Abstract

We have grown CdSe semiconductor films on glass substrates and the films were coated with Au nanoparticles of 10 nm in size by the pulsed-laser deposition technique. The films demonstrate a large enhancement of Raman intensity and photoluminescence of CdSe semiconductor via excitation of surface plasmon resonances in proximate gold metal nanoparticles deposited on the surface of CdSe film. These observations suggest a variety of approaches for improving the performance of devices such as photodetectors, photovoltaics, and related devices, including biosensors.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003).
    [CrossRef]
  2. P. Alivisatos, "The use of nanocrystals in biological detection," Nat. Biotechnol. 22, 47-52 (2004).
    [CrossRef]
  3. K. Kneipp, Y. Wang, K. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single-molecule detection using surface-enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
    [CrossRef]
  4. S. M. Nie and S. R. Emery, "Probing single molecules and single nanoparticles by surface-enhanced Raman Scattering," Science 275, 1102-1106 (1997).
    [CrossRef] [PubMed]
  5. K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402-227405 (2003).
    [CrossRef] [PubMed]
  6. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).
    [CrossRef]
  7. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold Particle as a probe for apertureless SNOM," J. Microsc. 202, 72-76 (2001).
    [CrossRef] [PubMed]
  8. D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106-1 (2005).
    [CrossRef]
  9. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, "Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles," Appl. Phys. Lett. 89, 093103-1 (2006).
    [CrossRef]
  10. J. R. Cole, and N. J. Halas, "Optimized distributions of tunable plasmonic nanoparticles for solar light harvesting applications," Appl. Phys. Lett. 86, 153120-1 (2006).
    [CrossRef]
  11. E. Perevedentseva, A. Karmenyan, P. -H. Chung, Y. -T. He, and C. -L. Cheng," Surface enhanced Raman spectroscopy of carbon nanostructures," Surf. Sci. 600, 3723-3728 (2006).
    [CrossRef]
  12. A. G. Milekhin, R. J. Meijers, T. Richter, R. Calarco, S. Montanari, H. Lüth, B. A. Paez Sierra, and D. R. T. Zahn," Raman scattering study of GaN nanostructures obtained by bottom-up and top-down approaches," J. Phys. Condens.: Matter  18, 5825-5834 (2006).
    [CrossRef]
  13. N. Satoh, H. Hasegawa, K. Tsujii, and K. Kimura, "Effect of light on the disperse compositions of silver hydrosols," J. Phys. Chem. 98, 2143-2147 (1994).
    [CrossRef]
  14. Y. Takeuchi, T. Ida, and K. Kimura, "Colloidal stability of gold nanoparticles in 2-propanol under laser irradiation," J. Phys. Chem. B  101, 1322-1327 (1997).
    [CrossRef]
  15. Y. Niidome, A. Hori, H. Takahashi, Y. Goto, and S. Yamada, "Laser-induced deposition of gold nanoparticles onto glass substrates in cyclohexane," Nano Lett. 1, 365-369 (2001).
    [CrossRef]
  16. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, "Laser-induced shape changes of colloidal gold nanorods using Femtosecond and Nanosecond Laser Pulses," J. Phys. Chem. B 104, 6152-6163 (2000).
    [CrossRef]
  17. M. Sugiyama, S. Inasawa, S. Koda, T. Hirose, T. Yonekawa, T. Omatsu, and A. Takami," Optical recording media using laser-induced size reduction of Au nanoparticles," Appl. Phys. Lett. 79, 1528-1530 (2001).
    [CrossRef]
  18. D. Baüerle, Laser Processing and Chemistry, 3rd eds., (Springer, Berlin, 2000).
  19. A. K. Arora and A. K. Ramdas, "Resonance Raman Scattering from defects in CdSe," Phys. Rev. B 35, 4345-4350 (1987).
    [CrossRef]
  20. E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
    [CrossRef]
  21. M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 115433 (2003).
    [CrossRef]
  22. M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, "The lightning gold nanorods: fluorescence enhancement of over a million compared to the gold metal," Chem. Phys. Lett. 317, 517 (2000).
    [CrossRef]
  23. G. T. Boyd, Z. H. Yu, and Y. R. Shen, "Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923-7936 (1986).
    [CrossRef]
  24. J. J. Mock, D. R. Smith, and S. Schultz?? "Local refractive index dependence of plasmon resonance spectra from individual nanoparticles," Nano Lett. 3, 485-491 (2003).
    [CrossRef]

