Abstract

Supercontinuum (SC) light with a continuous spectrum covering 0.45–1.2 µm is scaled from 250–740 mW by varying the repetition rate of an amplified, frequency doubled, telecom laser diode. Efficient SC generation requires minimal non-linearity in the amplifier and anomalous dispersion pumping close to the fiber zero dispersion wavelength. Based on simulations, we present a 2-stage design that separates pulse break-up from spectral broadening to enhance the SC bandwidth for quasi-CW pumping.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
    [CrossRef]
  2. A. Rulkov, M. Vyatkin, S. Popov, J. Taylor, and V. Gapontsev, "High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping," Opt. Express 13, 377-381 (2005).
    [CrossRef] [PubMed]
  3. T. Schreiber, J. Limpert, H. Zellmer, A. Tunnermann, and K. Hansen, "High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003).
    [CrossRef]
  4. J. M. Stone and J. C. Knight, "Visibly "white" light generation in uniform photonic crystal fiber using a microchip laser," Opt. Express 16, 2670-2675 (2008).
    [CrossRef] [PubMed]
  5. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006).
    [CrossRef] [PubMed]
  6. P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, and P. Nérin, "White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system," Opt. Express 12, 4366-4371 (2004).
    [CrossRef] [PubMed]
  7. C. Xiong, A. Witkowska, S. G. Leon-Saval, T. A. Birks, and W. J. Wadsworth, "Enhanced visible continuum generation from a microchip 1064nm laser," Opt. Express 14, 6188-6193 (2006).
    [CrossRef] [PubMed]
  8. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres," Opt. Express 12, 299-309 (2004).
    [CrossRef] [PubMed]
  9. C. J. S. de Matos, R. E. Kennedy, S. V. Popov, and J. R. Taylor, "20-kW peak power all-fiber 1.57-µm source based on compression in air-core photonic bandgap fiber, its frequency doubling, and broadband generation from 430 to 1450 nm," Opt. Lett. 30, 436-438 (2005).
    [CrossRef] [PubMed]
  10. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, Jr., M. J. Freeman, M. Poulain, and G. Mazé, "Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping," Opt. Lett. 31, 2553-2555 (2006).
    [CrossRef] [PubMed]
  11. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am. B 19, 753-764 (2002).
    [CrossRef]
  12. C. Xia, M. Kumar, M. Y. Cheng, O. P. Kulkarni, M. N. Islam, M. N. A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, "Supercontinuum Generation in Silica Fibers by Amplified Nanosecond Laser Diode Pulses," IEEE J. Sel. Top. Quantum Electron 13, 789-797 (2007).
    [CrossRef]
  13. C. Xia, M. Kumar, M. -Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, Jr., M. J. Freeman, M. Poulain, and G. Mazé, "Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power," Opt. Express 15, 865-871 (2007).
    [CrossRef] [PubMed]
  14. R. Zhang, J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation," Opt. Express 14, 6800-6812 (2006).
    [CrossRef] [PubMed]

2008 (1)

2007 (2)

C. Xia, M. Kumar, M. -Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, Jr., M. J. Freeman, M. Poulain, and G. Mazé, "Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power," Opt. Express 15, 865-871 (2007).
[CrossRef] [PubMed]

C. Xia, M. Kumar, M. Y. Cheng, O. P. Kulkarni, M. N. Islam, M. N. A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, "Supercontinuum Generation in Silica Fibers by Amplified Nanosecond Laser Diode Pulses," IEEE J. Sel. Top. Quantum Electron 13, 789-797 (2007).
[CrossRef]

2006 (5)

2005 (2)

2004 (2)

2003 (1)

T. Schreiber, J. Limpert, H. Zellmer, A. Tunnermann, and K. Hansen, "High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003).
[CrossRef]

2002 (1)

Biancalana, F.

Birks, T.

Birks, T. A.

Champert, P. A.

Chau, A. H. L.

Cheng, M. Y.

C. Xia, M. Kumar, M. Y. Cheng, O. P. Kulkarni, M. N. Islam, M. N. A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, "Supercontinuum Generation in Silica Fibers by Amplified Nanosecond Laser Diode Pulses," IEEE J. Sel. Top. Quantum Electron 13, 789-797 (2007).
[CrossRef]

Cheng, M. -Y.

Coen, S.

Couderc, V.

de Matos, C. J. S.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Février, S.

Freeman, M. J.

Froehly, C.

Galvanauskas, A.

Gapontsev, V.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

George, A. K.

Giessen, H.

Hansen, K.

T. Schreiber, J. Limpert, H. Zellmer, A. Tunnermann, and K. Hansen, "High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003).
[CrossRef]

Harvey, J. D.

Hegde, R. S.

Islam, M. N.

Joly, N.

Kennedy, R. E.

Knight, J.

Knight, J. C.

Kudlinski, A.

Kulkarni, O. P.

C. Xia, M. Kumar, M. Y. Cheng, O. P. Kulkarni, M. N. Islam, M. N. A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, "Supercontinuum Generation in Silica Fibers by Amplified Nanosecond Laser Diode Pulses," IEEE J. Sel. Top. Quantum Electron 13, 789-797 (2007).
[CrossRef]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, Jr., M. J. Freeman, M. Poulain, and G. Mazé, "Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping," Opt. Lett. 31, 2553-2555 (2006).
[CrossRef] [PubMed]

Kumar, M.

