 0.99 (solid) and of 1.01 (dashed red). Simulation is performed by direct integration of Eq. 2 (black solid/dash-dotted) and by quantum trajectory approach as a direct photodetection experiment (red dashed).

Fig. 4.
Fig. 4.

Comparison of the probability of the cavity-centre system (ωC =ωZPL ,V=λ 3 ZPL ) to emit a photon of ωZPL via the cavity channel and to emit iPL photon via atom decoherence as a function of cavity quality factor Q.

Fig. 5.
Fig. 5.

Photon correlation histogram of emission from the cavity-centre system under pulsed excitation of top-hat functional form obtained using a HBT setup with quantum trajectory approach. The simulations involve a. excitation pulse of temporal width T=0.56 ps and constant absorption rate r 0=1013 Hz at a repetition rate of 1 GHz for a trajectory time of 5 µs, and b. excitation pulse of varying temporal widths and constant r 0=1013 Hz at repetition rate of 0.5 GHz for total time 1.5 ms.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

𝓗 ̂ JC = i = 0 N A 2 ω g i σ ̂ g i g i + ω e σ ̂ e e + ω C a ̂ a ̂ + 1 2 i = 0 N A 2 ( Ω i a ̂ σ ̂ g i e + H . c ) ,
d ρ d t = i [ 𝓗 ̂ JC , ρ ] + j = 0 N A 2 γ g j e 𝓛 [ σ ̂ g j e , ρ ] + r ( t ) 𝓛 [ σ ̂ e g 0 , ρ ] + i = 0 N A 3 γ g i g i + 1 𝓛 [ σ ̂ g i g i + 1 , ρ ] + κ 𝓛 [ b ̂ a ̂ , ρ ] ,
𝓛 [ O ̂ , ρ ] = O ̂ ρ O ̂ 1 2 ( O ̂ O ̂ ρ + ρ O ̂ O ̂ ) .
F p = 3 ( λ C n ) 3 4 π 2 Q V ,
P 0 = e r 0 T ,
P 1 = 2 e r 0 T { e r 0 T 2 [ 16 Ω i 2 + r 0 2 cosh ( η T 2 ) ] η 2 1 } ,
γ overall = γ g 0 g 1 + 2 Ω 0 2 ω C ( 2 Q ) + γ g m g n 2 γ g 0 g 1 + 𝒪 ( Ω 0 4 ) .

Metrics