Abstract

We present both experimental and numerical data showing the absorption of unpolarized, normally incident light by a gold crossed grating having a shallow sinusoidal profile. We show furthermore that the total absorption of unpolarized light can be achieved for an angle of incidence of 30° with a crossed grating having its period adjusted appropriately from the normal incidence case to preserve the plasmonic resonance responsible for the enhanced absorptance. We contrast the process for achieving high absorptance in the principal plane of incidence aligned with the grooves of one of the gratings, with that for the principal plane at 45° to each grating.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. C . Garcia d??Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267 (24 p) (2007).
    [CrossRef]
  2. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396-402 (1902).
  3. J. Hagglund and F. Sellberg, "Reflection, absorption and emission of light by opaque optical gratings," J.Opt. Soc. Am. 56, 1031-1040 (1966).
    [CrossRef]
  4. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface plasmon resonance effect in grating diffraction," Phys. Rev. Lett. 21, 1530-1533 (1968).
    [CrossRef]
  5. R. C. McPhedran and M. D. Waterworth, "A theoretical demonstration of properties of grating anomalies (S polarization)," Opt. Acta 19, 877-892 (1972).
  6. D. Maystre, "Sur la diffraction d??une onde plane par un réseau metallique de conductivité finie," Opt. Commun. 6, 50-54 (1972).
    [CrossRef]
  7. M. C. Hutley and V. M. Bird, "Detailed experimental study of anomalies of a sinusoidal diffraction grating," Opt. Acta 20, 771-782 (1973).
    [CrossRef]
  8. R. C. McPhedran and D. Maystre, "A detailed theoretical study of the anomalies of a sinusoidal diffraction grating," Opt. Acta 21, 413-421 (1974).
    [CrossRef]
  9. D. Maystre and R. Petit, "Brewster incidence for metallic gratings," Opt. Commun. 17, 196-200 (1976).
    [CrossRef]
  10. M. C. Hutley and D. Maystre, "The total absorption of light by a diffraction grating," Opt. Commun. 19, 431-436(1976).
    [CrossRef]
  11. G. H. Derrick, R. C. McPhedran, D. Maystre, and M. Nevière, "Crossed gratings: a theory and its applications," Appl. Phys. 18, 39-52 (1979).
    [CrossRef]
  12. R. C. McPhedran, G. H. Derrick, and L. C. Botten, "Theory of Crossed Gratings," in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Heidelberg, 1980), pp. 227-276.
  13. M. Nevière, D. Maystre, R. C. McPhedran, G. H. Derrick, and M. C. Hutley, "On the total absorption of unpolarizedmonochromatic light," in Proceedings of the ICO-11 Conference, (Madrid, Spain, 1978), pp. 609-612.
  14. R. C. McPhedran, G. H. Derrick, M. Nevière, and D. Maystre, "Metallic crossed gratings," J. Opt. 13, 209-218 (1982).
    [CrossRef]
  15. G. H. Derrick, R. C. McPhedran, and D. R. McKenzie, "Theoretical studies of textured amorphous silicon solar cells," Appl. Opt. 25, 3690-3696 (1986).
    [CrossRef] [PubMed]
  16. A. Avila-Garcia and U. Morales-Ortiz, "Thermally and air-plasma-oxidized titanimum and stainless steel plates as solar selective absorbers," Sol. Energy Mater. Sol. Cells 90, 2556-2568 (2006).
    [CrossRef]
  17. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101,093105 (8 pp.) (2007).
    [CrossRef]
  18. F. Ghmari, T. Ghbara, M. Laroche, R. Carminati, and J. J. Greffet, "The influence of microroughness on emissivity," J. Appl. Phys. 96, 2656-2664 (2004).
    [CrossRef]
  19. S. Zou and G. C. Schatz, "Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays," J. Chem. Phys. 121, 12606-12612 (2004).
    [CrossRef] [PubMed]
  20. J. Dintinger, S. Klein, and T.W. Ebbesen, "Molecule-surface plasmon interactions in hole arrays: Enhanced absorption, refractive index changes, and all-optical switching," Adv. Mat. 18, 1267-1270 (2006).
    [CrossRef]
  21. J. Chandezon, D. Maystre, and G. Raoult, "A new theoretical method for diffraction gratings and its numerical application," J.Opt.-Nouv. Rev. d??Opt. 11235-241 (1980).
  22. L. Li and J. Chandezon, "Improvement of the coordinate transformation method for surface-relief gratings with sharp edges," J. Opt. Soc. Am. A 13, 2247-2255 (1996).
    [CrossRef]
  23. L. Mashev and E. Popov, "Conical diffraction mounting generalization of a rigorous differential method," J. Opt.- Nouv.Rev. d??Opt. 17, 175-180 (1986).
  24. G. Granet, "Analysis of diffraction by surface-relief crossed gratings with use of the Chandezon method: application to multilayer crossed gratings," J. Opt. Soc. Am. A 15, 1121-1131 (1998).
    [CrossRef]