Labonté, L.

Leonhardt, R.

Leon-Saval, S. G.

Leproux, P.

Limpert, J.

T. Schreiber, J. Limpert, H. Zellmer, A. Tunnermann, and K. Hansen, "High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003).
[CrossRef]

Mazé, G.

Nérin, P.

Popov, S.

Popov, S. V.

Poulain, M.

Roy, P.

Rulkov, A.

Rulkov, A. B.

Russell, P.

Russell, P. S. J.

Schreiber, T.

T. Schreiber, J. Limpert, H. Zellmer, A. Tunnermann, and K. Hansen, "High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003).
[CrossRef]

Stone, J. M.

Taylor, J.

Taylor, J. R.

Teipel, J.

Terry, F. L.

Tombelaine, V.

Travers, J. C.

Tunnermann, A.

T. Schreiber, J. Limpert, H. Zellmer, A. Tunnermann, and K. Hansen, "High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003).
[CrossRef]

Vyatkin, M.

Wadsworth, W.

Wadsworth, W. J.

Winful, H. G.

Witkowska, A.

Xia, C.

Xiong, C.

Zellmer, H.

T. Schreiber, J. Limpert, H. Zellmer, A. Tunnermann, and K. Hansen, "High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003).
[CrossRef]

Zhang, R.

IEEE J. Sel. Top. Quantum Electron (1)

C. Xia, M. Kumar, M. Y. Cheng, O. P. Kulkarni, M. N. Islam, M. N. A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, "Supercontinuum Generation in Silica Fibers by Amplified Nanosecond Laser Diode Pulses," IEEE J. Sel. Top. Quantum Electron 13, 789-797 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

T. Schreiber, J. Limpert, H. Zellmer, A. Tunnermann, and K. Hansen, "High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003).
[CrossRef]

Opt. Express (8)

C. Xia, M. Kumar, M. -Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, Jr., M. J. Freeman, M. Poulain, and G. Mazé, "Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power," Opt. Express 15, 865-871 (2007).
[CrossRef] [PubMed]

J. M. Stone and J. C. Knight, "Visibly "white" light generation in uniform photonic crystal fiber using a microchip laser," Opt. Express 16, 2670-2675 (2008).
[CrossRef] [PubMed]

W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres," Opt. Express 12, 299-309 (2004).
[CrossRef] [PubMed]

P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, and P. Nérin, "White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system," Opt. Express 12, 4366-4371 (2004).
[CrossRef] [PubMed]

A. Rulkov, M. Vyatkin, S. Popov, J. Taylor, and V. Gapontsev, "High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping," Opt. Express 13, 377-381 (2005).
[CrossRef] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006).
[CrossRef] [PubMed]

C. Xiong, A. Witkowska, S. G. Leon-Saval, T. A. Birks, and W. J. Wadsworth, "Enhanced visible continuum generation from a microchip 1064nm laser," Opt. Express 14, 6188-6193 (2006).
[CrossRef] [PubMed]

R. Zhang, J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation," Opt. Express 14, 6800-6812 (2006).
[CrossRef] [PubMed]

Opt. Lett. (2)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

All fiber integrated high power 1553nm pump system

Fig. 2.
Fig. 2.

Experimental setup for visible SC generation

Fig. 3.
Fig. 3.

SC spectrum from 1.5 m PCF for an input peak power of 420W

Fig. 4.
Fig. 4.

SC spectral evolution as a function of input peak power

Fig. 5(a).
Fig. 5(a).

SHG efficiency versus peak pump power

Fig. 5(b).
Fig. 5(b).

SC average power versus pulse repetition rate

Fig. 6.
Fig. 6.

Comparison of experimental and simulation spectra for 1.5m PCF at 420W peak power

Fig. 7
Fig. 7

(a). Simulation output spectrum after 0.3m PCF for different λ0. Figure 7(b). Theoretical MI power gain after 0.3m PCF for different λ0.

Fig. 8.
Fig. 8.

MI induced pulse break-up after propagation through 0.5m PCF with λ0=745nm with 420W input peak power.

Fig. 9.
Fig. 9.

Spectra from two stage model: 0.5m 745 nm λ0 PCF followed by different lengths of ideal n2 material

Fig. 10.
Fig. 10.

Spectra from single stage model: 0.50–0.70m of 745 nm λ0 PCF

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A z = ( D ̂ + N ̂ ) A
D ̂ = i 2 β 2 2 A τ 2 + 1 6 β 3 3 A τ 3 + i 24 β 4 4 A τ 4 α 2
N ̂ = i γ ( 1 + i ω 0 t ) + [ ( 1 f R ) δ ( t ) + f R h R ( t ) ] A ( z , t t ) 2 d t
g = ( γ P ) 2 [ ( Δ k 2 ) + γ P ] 2 , Δ k = λ 2 2 π c [ dD d λ λ 0 ( λ p λ 0 ) ] ( ω p ω s ) 2

Metrics