2006 (4)

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, "Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles," Appl. Phys. Lett. 89, 093103-1 (2006).
[CrossRef]

J. R. Cole, and N. J. Halas, "Optimized distributions of tunable plasmonic nanoparticles for solar light harvesting applications," Appl. Phys. Lett. 86, 153120-1 (2006).
[CrossRef]

E. Perevedentseva, A. Karmenyan, P. -H. Chung, Y. -T. He, and C. -L. Cheng," Surface enhanced Raman spectroscopy of carbon nanostructures," Surf. Sci. 600, 3723-3728 (2006).
[CrossRef]

A. G. Milekhin, R. J. Meijers, T. Richter, R. Calarco, S. Montanari, H. Lüth, B. A. Paez Sierra, and D. R. T. Zahn," Raman scattering study of GaN nanostructures obtained by bottom-up and top-down approaches," J. Phys. Condens.: Matter  18, 5825-5834 (2006).
[CrossRef]

2005 (1)

D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106-1 (2005).
[CrossRef]

2004 (1)

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

2003 (4)

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 115433 (2003).
[CrossRef]

A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003).
[CrossRef]

K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402-227405 (2003).
[CrossRef] [PubMed]

J. J. Mock, D. R. Smith, and S. Schultz?? "Local refractive index dependence of plasmon resonance spectra from individual nanoparticles," Nano Lett. 3, 485-491 (2003).
[CrossRef]

2002 (1)

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).
[CrossRef]

2001 (3)

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold Particle as a probe for apertureless SNOM," J. Microsc. 202, 72-76 (2001).
[CrossRef] [PubMed]

Y. Niidome, A. Hori, H. Takahashi, Y. Goto, and S. Yamada, "Laser-induced deposition of gold nanoparticles onto glass substrates in cyclohexane," Nano Lett. 1, 365-369 (2001).
[CrossRef]

M. Sugiyama, S. Inasawa, S. Koda, T. Hirose, T. Yonekawa, T. Omatsu, and A. Takami," Optical recording media using laser-induced size reduction of Au nanoparticles," Appl. Phys. Lett. 79, 1528-1530 (2001).
[CrossRef]

2000 (2)

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, "Laser-induced shape changes of colloidal gold nanorods using Femtosecond and Nanosecond Laser Pulses," J. Phys. Chem. B 104, 6152-6163 (2000).
[CrossRef]

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, "The lightning gold nanorods: fluorescence enhancement of over a million compared to the gold metal," Chem. Phys. Lett. 317, 517 (2000).
[CrossRef]

1997 (3)

Y. Takeuchi, T. Ida, and K. Kimura, "Colloidal stability of gold nanoparticles in 2-propanol under laser irradiation," J. Phys. Chem. B  101, 1322-1327 (1997).
[CrossRef]

K. Kneipp, Y. Wang, K. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single-molecule detection using surface-enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

S. M. Nie and S. R. Emery, "Probing single molecules and single nanoparticles by surface-enhanced Raman Scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

1994 (1)

N. Satoh, H. Hasegawa, K. Tsujii, and K. Kimura, "Effect of light on the disperse compositions of silver hydrosols," J. Phys. Chem. 98, 2143-2147 (1994).
[CrossRef]

1987 (1)

A. K. Arora and A. K. Ramdas, "Resonance Raman Scattering from defects in CdSe," Phys. Rev. B 35, 4345-4350 (1987).
[CrossRef]

1986 (1)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, "Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923-7936 (1986).
[CrossRef]

Alivisatos, P.

P. Alivisatos, "The use of nanocrystals in biological detection," Nat. Biotechnol. 22, 47-52 (2004).
[CrossRef]

Arora, A. K.