2007

F. C . Garcia d??Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267 (24 p) (2007).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101,093105 (8 pp.) (2007).
[CrossRef]

2006

J. Dintinger, S. Klein, and T.W. Ebbesen, "Molecule-surface plasmon interactions in hole arrays: Enhanced absorption, refractive index changes, and all-optical switching," Adv. Mat. 18, 1267-1270 (2006).
[CrossRef]

A. Avila-Garcia and U. Morales-Ortiz, "Thermally and air-plasma-oxidized titanimum and stainless steel plates as solar selective absorbers," Sol. Energy Mater. Sol. Cells 90, 2556-2568 (2006).
[CrossRef]

2004

F. Ghmari, T. Ghbara, M. Laroche, R. Carminati, and J. J. Greffet, "The influence of microroughness on emissivity," J. Appl. Phys. 96, 2656-2664 (2004).
[CrossRef]

S. Zou and G. C. Schatz, "Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays," J. Chem. Phys. 121, 12606-12612 (2004).
[CrossRef] [PubMed]

1998

1996

1986

G. H. Derrick, R. C. McPhedran, and D. R. McKenzie, "Theoretical studies of textured amorphous silicon solar cells," Appl. Opt. 25, 3690-3696 (1986).
[CrossRef] [PubMed]

L. Mashev and E. Popov, "Conical diffraction mounting generalization of a rigorous differential method," J. Opt.- Nouv.Rev. d??Opt. 17, 175-180 (1986).

1982

R. C. McPhedran, G. H. Derrick, M. Nevière, and D. Maystre, "Metallic crossed gratings," J. Opt. 13, 209-218 (1982).
[CrossRef]

1980

J. Chandezon, D. Maystre, and G. Raoult, "A new theoretical method for diffraction gratings and its numerical application," J.Opt.-Nouv. Rev. d??Opt. 11235-241 (1980).

1979

G. H. Derrick, R. C. McPhedran, D. Maystre, and M. Nevière, "Crossed gratings: a theory and its applications," Appl. Phys. 18, 39-52 (1979).
[CrossRef]

1976

D. Maystre and R. Petit, "Brewster incidence for metallic gratings," Opt. Commun. 17, 196-200 (1976).
[CrossRef]

M. C. Hutley and D. Maystre, "The total absorption of light by a diffraction grating," Opt. Commun. 19, 431-436(1976).
[CrossRef]

1974

R. C. McPhedran and D. Maystre, "A detailed theoretical study of the anomalies of a sinusoidal diffraction grating," Opt. Acta 21, 413-421 (1974).
[CrossRef]

1973

M. C. Hutley and V. M. Bird, "Detailed experimental study of anomalies of a sinusoidal diffraction grating," Opt. Acta 20, 771-782 (1973).
[CrossRef]

1972

R. C. McPhedran and M. D. Waterworth, "A theoretical demonstration of properties of grating anomalies (S polarization)," Opt. Acta 19, 877-892 (1972).

D. Maystre, "Sur la diffraction d??une onde plane par un réseau metallique de conductivité finie," Opt. Commun. 6, 50-54 (1972).
[CrossRef]

1968

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface plasmon resonance effect in grating diffraction," Phys. Rev. Lett. 21, 1530-1533 (1968).
[CrossRef]

1966

J. Hagglund and F. Sellberg, "Reflection, absorption and emission of light by opaque optical gratings," J.Opt. Soc. Am. 56, 1031-1040 (1966).
[CrossRef]

1902

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396-402 (1902).

Arakawa, E. T.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface plasmon resonance effect in grating diffraction," Phys. Rev. Lett. 21, 1530-1533 (1968).
[CrossRef]

Avila-Garcia, A.