A. K. Arora and A. K. Ramdas, "Resonance Raman Scattering from defects in CdSe," Phys. Rev. B 35, 4345-4350 (1987).
[CrossRef]

Aussenegg, F. R.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).
[CrossRef]

Bergman, D. J.

K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402-227405 (2003).
[CrossRef] [PubMed]

Beversluis, M. R.

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 115433 (2003).
[CrossRef]

Bouhelier, A.

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 115433 (2003).
[CrossRef]

Boyd, G. T.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, "Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923-7936 (1986).
[CrossRef]

Burda, C.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, "Laser-induced shape changes of colloidal gold nanorods using Femtosecond and Nanosecond Laser Pulses," J. Phys. Chem. B 104, 6152-6163 (2000).
[CrossRef]

Calarco, R.

A. G. Milekhin, R. J. Meijers, T. Richter, R. Calarco, S. Montanari, H. Lüth, B. A. Paez Sierra, and D. R. T. Zahn," Raman scattering study of GaN nanostructures obtained by bottom-up and top-down approaches," J. Phys. Condens.: Matter  18, 5825-5834 (2006).
[CrossRef]

Caruso, F.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

Cheng, C. -L.

E. Perevedentseva, A. Karmenyan, P. -H. Chung, Y. -T. He, and C. -L. Cheng," Surface enhanced Raman spectroscopy of carbon nanostructures," Surf. Sci. 600, 3723-3728 (2006).
[CrossRef]

Chung, P. -H.

E. Perevedentseva, A. Karmenyan, P. -H. Chung, Y. -T. He, and C. -L. Cheng," Surface enhanced Raman spectroscopy of carbon nanostructures," Surf. Sci. 600, 3723-3728 (2006).
[CrossRef]

Cole, J. R.

J. R. Cole, and N. J. Halas, "Optimized distributions of tunable plasmonic nanoparticles for solar light harvesting applications," Appl. Phys. Lett. 86, 153120-1 (2006).
[CrossRef]

Dasari, R. R.

K. Kneipp, Y. Wang, K. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single-molecule detection using surface-enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Derkacs, D.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, "Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles," Appl. Phys. Lett. 89, 093103-1 (2006).
[CrossRef]

Ditlbacher, H.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).
[CrossRef]

Dulkeith, E.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

El-Sayed, M. A.

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, "The lightning gold nanorods: fluorescence enhancement of over a million compared to the gold metal," Chem. Phys. Lett. 317, 517 (2000).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, "Laser-induced shape changes of colloidal gold nanorods using Femtosecond and Nanosecond Laser Pulses," J. Phys. Chem. B 104, 6152-6163 (2000).
[CrossRef]

Emery, S. R.

S. M. Nie and S. R. Emery, "Probing single molecules and single nanoparticles by surface-enhanced Raman Scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, K. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single-molecule detection using surface-enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Feldmann, J.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106-1 (2005).
[CrossRef]

Gittins, D. I.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

Goto, Y.

Y. Niidome, A. Hori, H. Takahashi, Y. Goto, and S. Yamada, "Laser-induced deposition of gold nanoparticles onto glass substrates in cyclohexane," Nano Lett. 1, 365-369 (2001).
[CrossRef]

Halas, N. J.

J. R. Cole, and N. J. Halas, "Optimized distributions of tunable plasmonic nanoparticles for solar light harvesting applications," Appl. Phys. Lett. 86, 153120-1 (2006).
[CrossRef]

Hasegawa, H.

N. Satoh, H. Hasegawa, K. Tsujii, and K. Kimura, "Effect of light on the disperse compositions of silver hydrosols," J. Phys. Chem. 98, 2143-2147 (1994).
[CrossRef]

He, Y. -T.

E. Perevedentseva, A. Karmenyan, P. -H. Chung, Y. -T. He, and C. -L. Cheng," Surface enhanced Raman spectroscopy of carbon nanostructures," Surf. Sci. 600, 3723-3728 (2006).
[CrossRef]

Hirose, T.

M. Sugiyama, S. Inasawa, S. Koda, T. Hirose, T. Yonekawa, T. Omatsu, and A. Takami," Optical recording media using laser-induced size reduction of Au nanoparticles," Appl. Phys. Lett. 79, 1528-1530 (2001).
[CrossRef]

Hori, A.

Y. Niidome, A. Hori, H. Takahashi, Y. Goto, and S. Yamada, "Laser-induced deposition of gold nanoparticles onto glass substrates in cyclohexane," Nano Lett. 1, 365-369 (2001).
[CrossRef]

Ida, T.

Y. Takeuchi, T. Ida, and K. Kimura, "Colloidal stability of gold nanoparticles in 2-propanol under laser irradiation," J. Phys. Chem. B  101, 1322-1327 (1997).
[CrossRef]

Inasawa, S.

M. Sugiyama, S. Inasawa, S. Koda, T. Hirose, T. Yonekawa, T. Omatsu, and A. Takami," Optical recording media using laser-induced size reduction of Au nanoparticles," Appl. Phys. Lett. 79, 1528-1530 (2001).
[CrossRef]

Itzkan, I.

K. Kneipp, Y. Wang, K. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single-molecule detection using surface-enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Jack,

J. J. Mock, D. R. Smith, and S. Schultz?? "Local refractive index dependence of plasmon resonance spectra from individual nanoparticles," Nano Lett. 3, 485-491 (2003).
[CrossRef]

Kalkbrenner, T.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold Particle as a probe for apertureless SNOM," J. Microsc. 202, 72-76 (2001).
[CrossRef] [PubMed]

Karmenyan, A.

E. Perevedentseva, A. Karmenyan, P. -H. Chung, Y. -T. He, and C. -L. Cheng," Surface enhanced Raman spectroscopy of carbon nanostructures," Surf. Sci. 600, 3723-3728 (2006).
[CrossRef]

Kimura, K.

Y. Takeuchi, T. Ida, and K. Kimura, "Colloidal stability of gold nanoparticles in 2-propanol under laser irradiation," J. Phys. Chem. B  101, 1322-1327 (1997).
[CrossRef]

N. Satoh, H. Hasegawa, K. Tsujii, and K. Kimura, "Effect of light on the disperse compositions of silver hydrosols," J. Phys. Chem. 98, 2143-2147 (1994).
[CrossRef]

Klar, T. A.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, K. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single-molecule detection using surface-enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

K. Kneipp, Y. Wang, K. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single-molecule detection using surface-enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Koda, S.

M. Sugiyama, S. Inasawa, S. Koda, T. Hirose, T. Yonekawa, T. Omatsu, and A. Takami," Optical recording media using laser-induced size reduction of Au nanoparticles," Appl. Phys. Lett. 79, 1528-1530 (2001).
[CrossRef]

Krenn, J. R.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).
[CrossRef]

Leitner, A.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).
[CrossRef]

Li, K.

K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402-227405 (2003).
[CrossRef] [PubMed]

Lim, S. H.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, "Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles," Appl. Phys. Lett. 89, 093103-1 (2006).
[CrossRef]

Link, S.

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, "The lightning gold nanorods: fluorescence enhancement of over a million compared to the gold metal," Chem. Phys. Lett. 317, 517 (2000).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, "Laser-induced shape changes of colloidal gold nanorods using Femtosecond and Nanosecond Laser Pulses," J. Phys. Chem. B 104, 6152-6163 (2000).
[CrossRef]

Lüth, H.

A. G. Milekhin, R. J. Meijers, T. Richter, R. Calarco, S. Montanari, H. Lüth, B. A. Paez Sierra, and D. R. T. Zahn," Raman scattering study of GaN nanostructures obtained by bottom-up and top-down approaches," J. Phys. Condens.: Matter  18, 5825-5834 (2006).
[CrossRef]

Mar, W.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, "Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles," Appl. Phys. Lett. 89, 093103-1 (2006).
[CrossRef]

Matheu, P.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, "Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles," Appl. Phys. Lett. 89, 093103-1 (2006).
[CrossRef]

Mayya, K. S.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

McFarland, A. D.

A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003).
[CrossRef]

Meijers, R. J.