A. Avila-Garcia and U. Morales-Ortiz, "Thermally and air-plasma-oxidized titanimum and stainless steel plates as solar selective absorbers," Sol. Energy Mater. Sol. Cells 90, 2556-2568 (2006).
[CrossRef]

Bird, V. M.

M. C. Hutley and V. M. Bird, "Detailed experimental study of anomalies of a sinusoidal diffraction grating," Opt. Acta 20, 771-782 (1973).
[CrossRef]

Carminati, R.

F. Ghmari, T. Ghbara, M. Laroche, R. Carminati, and J. J. Greffet, "The influence of microroughness on emissivity," J. Appl. Phys. 96, 2656-2664 (2004).
[CrossRef]

Catchpole, K. R.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101,093105 (8 pp.) (2007).
[CrossRef]

Chandezon, J.

L. Li and J. Chandezon, "Improvement of the coordinate transformation method for surface-relief gratings with sharp edges," J. Opt. Soc. Am. A 13, 2247-2255 (1996).
[CrossRef]

J. Chandezon, D. Maystre, and G. Raoult, "A new theoretical method for diffraction gratings and its numerical application," J.Opt.-Nouv. Rev. d??Opt. 11235-241 (1980).

Cowan, J. J.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface plasmon resonance effect in grating diffraction," Phys. Rev. Lett. 21, 1530-1533 (1968).
[CrossRef]

Derrick, G. H.

G. H. Derrick, R. C. McPhedran, and D. R. McKenzie, "Theoretical studies of textured amorphous silicon solar cells," Appl. Opt. 25, 3690-3696 (1986).
[CrossRef] [PubMed]

R. C. McPhedran, G. H. Derrick, M. Nevière, and D. Maystre, "Metallic crossed gratings," J. Opt. 13, 209-218 (1982).
[CrossRef]

G. H. Derrick, R. C. McPhedran, D. Maystre, and M. Nevière, "Crossed gratings: a theory and its applications," Appl. Phys. 18, 39-52 (1979).
[CrossRef]

Dintinger, J.

J. Dintinger, S. Klein, and T.W. Ebbesen, "Molecule-surface plasmon interactions in hole arrays: Enhanced absorption, refractive index changes, and all-optical switching," Adv. Mat. 18, 1267-1270 (2006).
[CrossRef]

Ebbesen, T.W.

J. Dintinger, S. Klein, and T.W. Ebbesen, "Molecule-surface plasmon interactions in hole arrays: Enhanced absorption, refractive index changes, and all-optical switching," Adv. Mat. 18, 1267-1270 (2006).
[CrossRef]

Garcia d??Abajo, F. C

F. C . Garcia d??Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267 (24 p) (2007).
[CrossRef]

Ghbara, T.

F. Ghmari, T. Ghbara, M. Laroche, R. Carminati, and J. J. Greffet, "The influence of microroughness on emissivity," J. Appl. Phys. 96, 2656-2664 (2004).
[CrossRef]

Ghmari, F.

F. Ghmari, T. Ghbara, M. Laroche, R. Carminati, and J. J. Greffet, "The influence of microroughness on emissivity," J. Appl. Phys. 96, 2656-2664 (2004).
[CrossRef]

Granet, G.

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101,093105 (8 pp.) (2007).
[CrossRef]

Greffet, J. J.

F. Ghmari, T. Ghbara, M. Laroche, R. Carminati, and J. J. Greffet, "The influence of microroughness on emissivity," J. Appl. Phys. 96, 2656-2664 (2004).
[CrossRef]

Hagglund, J.

J. Hagglund and F. Sellberg, "Reflection, absorption and emission of light by opaque optical gratings," J.Opt. Soc. Am. 56, 1031-1040 (1966).
[CrossRef]

Hamm, R. N.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface plasmon resonance effect in grating diffraction," Phys. Rev. Lett. 21, 1530-1533 (1968).
[CrossRef]

Hutley, M. C.

M. C. Hutley and D. Maystre, "The total absorption of light by a diffraction grating," Opt. Commun. 19, 431-436(1976).
[CrossRef]

M. C. Hutley and V. M. Bird, "Detailed experimental study of anomalies of a sinusoidal diffraction grating," Opt. Acta 20, 771-782 (1973).
[CrossRef]

Klein, S.