A. G. Milekhin, R. J. Meijers, T. Richter, R. Calarco, S. Montanari, H. Lüth, B. A. Paez Sierra, and D. R. T. Zahn," Raman scattering study of GaN nanostructures obtained by bottom-up and top-down approaches," J. Phys. Condens.: Matter  18, 5825-5834 (2006).
[CrossRef]

Milekhin, A. G.

A. G. Milekhin, R. J. Meijers, T. Richter, R. Calarco, S. Montanari, H. Lüth, B. A. Paez Sierra, and D. R. T. Zahn," Raman scattering study of GaN nanostructures obtained by bottom-up and top-down approaches," J. Phys. Condens.: Matter  18, 5825-5834 (2006).
[CrossRef]

Mlynek, J.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold Particle as a probe for apertureless SNOM," J. Microsc. 202, 72-76 (2001).
[CrossRef] [PubMed]

Mohamed, M. B.

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, "The lightning gold nanorods: fluorescence enhancement of over a million compared to the gold metal," Chem. Phys. Lett. 317, 517 (2000).
[CrossRef]

Montanari, S.

A. G. Milekhin, R. J. Meijers, T. Richter, R. Calarco, S. Montanari, H. Lüth, B. A. Paez Sierra, and D. R. T. Zahn," Raman scattering study of GaN nanostructures obtained by bottom-up and top-down approaches," J. Phys. Condens.: Matter  18, 5825-5834 (2006).
[CrossRef]

Nie, S. M.

S. M. Nie and S. R. Emery, "Probing single molecules and single nanoparticles by surface-enhanced Raman Scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Niedereichholz, T.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

Niidome, Y.

Y. Niidome, A. Hori, H. Takahashi, Y. Goto, and S. Yamada, "Laser-induced deposition of gold nanoparticles onto glass substrates in cyclohexane," Nano Lett. 1, 365-369 (2001).
[CrossRef]

Nikoobakht, B.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, "Laser-induced shape changes of colloidal gold nanorods using Femtosecond and Nanosecond Laser Pulses," J. Phys. Chem. B 104, 6152-6163 (2000).
[CrossRef]

Novotny, L.

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 115433 (2003).
[CrossRef]

Omatsu, T.

M. Sugiyama, S. Inasawa, S. Koda, T. Hirose, T. Yonekawa, T. Omatsu, and A. Takami," Optical recording media using laser-induced size reduction of Au nanoparticles," Appl. Phys. Lett. 79, 1528-1530 (2001).
[CrossRef]

Paez Sierra, B. A.

A. G. Milekhin, R. J. Meijers, T. Richter, R. Calarco, S. Montanari, H. Lüth, B. A. Paez Sierra, and D. R. T. Zahn," Raman scattering study of GaN nanostructures obtained by bottom-up and top-down approaches," J. Phys. Condens.: Matter  18, 5825-5834 (2006).
[CrossRef]

Perelman, L. T.

K. Kneipp, Y. Wang, K. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single-molecule detection using surface-enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Perevedentseva, E.

E. Perevedentseva, A. Karmenyan, P. -H. Chung, Y. -T. He, and C. -L. Cheng," Surface enhanced Raman spectroscopy of carbon nanostructures," Surf. Sci. 600, 3723-3728 (2006).
[CrossRef]

Ramdas, A. K.

A. K. Arora and A. K. Ramdas, "Resonance Raman Scattering from defects in CdSe," Phys. Rev. B 35, 4345-4350 (1987).
[CrossRef]

Ramstein, M.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold Particle as a probe for apertureless SNOM," J. Microsc. 202, 72-76 (2001).
[CrossRef] [PubMed]

Richter, T.

A. G. Milekhin, R. J. Meijers, T. Richter, R. Calarco, S. Montanari, H. Lüth, B. A. Paez Sierra, and D. R. T. Zahn," Raman scattering study of GaN nanostructures obtained by bottom-up and top-down approaches," J. Phys. Condens.: Matter  18, 5825-5834 (2006).
[CrossRef]

Sandoghdar, V.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold Particle as a probe for apertureless SNOM," J. Microsc. 202, 72-76 (2001).
[CrossRef] [PubMed]

Satoh, N.