J. Dintinger, S. Klein, and T.W. Ebbesen, "Molecule-surface plasmon interactions in hole arrays: Enhanced absorption, refractive index changes, and all-optical switching," Adv. Mat. 18, 1267-1270 (2006).
[CrossRef]

Laroche, M.

F. Ghmari, T. Ghbara, M. Laroche, R. Carminati, and J. J. Greffet, "The influence of microroughness on emissivity," J. Appl. Phys. 96, 2656-2664 (2004).
[CrossRef]

Li, L.

Mashev, L.

L. Mashev and E. Popov, "Conical diffraction mounting generalization of a rigorous differential method," J. Opt.- Nouv.Rev. d??Opt. 17, 175-180 (1986).

Maystre, D.

R. C. McPhedran, G. H. Derrick, M. Nevière, and D. Maystre, "Metallic crossed gratings," J. Opt. 13, 209-218 (1982).
[CrossRef]

J. Chandezon, D. Maystre, and G. Raoult, "A new theoretical method for diffraction gratings and its numerical application," J.Opt.-Nouv. Rev. d??Opt. 11235-241 (1980).

G. H. Derrick, R. C. McPhedran, D. Maystre, and M. Nevière, "Crossed gratings: a theory and its applications," Appl. Phys. 18, 39-52 (1979).
[CrossRef]

M. C. Hutley and D. Maystre, "The total absorption of light by a diffraction grating," Opt. Commun. 19, 431-436(1976).
[CrossRef]

D. Maystre and R. Petit, "Brewster incidence for metallic gratings," Opt. Commun. 17, 196-200 (1976).
[CrossRef]

R. C. McPhedran and D. Maystre, "A detailed theoretical study of the anomalies of a sinusoidal diffraction grating," Opt. Acta 21, 413-421 (1974).
[CrossRef]

D. Maystre, "Sur la diffraction d??une onde plane par un réseau metallique de conductivité finie," Opt. Commun. 6, 50-54 (1972).
[CrossRef]

McKenzie, D. R.

McPhedran, R. C.

G. H. Derrick, R. C. McPhedran, and D. R. McKenzie, "Theoretical studies of textured amorphous silicon solar cells," Appl. Opt. 25, 3690-3696 (1986).
[CrossRef] [PubMed]

R. C. McPhedran, G. H. Derrick, M. Nevière, and D. Maystre, "Metallic crossed gratings," J. Opt. 13, 209-218 (1982).
[CrossRef]

G. H. Derrick, R. C. McPhedran, D. Maystre, and M. Nevière, "Crossed gratings: a theory and its applications," Appl. Phys. 18, 39-52 (1979).
[CrossRef]

R. C. McPhedran and D. Maystre, "A detailed theoretical study of the anomalies of a sinusoidal diffraction grating," Opt. Acta 21, 413-421 (1974).
[CrossRef]

R. C. McPhedran and M. D. Waterworth, "A theoretical demonstration of properties of grating anomalies (S polarization)," Opt. Acta 19, 877-892 (1972).

Morales-Ortiz, U.

A. Avila-Garcia and U. Morales-Ortiz, "Thermally and air-plasma-oxidized titanimum and stainless steel plates as solar selective absorbers," Sol. Energy Mater. Sol. Cells 90, 2556-2568 (2006).
[CrossRef]

Nevière, M.

R. C. McPhedran, G. H. Derrick, M. Nevière, and D. Maystre, "Metallic crossed gratings," J. Opt. 13, 209-218 (1982).
[CrossRef]

G. H. Derrick, R. C. McPhedran, D. Maystre, and M. Nevière, "Crossed gratings: a theory and its applications," Appl. Phys. 18, 39-52 (1979).
[CrossRef]

Petit, R.

D. Maystre and R. Petit, "Brewster incidence for metallic gratings," Opt. Commun. 17, 196-200 (1976).
[CrossRef]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101,093105 (8 pp.) (2007).
[CrossRef]

Popov, E.

L. Mashev and E. Popov, "Conical diffraction mounting generalization of a rigorous differential method," J. Opt.- Nouv.Rev. d??Opt. 17, 175-180 (1986).

Raoult, G.

J. Chandezon, D. Maystre, and G. Raoult, "A new theoretical method for diffraction gratings and its numerical application," J.Opt.-Nouv. Rev. d??Opt. 11235-241 (1980).