N. Satoh, H. Hasegawa, K. Tsujii, and K. Kimura, "Effect of light on the disperse compositions of silver hydrosols," J. Phys. Chem. 98, 2143-2147 (1994).
[CrossRef]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106-1 (2005).
[CrossRef]

Schider, G.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).
[CrossRef]

Shen, Y. R.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, "Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923-7936 (1986).
[CrossRef]

Stockman, M. I.

K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402-227405 (2003).
[CrossRef] [PubMed]

Sugiyama, M.

M. Sugiyama, S. Inasawa, S. Koda, T. Hirose, T. Yonekawa, T. Omatsu, and A. Takami," Optical recording media using laser-induced size reduction of Au nanoparticles," Appl. Phys. Lett. 79, 1528-1530 (2001).
[CrossRef]

Takahashi, H.

Y. Niidome, A. Hori, H. Takahashi, Y. Goto, and S. Yamada, "Laser-induced deposition of gold nanoparticles onto glass substrates in cyclohexane," Nano Lett. 1, 365-369 (2001).
[CrossRef]

Takami, A.

M. Sugiyama, S. Inasawa, S. Koda, T. Hirose, T. Yonekawa, T. Omatsu, and A. Takami," Optical recording media using laser-induced size reduction of Au nanoparticles," Appl. Phys. Lett. 79, 1528-1530 (2001).
[CrossRef]

Takeuchi, Y.

Y. Takeuchi, T. Ida, and K. Kimura, "Colloidal stability of gold nanoparticles in 2-propanol under laser irradiation," J. Phys. Chem. B  101, 1322-1327 (1997).
[CrossRef]

Tsujii, K.

N. Satoh, H. Hasegawa, K. Tsujii, and K. Kimura, "Effect of light on the disperse compositions of silver hydrosols," J. Phys. Chem. 98, 2143-2147 (1994).
[CrossRef]

Van Duyne, R. P.

A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003).
[CrossRef]

Volkov, V.

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, "The lightning gold nanorods: fluorescence enhancement of over a million compared to the gold metal," Chem. Phys. Lett. 317, 517 (2000).
[CrossRef]

von Plessen, G.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

Wang, Y.

K. Kneipp, Y. Wang, K. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single-molecule detection using surface-enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Yamada, S.

Y. Niidome, A. Hori, H. Takahashi, Y. Goto, and S. Yamada, "Laser-induced deposition of gold nanoparticles onto glass substrates in cyclohexane," Nano Lett. 1, 365-369 (2001).
[CrossRef]

Yonekawa, T.

M. Sugiyama, S. Inasawa, S. Koda, T. Hirose, T. Yonekawa, T. Omatsu, and A. Takami," Optical recording media using laser-induced size reduction of Au nanoparticles," Appl. Phys. Lett. 79, 1528-1530 (2001).
[CrossRef]

Yu, E. T.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, "Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles," Appl. Phys. Lett. 89, 093103-1 (2006).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106-1 (2005).
[CrossRef]

Yu, Z. H.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, "Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923-7936 (1986).
[CrossRef]

Zahn, D. R. T.

A. G. Milekhin, R. J. Meijers, T. Richter, R. Calarco, S. Montanari, H. Lüth, B. A. Paez Sierra, and D. R. T. Zahn," Raman scattering study of GaN nanostructures obtained by bottom-up and top-down approaches," J. Phys. Condens.: Matter  18, 5825-5834 (2006).
[CrossRef]

Appl. Phys. Lett. (5)

D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106-1 (2005).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, "Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles," Appl. Phys. Lett. 89, 093103-1 (2006).
[CrossRef]

J. R. Cole, and N. J. Halas, "Optimized distributions of tunable plasmonic nanoparticles for solar light harvesting applications," Appl. Phys. Lett. 86, 153120-1 (2006).
[CrossRef]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).
[CrossRef]

M. Sugiyama, S. Inasawa, S. Koda, T. Hirose, T. Yonekawa, T. Omatsu, and A. Takami," Optical recording media using laser-induced size reduction of Au nanoparticles," Appl. Phys. Lett. 79, 1528-1530 (2001).
[CrossRef]

Chem. Phys. Lett. (1)

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, "The lightning gold nanorods: fluorescence enhancement of over a million compared to the gold metal," Chem. Phys. Lett. 317, 517 (2000).
[CrossRef]

J. Microsc. (1)

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold Particle as a probe for apertureless SNOM," J. Microsc. 202, 72-76 (2001).
[CrossRef] [PubMed]

J. Phys. Chem. (1)

N. Satoh, H. Hasegawa, K. Tsujii, and K. Kimura, "Effect of light on the disperse compositions of silver hydrosols," J. Phys. Chem. 98, 2143-2147 (1994).
[CrossRef]

J. Phys. Chem. B (2)

Y. Takeuchi, T. Ida, and K. Kimura, "Colloidal stability of gold nanoparticles in 2-propanol under laser irradiation," J. Phys. Chem. B  101, 1322-1327 (1997).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, "Laser-induced shape changes of colloidal gold nanorods using Femtosecond and Nanosecond Laser Pulses," J. Phys. Chem. B 104, 6152-6163 (2000).
[CrossRef]

J. Phys.: Condens. Matter (1)

A. G. Milekhin, R. J. Meijers, T. Richter, R. Calarco, S. Montanari, H. Lüth, B. A. Paez Sierra, and D. R. T. Zahn," Raman scattering study of GaN nanostructures obtained by bottom-up and top-down approaches," J. Phys. Condens.: Matter  18, 5825-5834 (2006).
[CrossRef]

Nano Lett. (3)

Y. Niidome, A. Hori, H. Takahashi, Y. Goto, and S. Yamada, "Laser-induced deposition of gold nanoparticles onto glass substrates in cyclohexane," Nano Lett. 1, 365-369 (2001).
[CrossRef]

A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003).
[CrossRef]

J. J. Mock, D. R. Smith, and S. Schultz?? "Local refractive index dependence of plasmon resonance spectra from individual nanoparticles," Nano Lett. 3, 485-491 (2003).
[CrossRef]

Phys. Rev. B (4)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, "Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923-7936 (1986).
[CrossRef]

A. K. Arora and A. K. Ramdas, "Resonance Raman Scattering from defects in CdSe," Phys. Rev. B 35, 4345-4350 (1987).
[CrossRef]

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004).
[CrossRef]

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 115433 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

K. Kneipp, Y. Wang, K. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single-molecule detection using surface-enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402-227405 (2003).
[CrossRef] [PubMed]

Science (1)

S. M. Nie and S. R. Emery, "Probing single molecules and single nanoparticles by surface-enhanced Raman Scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Surf. Sci. (1)

E. Perevedentseva, A. Karmenyan, P. -H. Chung, Y. -T. He, and C. -L. Cheng," Surface enhanced Raman spectroscopy of carbon nanostructures," Surf. Sci. 600, 3723-3728 (2006).
[CrossRef]

Other (2)

P. Alivisatos, "The use of nanocrystals in biological detection," Nat. Biotechnol. 22, 47-52 (2004).
[CrossRef]

D. Baüerle, Laser Processing and Chemistry, 3rd eds., (Springer, Berlin, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). 2-D AFM image CdSe nanocrystalline film on glass coated with 10 nm Au nanoparticles. (b) 3-D AFM image Au(20 nm)CdSe/Si(001) film.

Fig. 2.
Fig. 2.

FE-SEM image of CdSe nanocrystalline film on glass coated with 10 nm Au nanoparticles. The Au nanoparticles are spherical and nearly 10 nm in diameter.

Fig. 3.
Fig. 3.

X-ray diffraction data of CdSe/glass coated with 10 and 20 nm of Au nanoparticles. The line assignments show the diffraction peak positions of bulk wurtzite CdSe and Au. The CdSe layer is kept fixed at 40 nm. The inset shows the XRD lines for [111] direction.

Fig. 4.
Fig. 4.

Room temperature Raman shift of CdSe/glass, and CdSe/glass coated with 10 and 20 nm of Au nanoparticles, showing strong surface enhanced Raman intensity.

Fig. 5.
Fig. 5.

Room temperature photoluminescence spectra of CdSe/glass and CdSe/glass coated 20 nm of Au nanoparticles.

Metrics