Ritchie, R. H.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface plasmon resonance effect in grating diffraction," Phys. Rev. Lett. 21, 1530-1533 (1968).
[CrossRef]

Schatz, G. C.

S. Zou and G. C. Schatz, "Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays," J. Chem. Phys. 121, 12606-12612 (2004).
[CrossRef] [PubMed]

Sellberg, F.

J. Hagglund and F. Sellberg, "Reflection, absorption and emission of light by opaque optical gratings," J.Opt. Soc. Am. 56, 1031-1040 (1966).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101,093105 (8 pp.) (2007).
[CrossRef]

Waterworth, M. D.

R. C. McPhedran and M. D. Waterworth, "A theoretical demonstration of properties of grating anomalies (S polarization)," Opt. Acta 19, 877-892 (1972).

Wood, R. W.

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396-402 (1902).

Zou, S.

S. Zou and G. C. Schatz, "Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays," J. Chem. Phys. 121, 12606-12612 (2004).
[CrossRef] [PubMed]

Adv. Mat.

J. Dintinger, S. Klein, and T.W. Ebbesen, "Molecule-surface plasmon interactions in hole arrays: Enhanced absorption, refractive index changes, and all-optical switching," Adv. Mat. 18, 1267-1270 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys.

G. H. Derrick, R. C. McPhedran, D. Maystre, and M. Nevière, "Crossed gratings: a theory and its applications," Appl. Phys. 18, 39-52 (1979).
[CrossRef]

J. Appl. Phys.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101,093105 (8 pp.) (2007).
[CrossRef]

F. Ghmari, T. Ghbara, M. Laroche, R. Carminati, and J. J. Greffet, "The influence of microroughness on emissivity," J. Appl. Phys. 96, 2656-2664 (2004).
[CrossRef]

J. Chem. Phys.

S. Zou and G. C. Schatz, "Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays," J. Chem. Phys. 121, 12606-12612 (2004).
[CrossRef] [PubMed]

J. Opt.

R. C. McPhedran, G. H. Derrick, M. Nevière, and D. Maystre, "Metallic crossed gratings," J. Opt. 13, 209-218 (1982).
[CrossRef]

J. Opt. Soc. Am. A

J.Opt. Soc. Am.

J. Hagglund and F. Sellberg, "Reflection, absorption and emission of light by opaque optical gratings," J.Opt. Soc. Am. 56, 1031-1040 (1966).
[CrossRef]

J.Opt.-Nouv. Rev. d??Opt.

J. Chandezon, D. Maystre, and G. Raoult, "A new theoretical method for diffraction gratings and its numerical application," J.Opt.-Nouv. Rev. d??Opt. 11235-241 (1980).

Opt. Acta

M. C. Hutley and V. M. Bird, "Detailed experimental study of anomalies of a sinusoidal diffraction grating," Opt. Acta 20, 771-782 (1973).
[CrossRef]

R. C. McPhedran and D. Maystre, "A detailed theoretical study of the anomalies of a sinusoidal diffraction grating," Opt. Acta 21, 413-421 (1974).
[CrossRef]

R. C. McPhedran and M. D. Waterworth, "A theoretical demonstration of properties of grating anomalies (S polarization)," Opt. Acta 19, 877-892 (1972).

Opt. Commun.

D. Maystre, "Sur la diffraction d??une onde plane par un réseau metallique de conductivité finie," Opt. Commun. 6, 50-54 (1972).
[CrossRef]

D. Maystre and R. Petit, "Brewster incidence for metallic gratings," Opt. Commun. 17, 196-200 (1976).
[CrossRef]

M. C. Hutley and D. Maystre, "The total absorption of light by a diffraction grating," Opt. Commun. 19, 431-436(1976).
[CrossRef]

Phil. Mag.

R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396-402 (1902).

Phys. Rev. Lett.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface plasmon resonance effect in grating diffraction," Phys. Rev. Lett. 21, 1530-1533 (1968).
[CrossRef]

Rev. d??Opt.

L. Mashev and E. Popov, "Conical diffraction mounting generalization of a rigorous differential method," J. Opt.- Nouv.Rev. d??Opt. 17, 175-180 (1986).

Rev. Mod. Phys.

F. C . Garcia d??Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267 (24 p) (2007).
[CrossRef]

Sol. Energy Mater. Sol. Cells

A. Avila-Garcia and U. Morales-Ortiz, "Thermally and air-plasma-oxidized titanimum and stainless steel plates as solar selective absorbers," Sol. Energy Mater. Sol. Cells 90, 2556-2568 (2006).
[CrossRef]

Other

R. C. McPhedran, G. H. Derrick, and L. C. Botten, "Theory of Crossed Gratings," in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Heidelberg, 1980), pp. 227-276.

M. Nevière, D. Maystre, R. C. McPhedran, G. H. Derrick, and M. C. Hutley, "On the total absorption of unpolarizedmonochromatic light," in Proceedings of the ICO-11 Conference, (Madrid, Spain, 1978), pp. 609-612.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Spectral dependence of the 0-th order reflectivity of a shallow sinusoidal grating in normal incidence. Period d=0.62µm and groove depth h=0.032µm, polarization TE, parallel (black) or TM, perpendicular (blue) to the groove direction.(b) Same as in (a) but for a 2D crossed grating representing the sum of two mutually perpendicular gratings identical to the one in (a). dx =dz =0.62µm, hx =hz =0.032µm, normal incidence. Order 0 in reflection - red, sum of orders 0 and -1 - in green, TM efficiency from Fig.1a - blue squares.

Fig. 2.
Fig. 2.

Comparison between the theoretical and experimental reflectivity in normal incidence of a grating similar to Fig.1, but having period dx =dz =0.6µm and total groove depth h=0.08µm (hx =hz =0.04µm). Theoretical results - black curve, experimental data - red squares.

Fig. 3.
Fig. 3.

Schematic representation of the incident wave vector and the plasmons excited by the surface corrugation for two gratings having modulation along two perpendicular axes, with the plane of incidence perpendicular to the z axis: (a) periodicity along x, i.e., classical diffraction with k⃗i perpendicular to the grooves, exciting a single surface plasmon wave in TM incident polarization; (b) periodicity along z, conical diffraction exciting two surface plasmon waves in TE incident polarization; (c) view from above of (b).

Fig. 4.
Fig. 4.

Spectral dependence of the reflectivity at θi =30°, γi =0 and λ=0:65 µm of: (a) two 1D sinusoidal gratings, as shown in Figs.3a and b, respectively, having parameters optimized for totally absorbing incident light. Grating 1 (blue)- dx =0:4199µm, hx =0.0281µm, TM polarization with respect to the plane of incidence. Grating 2 (black)- dz =0.705µm, hz =0.039µm, TE incident polarization. (b) 2D grating with a profile represented as a sum of the two gratings in (a). (c) 2D gratings with profile parameters optimized so as to totally absorb incident nonpolarized light: dx =0.419µm, dz =0.701µm, hx =hz =0.037µm. Results for two mutually orthogonal incident polarizations.

Fig. 5.
Fig. 5.

The influence of the second groove depth (hz ) of the 2D grating described in Fig.4 (b), on its reflectivity as a function of the first groove depth (hx ) when λ=0.65µm.

Fig. 6.
Fig. 6.

Schematic representation of surface plasmon excitation by a crossed grating with the plane of incidence at 45° with respect to the groove directions. (a) Symmetric magnetic field mode, (b) antisymmetric mode.

Fig. 7.
Fig. 7.

Spectral dependence of efficiencies in two fundamental incident polarizations with plane of incidence at 45° to the x- and z-axes. Black, TE, dx =dz =0.485µm, hx =hz =0.038µm, blue, TM, dx =dz =0.483µm, hx =hz =0.032µm.

Fig. 8.
Fig. 8.

Reflectivity as a function of αi (horizontal axis) and γi (vertical axis) for TE polarization (a), TM polarization (b) and unpolarized light (c), for the crossed grating of Fig. 4(c).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

y = f ( x , z ) = h x sin ( 2 π d x x ) + h z sin ( 2 π d z z ) = h x sin ( K x x ) + h z sin ( K z z ) .
k i = ( sin θ i cos ϕ i , cos θ i , sin θ i sin ϕ i ) = ( α i , β i , γ i ) .
k 0 α i K x ( k p , 1 ) x ,
( k p , 2 ) = k 0 ( α i , γ i ) , ( k p , 3 ) = k 0 ( α i , γ i ) .
α i 2 + ( γ i K z ) 2 ( k p 2 ) ,
( α i K x ) 2 + γ i 2 ( k p 2 ) ,

Metrics